3GPP TSG-SA3 (Security)
S3- 182534
Meeting SA3#92, 20– 24 August 2018 Dalian, China
revision of S3-182393, merger of S3-182446
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	33.501
	CR
	0324
	rev
	1
	Current version:
	15.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:

	 Clarification for ngksi and ABBA parameter for EAP-AKA’

	
	

	Source to WG:
	Intel, Huawei, HiSilicon

	Source to TSG:
	S3

	
	

	Work item code:
	5GS_Ph1-SEC
	
	Date:
	2018-08-20

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	Both RFC 4187 [2] (EAP-AKA) and RFC 5448 [3] (EAP-AKA') indicate that the peer (the UE), starts creating the security context upon receiving EAP-Request/AKA-Challenge. It is logical that when one creates a security context, that created security context is identifiable by some means.

Furthermore, in 5G AKA, ngKSI is sent to the UE in the first authentication-request message to the UE. Therefore, not having ngKSI in the first authentication-request in EAP-AKA’ creates implementation inconsistency in UE
It also creates protocol signalling issues wherein the ngKSI in AUTHENTICATION REQUEST is a mandatory information element
According to the conclusion of SA3 #91bis meeting, there is an inconsistency in the communication of the ngKSI in EAP-AKA’ and 5G-AKA procedure to the UE. The ngKSI is provided to the UE at EAP-Success in EAP-AKA’, while the ngKSI is provided to the UE at Authentication –Request in 5G-AKA. However, for implementation, if according to the current standard, SEAF needs to define a mechanism to decide which message to send ngKSI according to different authentication methods. This increases the complexity of the procedure compared to sending ngKSI in the authentication request message in all cases. Meanwhile, the ABBA is used as part of security key generation, it must be provided along with ngKSI. Therefore, the ngKSI and the ABBA shall be provided to the UE at EAPRequest/AKA'-Challenge message in EAP-AKA’.”

	
	

	Summary of change:
	CR proposes the following correction:

The ngKSI and ABBA parameter are included as part of the EAP-AKA’ Authenticaiion Request and Response messages.

	
	

	Consequences if not approved:
	Incorrect specification

	
	

	Clauses affected:
	6.1.3.1, B.2.1.1

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

* * * First Change * * * *

6.1.3
Authentication procedures

6.1.3.1
Authentication procedure for EAP-AKA'

EAP-AKA' is specified in RFC 5448 [12]. The 3GPP 5G profile for EAP-AKA' is specified in the normative Annex F.

The selection of using EAP-AKA' is described in sub-clause 6.1.2 of the present document.

[image: image2.emf]UE SEAF AUSF UDM/ARPF

4. Auth-Req.

[EAP Request / AKAƍ-Challenge,

ngKSI, ABBA]

2. Nudm_UEAuthentication_

Get Response

(EAP-AKAƍ AV[, SUPI])

1. Generate AV

3. Nausf_UEAuthentication_

Authenticate Response

[EAP Request / AKAƍ-Challenge]

5. Calculate Auth.

Response

6. Auth-Resp.

[EAP Response / AKAƍ-Challenge]

7. Nausf_UEAuthentication_

Authenticate Request

[EAP Response / AKAƍ-Challenge]

8. Verify Response

9. Optional exchange of further EAP messages

10. Nausf_UEAuthentication_

Authenticate Response

[EAP Success || Anchor Key]

[SUPI]

11. N1 message

[EAP Success, ngKSI, ABBA]

 Figure 6.1.3.1-1: Authentication procedure for EAP-AKA'

The authentication procedure for EAP-AKA' works as follows, cf. also Figure 6.1.3.1-1:

1.
The UDM/ARPF shall first generate an authentication vector with Authentication Management Field (AMF) separation bit = 1 as defined in TS 33.102 [9]. The UDM/ARPF shall then compute CK' and IK' as per the normative Annex A and replace CK and IK by CK' and IK'.

2.
The UDM shall subsequently send this transformed authentication vector AV' (RAND, AUTN, XRES, CK', IK') to the AUSF from which it received the Nudm_UEAuthentication_Get Request together with an indication that the AV' is to be used for EAP-AKA' using a Nudm_UEAuthentication_Get Response message.

NOTE:
The exchange of a Nudm_UEAuthentication_Get Request message and an Nudm_UEAuthentication_Get Response message between the AUSF and the UDM/ARPF described in the preceding paragraph is the same as for trusted access using EAP-AKA' described in TS 33.402 [11], sub-clause 6.2, step 10, except for the input parameter to the key derivation, which is the value of <network name>. The "network name" is a concept from RFC 5448 [12]; it is carried in the AT_KDF_INPUT attribute in EAP-AKA'. The value of <network name> parameter is not defined in RFC 5448 [12], but rather in 3GPP specifications. For EPS, it is defined as "network access identity" in TS 24.302 [13], and for 5G, it is defined as "serving network name" in sub-clause 6.1.1.4 of the present document.

In case SUCI was included in the Nudm_UEAuthentication_Get Request, UDM will include the SUPI in the Nudm_UEAuthentication_Get Response.

The AUSF and the UE shall then proceed as described in RFC 5448 [12] until the AUSF is ready to send the EAP-Success.

3.
The AUSF shall send the EAP-Request/AKA'-Challenge message to the SEAF in a Nausf_UEAuthentication_Authenticate Response message.

4.
The SEAF shall transparently forward the EAP-Request/AKA'-Challenge message to the UE in a NAS message Authentication Request message. The ME shall forward the RAND and AUTN received in EAP-Request/AKA'-Challenge message to the USIM. This message shall include the ngKSI and ABBA parameter. In fact, SEAF shall include the ngKSI and ABBA parameter in all EAP-Authentication request message. ngKSI will be used by the UE and AMF to identify the partial native security context that is created if the authentication is successful.
NOTE 1:
The SEAF needs to understand that the authentication method used is an EAP method by evaluating the type of authentication method based on the Nausf_UEAuthentication_Authenticate Response message.

5.
At receipt of the RAND and AUTN, the USIM shall verify the freshness of the AV' by checking whether AUTN can be accepted as described in TS 33.102 [4]. If so, the USIM computes a response RES. The USIM shall return RES, CK, IK to the ME. If the USIM computes a Kc (i.e. GPRS Kc) from CK and IK using conversion function c3 as described in TS 33.102 [4], and sends it to the ME, then the ME shall ignore such GPRS Kc and not store the GPRS Kc on USIM or in ME. The ME shall derive CK' and IK' according to Annex A.3.

If the verification of the AUTN fails on the USIM, then the USIM and ME shall proceed as described in sub-clause 6.1.3. 3.

6.
The UE shall send the EAP-Response/AKA'-Challenge message to the SEAF in a NAS message Auth-Resp message.

7.
The SEAF shall transparently forwards the EAP-Response/AKA'-Challenge message to the AUSF in Nausf_UEAuthentication_Authenticate Request message.

8.
The AUSF shall verify the message, and if the AUSF has successfully verified this message it shall continue as follows, otherwise it shall return an error.

9.
The AUSF and the UE may exchange EAP-Request/AKA'-Notification and EAP-Response /AKA'-Notification messages via the SEAF. The SEAF shall transparently forward these messages.

NOTE 2:
EAP Notifications as described in RFC 3748 [27] and EAP-AKA Notifications as described in RFC 4187 [21] can be used at any time in the EAP-AKA exchange. These notifications can be used e.g. for protected result indications or when the EAP server detects an error in the received EAP-AKA response.

10.
The AUSF derives EMSK from CK’ and IK’ as described in RFC 5448[12] and Annex F. The AUSF uses the first 256 bits of EMSK as the KAUSF and then calculates KSEAF from KAUSF as described in clause A.6. The AUSF shall send an EAP Success message to the SEAF inside Nausf_UEAuthentication_Authenticate Response, which shall forward it transparently to the UE. Nausf_UEAuthentication_Authenticate Response message contains the KSEAF. If the AUSF received a SUCI from the SEAF when the authentication was initiated (see sub-clause 6.1.2 of the present document), then the AUSF shall also include the SUPI in the Nausf_UEAuthentication_Authenticate Response message.

NOTE 3:
For lawful interception, the AUSF sending SUPI to SEAF is necessary but not sufficient. By including the SUPI as input parameter to the key derivation of KAMF from KSEAF, additional assurance on the correctness of SUPI is achieved by the serving network from both, home network and UE side. See also step 11.

11.
The SEAF shall send the EAP Success message to the UE in the N1 message. This message shall also include the ngKSI and the ABBA parameter..

NOTE 4:
Step 11 could be NAS Security Mode Command.

NOTE 5:
The ABBA parameter is included to enable the bidding down protection of security features that may be introduced later.

The key received in the Nausf_UEAuthentication_Authenticate Response message shall become the anchor key, KSEAF in the sense of the key hierarchy in sub-clause 6.2 of the present document. The SEAF shall then derive the KAMF from the KSEAF, the ABBA parameter and the SUPI according to Annex A.7 and send it to the AMF. On receiving the EAP-Success message, the UE derives EMSK from CK’ and IK’ as described in RFC 5448 and Annex F. The ME uses the first 256 bits of the EMSK as the KAUSF and then calculates KSEAF in the same way as the AUSF. The UE shall derive the KAMF from the KSEAF, the ABBA parameter and the SUPI according to Annex A.7.

The further steps taken by the AUSF upon receiving a successfully verified EAP-Response/AKA'-Challenge message are described in sub-clause 6.1.4 of the present document.

If the EAP-Response/AKA'-Challenge message is not successfully verified, the subsequent AUSF behaviour is determined according to the home network's policy.

If the AUSF and SEAF determines that the authentication was successful, then the SEAF provides the ngKSI and the KAMF to the AMF.
* * * Next Change * * * *

B.2.1
EAP TLS

B.2.1.1
Security procedures

EAP-TLS is a mutual authentication EAP method that can be used by the EAP peer and the EAP server to authenticate each other. It is specified in RFC 5216 [38]. The 3GPP TLS protocol profile related to supported TLS versions and supported TLS cipher suites in 3GPP networks is specified in TS 33.310 [5], and should be followed when EAP-TLS is used in 3GPP networks.

EAP-TLS supports several TLS versions, and the negotiation of the TLS version is part of EAP-TLS. The main principle of negotiation goes as follows. The EAP server indicates the support for EAP-TLS in the EAP-Request. If the peer chooses EAP-TLS, it responds with an EAP-Response indicating in the ClientHello message which TLS versions the peer supports. The EAP server chooses the TLS version, and indicates the chosen version in the ServerHello message.

The TLS procedure described in the RFC 5216 [38] is TLS 1.1 [39]. However, the use of TLS 1.1 is not recommended in 3GPP networks [5], and should be disabled also in the EAP server if EAP-TLS is used. A newer version, TLS 1.2 is defined in RFC 5246 [40]. The basic protocol procedures for TLS 1.1 and TLS 1.2 are the same. The major changes are in security capability, pseudorandom function (PRF) and cipher suites. The details of changes can be found in section 1.2 of RFC 5246. The EAP server should always choose the highest TLS version that is supported on both endpoints.

The procedure below is based on the unified authentication framework from the present document, procedures from TS 23.502 and RFC 5216 [38]. The procedure is presented here as an example, and other potential procedures are possible, e.g. if TLS resumption is used.

[image: image4.emf]UE SEAF AUSF

1. Registration Request(SUCI)

2.Nausf_UEAuthentication_AuthenticateRequest (

SUCI, SN-name)

6.Nausf_UEAuthentication_AuthenticateResponse (

EAP Request/EAP-Type = EAP-TLS (TLS Start))

7. Auth-Req. (

EAP Request/EAP-Type = EAP-TLS

(TLS Start), ngKSI, ABBA)

8. Auth-Resp. (

EAP Response/EAP-Type = EAP-TLS

(TLS client_hello))

10.Nausf_UEAuthentication_AuthenticateResponse (

EAP Request/EAP-Type = EAP-TLS

(TLS server_hello,

TLS Certificate,

[TLS server_key_exchange,]

TLS certificate_request,

TLS server_hello_done))

9.Nausf_UEAuthentication_AuthenticateRequest (

EAP Response/EAP-Type = EAP-TLS

 (TLS client_hello))

11. Auth-Req.(

EAP Request/EAP-Type = EAP-TLS

(TLS server_hello,

TLS Certificate,

[TLS server_key_exchange,]

TLS certificate_request,

TLS server_hello_done), ngKSI, ABBA)

13. Auth-Resp.(

EAP Response/EAP-Type = EAP-TLS

(TLS Certificate,

TLS client_key_exchange,

TLS certificate_verify,

TLS change_cipher_spec,

TLS finished))

14.Nausf_UEAuthentication_AuthenticateRequest (

EAP Response/EAP-Type = EAP-TLS

(TLS Certificate,

TLS client_key_exchange,

TLS certificate_verify,

TLS change_cipher_spec,

TLS finished))

16.Nausf_UEAuthentication_AuthenticateResponse (

EAP Request/EAP-Type = EAP-TLS

(TLS change_cipher_spec, TLS finished))

17. Auth-Req. (

EAP Request/EAP-Type = EAP-TLS

(TLS change_cipher_spec,

TLS finished), ngKSI, ABBA)

18. Auth-Resp.(

EAP Response/EAP-Type = EAP-TLS)

19.Nausf_UEAuthentication_AuthenticateRequest (

EAP Response/EAP-Type = EAP-TLS)

20.Nausf_UEAuthentication_AuthenticateReSponse (

EAP Success, Anchor Key, SUPI)

21. N1 (EAP Success, ngKSI, ABBA)

12. UE authenticate network

15. Network authenticate UE

UDM

3.Nudm_UEAuthentication_Get

Request(SUCI, SN name)

5.Nudm_UEAuthentication_GetResponse

(SUPI, Indicator (EAP-TLS))

4. Authentication

Method Selection

Figure B.2.1.1-1: Using EAP-TLS Authentication Procedures over 5G Networks for initial authentication

1.
The UE sends the Registration Request message to the SEAF, containing SUCI. If the SUPI is in NAI format, only the username part of the NAI is encrypted using the selected protection scheme and included in the SUCI, together with the realm part in the NAI needed for UDM routing.

Privacy considerations are described in Clause B.2.2.

2.
The SEAF sends Nausf_UEAuthentication_Authenticate Request message to the AUSF. The SUCI and the serving network name (as described in clause 6.1.1.4) are included in the message.

3.
AUSF sends the the Nudm_UEAuthentication_Get Request, containing SUCI and the serving network name, to UDM. The general rules for UDM selection applies.

4.
The SIDF located within the UDM de-conceals the SUCI to SUPI if SUCI is received in the message. The UDM then selects the primary authentication method.

5. If the UDM chooses to use EAP-TLS, it sends the SUPI and an indicator to choose EAP-TLS to AUSF in the Nudm_UEAuthentication_Get Response.

6. With the received SUPI and the indicator, the AUSF chooses EAP-TLS as the authentication method. The AUSF sends thea Nausf_UEAuthentication_Authenticate Response message containing EAP-Request/EAP-TLS [TLS start] message to the SEAF.

7.
The SEAF forwards the EAP-Request/EAP-TLS [TLS start] in the Authentication Request message to the UE. This message also includes the ngKSI and the ABBA parameter. In fact, the SEAF shall always include the ngKSI and ABBA parameter in all EAP-Authentication request message. ngKSI will be used by the UE and AMF to identify the partial native security context that is created if the authentication is successful...
8.
After receiving the EAP-TLS [TLS-start] message from SEAF, the UE replies with an EAP-Response/EAP-TLS [client_hello] to the SEAF in the Authentication Response message. The contents of TLS client_hello are defined in the TLS specification of the TLS version in use.

NOTE1:
The EAP framework supports negotiation of EAP methods. If the UE does not support EAP-TLS, it should follow the rule described in RFC 3748 [27] to negotiate another EAP method. In 5G system, UDM typically knows which EAP method and credentials are supported by the subscriber, and consequently EAP based negotiation may never be used.

9.
The SEAF forwards the EAP-Response/EAP-TLS [client hello] message to AUSF in the Nausf_UEAuthentication_Authenticate Request.

10.
The AUSF replies to the SEAF with EAP-Request/EAP-TLS in the Nausf_UEAuthentication_Authenticate Response, which further includes information elements such as server_hello, server_certificate, server_key_exchange, certificate_request, server_hello_done. These information elements are defined in the RFCs for the corresponding TLS version in use.

11.
The SEAF forwards the EAP-Request/EAP-TLS message with server_hello and other information elements to the UE through Authentication Request message. This message also includes the ngKSI and the ABBA parameter.
12.
The UE authenticates the server with the received message from step 11.

NOTE 2:
The UE is required to be pre-configured with a UE certificate and also certificates that can be used to verify server certificates.

13.
If the TLS server authentication is successful, then the UE replies with EAP-Response/EAP-TLS in Authentication Response message, which further contains information element such as client_certificate, client_key_exchange, client_certificate_verify, change_cipher_spec, client_finished etc. Privacy considerations are described in Clause B.2.1.2.

14.
The SEAF forwards the message with EAP-Response/EAP-TLS message with client_certificate and other information elements to the AUSF in the Nausf_UEAuthentication_Authenticate Request.

15.
The AUSF authenticates the UE based on the message received. The AUSF verifies that the client certificate provided by the UE belongs to the subscriber identified by the SUPI. If there is a miss-match in the subscriber identifiers in the SUPI, the AUSF does not accept the client certificate. If the AUSF has successfully verified this message, the AUSF continues to step 16, otherwise it returns an EAP-failure.

NOTE 2:
The AUSF is required to be pre-configured with the root or any intermediary CA certificates that can be used to verify UE certificates. Deployment of certificate revocation lists (CRLs) and online certificate status protocol (OCSP) are described in clause B.2.2.

16.
The AUSF sends EAP-Request/EAP-TLS message with change_cipher_spec and server_finished to the SEAF in the Nausf_UEAuthentication_Authenticate Response.

17.
The SEAF forwards EAP-Request/EAP-TLS message from step 16 to the UE with Authentication Request message. This message also includes the ngKSI and the ABBA parameter.
18.
The UE sends an empty EAP-TLS message to the SEAF in Authentication Response message.

19.
The SEAF further forwards the EAP-Response/EAP-TLS message to the AUSF in the Nausf_UEAuthentication_Authenticate Request.

20.
The AUSF uses the first 256 bits of EMSK as the KAUSF and then calculates KSEAF from KAUSF as described in Annex A.6. The AUSF sends an EAP-Success message to the SEAF together with the SUPI and the derived anchor key in the Nausf_UEAuthentication_Authenticate Response.

21.
The SEAF forwards the EAP-Success message to the UE and the authentication procedure is finished. This message also includes the ngKSI and the ABBA parameter. The SEAF shall set the ABBA to the default value of all zeros. Then the SEAF derives the KAMF from the KSEAF, the ABBA parameter and the SUPI according to Annex A.7, and provides the ngKSI and the KAMF to the AMF.
On receiving the EAP-Success message, the UE derives EMSK and uses the first 256 bits of the EMSK as the KAUSF and then calculates KSEAF in the same way as the AUSF. The UE derives the KAMF from the KSEAF, the ABBA parameter and the SUPI according to Annex A.7.
NOTE 3:
Step 21 could be NAS Security Mode Command.

NOTE 4:
The ABBA parameter is included to enable the bidding down protection of security features that may be introduced later.
_1596281128.vsd
UE

SEAF

AUSF

3. Nausf_UEAuthentication_
Authenticate Response
[EAP Request / AKA′-Challenge]

UDM/ARPF

5. Calculate Auth. Response

4. Auth-Req.

[EAP Request / AKA′-Challenge, ngKSI, ABBA]

6. Auth-Resp.
[EAP Response / AKA′-Challenge]

2. Nudm_UEAuthentication_
Get Response
(EAP-AKA′ AV[, SUPI])

7. Nausf_UEAuthentication_
Authenticate Request
[EAP Response / AKA′-Challenge]

1. Generate AV

8. Verify Response

9. Optional exchange of further EAP messages

10. Nausf_UEAuthentication_
Authenticate Response
[EAP Success || Anchor Key]
[SUPI]

11. N1 message
[EAP Success, ngKSI, ABBA]

_1596281768.vsd
UE

SEAF

AUSF

1. Registration Request(SUCI)

2.Nausf_UEAuthentication_AuthenticateRequest (
SUCI, SN-name)

6.Nausf_UEAuthentication_AuthenticateResponse (
EAP Request/EAP-Type = EAP-TLS (TLS Start))

7. Auth-Req. (
EAP Request/EAP-Type = EAP-TLS
(TLS Start), ngKSI, ABBA)

8. Auth-Resp. (
EAP Response/EAP-Type = EAP-TLS
(TLS client_hello))

10.Nausf_UEAuthentication_AuthenticateResponse (
EAP Request/EAP-Type = EAP-TLS
(TLS server_hello,
TLS Certificate,
[TLS server_key_exchange,]
TLS certificate_request,
TLS server_hello_done))

9.Nausf_UEAuthentication_AuthenticateRequest (
EAP Response/EAP-Type = EAP-TLS
 (TLS client_hello))

11. Auth-Req.(
EAP Request/EAP-Type = EAP-TLS
(TLS server_hello,
TLS Certificate,
[TLS server_key_exchange,]
TLS certificate_request,
TLS server_hello_done), ngKSI, ABBA)

13. Auth-Resp.(
EAP Response/EAP-Type = EAP-TLS
(TLS Certificate,
TLS client_key_exchange,
TLS certificate_verify,
TLS change_cipher_spec,
TLS finished))

14.Nausf_UEAuthentication_AuthenticateRequest (
EAP Response/EAP-Type = EAP-TLS
(TLS Certificate,
TLS client_key_exchange,
TLS certificate_verify,
TLS change_cipher_spec,
TLS finished))

16.Nausf_UEAuthentication_AuthenticateResponse (
EAP Request/EAP-Type = EAP-TLS
(TLS change_cipher_spec, TLS finished))

17. Auth-Req. (
EAP Request/EAP-Type = EAP-TLS
(TLS change_cipher_spec,
TLS finished), ngKSI, ABBA)

18. Auth-Resp.(
EAP Response/EAP-Type = EAP-TLS)

19.Nausf_UEAuthentication_AuthenticateRequest (
EAP Response/EAP-Type = EAP-TLS)

20.Nausf_UEAuthentication_AuthenticateReSponse (
EAP Success, Anchor Key, SUPI)

21. N1 (EAP Success, ngKSI, ABBA)

12. UE authenticate network

15. Network authenticate UE

UDM

3.Nudm_UEAuthentication_GetRequest(SUCI, SN name)

5.Nudm_UEAuthentication_GetResponse(SUPI, Indicator (EAP-TLS))

4. Authentication Method Selection

