
3GPP TSG-SA3 Meeting #82
S3-160255
Dubrovnik, Croatia 1-5 February 2016

Revision of S3-160177
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	33.303
	CR
	0089
	rev
	4
	Current version:
	13.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:

	Security for UE-to-network relay communications

	
	

	Source to WG:
	Qualcomm Incorporated, Ericsson

	Source to TSG:
	S3

	
	

	Work item code:
	eProSe-EXT-SA3
	
	Date:
	2016-01-25

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-13

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)

	
	

	Reason for change:
	SA2 have specified the procedures for UE-to-network relays. The security procedures for these are needed.

	
	

	Summary of change:
	Add the security procedures for UE-to-network relays to the specification

	
	

	Consequences if not approved:
	No standardised security for UE-to-network relays

	
	

	Clauses affected:
	2, 6.X (new), A.Y (new), E.3, E.4.2, E.4.3, E.5.2.2.5, E.5.2.2.A (new) , E.5.2.2.B (new) , E.5.2.2.C (new) , E.5.2.2.D (new) , E.5.2.2.E (new) , E.5.2.2.F (new) , E.5.2.2.G (new) , E.5.2.2.H (new) , E.5.2.2.I (new) , E.5.2.2.J (new) , E.5.2.2.K (new) , E.5.2.2.L (new)

	
	

	
	Y
	N
	
	

	Other specs
	
	x
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	x
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	x
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

**** FIRST CHANGE ****

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 23.303: "Proximity-based services (ProSe); Stage 2".

[3]
3GPP TS 33.210: "3G security; Network Domain Security (NDS); IP network layer security".

[4]
3GPP TS 33.310: "Network Domain Security (NDS); Authentication Framework (AF)".

[5]
3GPP TS 33.220: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture (GBA)".

[6]
ETSI TS 102 225: "Smart Cards; Secured packet structure for UICC based applications".

[7]
ETSI TS 102 226: "Smart cards; Remote APDU structure for UICC based applications".

[8]
3GPP TS 31.115: "Secured packet structure for (Universal) Subscriber Identity Module (U)SIM Toolkit applications".

[9]
3GPP TS 31.116: "Remote APDU Structure for (U)SIM Toolkit applications ".

[10]
IETF RFC 3550: "RTP: A Transport Protocol for Real-Time Applications".

[11]
IETF RFC 3711: "The Secure Real-time Transport Protocol (SRTP)".

[12]
IETF RFC 6509: "MIKEY-SAKKE: Sakai-Kasahara Key Encryption in Multimedia Internet KEYing (MIKEY)".

[13]
IETF RFC 3830: "MIKEY: Multimedia Internet KEYing".

[14]
IETF RFC 6507: "Elliptic Curve-Based Certificateless Signatures for Identity-Based Encryption (ECCSI)".

[15]
NIST FIPS 186-4: "Digital Signature Standard (DSS)".

[16]
BSI TR-03111: "Technical Guideline TR-03111; Elliptic Curve Cryptography".

[17]
IETF RFC 5639: "Elliptic Curve Cryptography (ECC) Brainpool Standard; Curves and Curve Generation".

[18]
IETF RFC 3339: "Date and Time on the Internet: Timestamps".

[19]
IETF RFC 5280: "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile".

[20]
NIST FIPS 180-4: "Secure Hash Standard (SHS)".

[21]
3GPP TS 33.401: "3GPP System Architecture Evolution (SAE); Security architecture".

[22]
3GPP TS 33.222: "Generic Authentication Architecture (GAA); Access to network application functions using Hypertext Transfer Protocol over Transport Layer Security (HTTPS)".

[23]
IETF RFC 3261: "SIP: Session Initiation Protocol".

[24]
IETF RFC 6508: "Sakai-Kasahara Key Encryption (SAKKE)".

[25]
IETF RFC 5480: "Elliptic Curve Cryptography Subject Public Key Information".
[26]
IETF RFC 6090: "Fundamental Elliptic Curve Cryptography Algorithms".

[27]
IETF RFC 3339: "Date and Time on the Internet: Timestamps".
[28]
IETF RFC 5905: "Network Time Protocol Version 4: Protocol and Algorithms Specification".

[29]
IETF Draft draft-ietf-avtcore-srtp-aes-gcm-17: "AES-GCM and AES-CCM Authenticated Encryption in Secure RTP (SRTP)".

[30]
Void.

[31]
IETF RFC 5116: "An Interface and Algorithms for Authenticated Encryption".

[32]
3GPP TS 33.328: "IP Multimedia Subsystem (IMS) media plane security".

[33]
IETF RFC 6043: "MIKEY-TICKET: Ticket-Based Modes of Key Distribution in Multimedia Internet KEYing (MIKEY)".

[34]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".
[35]
IETF RFC 4563: "The Key ID Information Type for the General Extension Payload in Multimedia Internet KEYing (MIKEY)".

[36]
W3C REC-xmlschema-2-20041028: "XML Schema Part 2: Datatypes".

[37]
IETF RFC 2616: "Hypertext Transfer Protocol -- HTTP/1.1".

[38]
3GPP TS 33.223: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture (GBA) Push function".

[39]
3GPP TS 23.003: "Numbering, addressing and identification".

[40]
3GPP TS 36.331: "Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification".

[41]
3GPP TS 29.368: "Tsp interface protocol between the MTC Interworking Function (MTC-IWF) and Service Capability Server (SCS)".
[aa]
3GPP TS 33.102: "3G Security; Security architecture".
**** NEXT CHANGE ****
6.X
Security for ProSe UE-to-network relays

6.X.1
General

The ProSe UE-to-network relays procedures are described in TS 23.303 [2]. This clause details the security procedures for ProSe UE-to-network relays.
The functionality in this clause may only be supported by ProSe-enabled Public Safety UEs.

6.X.2
Security Requirements

The requirements in clause 5.3.2 apply for the signalling between the UE and ProSe Function.
For the discovery, the security requirement in subclause 6.6.2 apply.
For the distribution of the keys used to protect the relay signalling, the following requirements apply:

-
The keys shall be protected in integrity and confidentiality during their distribution.

-
Only authorized Public Safety ProSe-enabled UEs shall receive the keys.

-
It shall be possible for the Public Safety ProSe-enabled UE to authenticate the network entity distributing the keys.

-
Authorized Public Safety Prose-enabled UEs shall securely store the shared keys.
For the non-discovery communication between the Remote UE and relay, the requirements on one-to-one communication in subclause 6.5.2 apply except the one on mutual authentication of out of coverage UEs.
The system shall support mutual authentication between Remote UE and UE-to-Network Relay.

Both Remote UE and UE-to-Network Relay shall be authorised by the ProSe Function.
6.X.3
Overview of ProSe UE-to-network relay security
6.X.3.1
General

The ProSe UE-to-network relay procedures consist of two distinct phases, i.e. the discovery of the UE-to-network relay and the communication between the Remote UE and UE-to-network relay.

The security of the discovery messages uses the procedures provided in the current specification. The security of the communication between the Remote UE and UE-to-network relay uses the procedures described in clause 6.5 to establish the security context and protect the actual communication. The part of the security establishment that is specific to the UE-to-network relay use case is the establishment of the shared key KD. The procedures for this operation are described in the next subclause.
Following the general sequence of flows for public safety one to one communication, a shared key KD needs to be established. This key serves to derive session keys between the Remote UE and the UE-to-network relay.
In order to generate KD, the Remote UE needs a ProSe Relay User Key (PRUK) and an associated 64-bit PRUK ID from a PKMF. The PRUK ID is used to identify the PRUK to the PKMF of the UE-to-network relay. The PRUK can be used to generate KD for any of the relays under a particular PKMF and hence only one PRUK for each Remote UE is needed from a particular PKMF. This PRUK needs to the fetched by the Remote UE while it is still in coverage. This implies that the Remote UE must contact all the PKMFs of any potential relays it wants to be able to use.
The Remote UE fetches its PRUK from the PKMF using the Key Request/Response messages or may receive one through GBA PUSH as part of establishing the communication with the relay.
The UE-to-network relay fetches the KD that will be used to secure the communication by sending to its PKMF the PRUK ID or IMSI if the Remote UE does not have a PRUK for the relay or the supplied PRUK has been rejected. At the PKMF side, the corresponding PRUK is retrieved. The KD is then derived from the PRUK using a KD Freshness Parameter (a locally generated random number), which the PKMF then passes to the Remote UE via the UE-to-network Relay, a nonce sent by the Remote UE via the UE-to-network Relay and the Relay Service Code the Remote UE wishes to access. The UE-to-network Relay receives the KD and the KD Freshness Parameter, and stores the KD. Having obtained the KD Freshness Parameter enables the Remote UE to derive the same KD as the PKMF did.
If the Remote UE receives a new PRUK in a Key Response message, it deletes any previous one for that PKMF. If it receives a new one through a GBA PUSH message, it shall overwrite any PRUK received through a GBA PUSH message that has not been successfully used to establish a relay connection. Once a PRUK received through a GBA PUSH Message has been used to calculate a KD for a sucessful relay connection establishment, the Remote UE shall delete any previous PRUKs for this PKMF.
6.X.3.2
Security flows

6.X.3.2.1
Overview

This subclause describes the overall security flows for UE-to-network relays. These includes the basic attach flows, dealing with re-synchronisation errors in GPI and the rekeying flows.
6.X.3.2.1.1
Remote UE attaching to a ProSe UE-to-network relay
There are several possible ways that the parameters needed for UE-to-network relay can be provisioned onto the Remote UE and UE-to-network relay. The flow described in Figure 6.X.3.2.1.1-1 is for the case when the general pararmeters are fetched from the ProSe Function(s). In other cases some of the steps can be omited if the relevant parameters are already in place. The figure shows only the parameters that are relevant to the UE-to-network relay security and not all the parameters carried by each message.

[image: image1.emf]5a. Direct Security Mode Command (K

D

Freshness Parameter, GPI)

Remote

UE

UE-to-network

relay

ProSe

Function(s)

PKMF of

Relay

0a. Remote UE get provisioned relay discovery

parameters plus PKMF address

1a. Key Request (Relay Key Required, PRUK ID)

1b. Key Response (PRUK, PRUK ID)

0c. Relay get provisioned relay discovery

parameters plus PKMF address

0d. Get Discovery security material

2. Model A or B Relay Discovery

0b. Get Discovery security material

3. Direct Communication Request (PRUK ID

or IMSI, Relay Service Code)

4a. Key Request (PRUK ID or IMSI, Relay Service

Code, Nonce_1)

4c. Key Response (K

D

, K

D

Freshness Parameter, GPI,

Remote UE Identity)

5b. Direct Security Mode Complete ()

HSS/BSF

of UE

4b. Fetch GPI or AV for user

Figure 6.X.3.2.1.1-1: UE-to-network relay security flows
0. The Remote UE and the UE-to-network relay fetch the parameters necessary to act as a Remote UE and UE-to-network relay respectively (see TS 23.303[2]), the PKMF address for accessing the relay and the security parameters required to protect the relay discovery messages (see subclause 6.6).
NOTE: Part of step 0b may be performed at the same time as step 1a to 1b as the same messages are used to initiate fetching the keys for protecting relay discovery.
1a. The Remote UE sends a Key Request message to the PKMF of the UE-to-network relay. The message indicates that the Remote UE is requesting a ProSe Relay User Key (PRUK) from the PKMF. If the Remote UE already has a PRUK from this PKMF, the message shall also contain the PRUK ID of the PRUK.
1b. The ProSe Key Management Function shall check that the Remote UE is authorised to receive UE-to-network Relay service from one of its relays. This is done by using the Remote UE identity that is bound to the keys that established the TLS tunnel in which the message is sent. If the Remote UE is successfully authorised, the PKMF sends a Key Response message to the Remote UE that may contain a PRUK and PRUK ID. If a PRUK and PRUK ID are included, the Remote UE shall store these and delete any previously stored ones for this ProSe Key Management Function.
2. The Remote UE discovers the UE-to-network Relay using either model A or model B discovery.

3. The Remote UE sends a Direct Communication Request. The Long Term ID shall contain the PRUK ID of the PRUK that the Remote UE want to use to get relay connectivity if the Remote UE has a PRUK for this relay and an attempt to connect to this relay has not been rejected due to the PRUK ID not being recognised. Otherwise the Remote UE shall use its IMSI in the Long Term ID. The Direct Communication Request contains the Relay Service Code that the Remote UE would like to access.
4a. The UE-to-network relay sends a Key Request message to the PKMF. The message shall contain the PRUK ID or IMSI, the Relay Service Code and Nonce_1 (see subclause 6.5.5.2) provided by the Remote UE. The PKMF identifies the UE by the PRUK ID or IMSI. The PKMF checks the context of the Remote UE to confirm whether it can connect to the network via the selected ProSe UE-to-network Relay for the given Relay Service Code.
4b. If the PKMF confirms the Remote UE can connect to the network via the selected ProSe UE-to- network Relay, the PKMF decides if it requires a new PRUK for this UE, i.e. policy in the PKMF decides that PRUK ID needs refreshing or the relay provided the IMSI of the UE. If so the PKMF proceeds as follows:
If the PKMF supports the Zpn interface to the BSF of the UE, the PKMF shall request a GBA Push Info (GPI – see TS 33.223[38]) for the Remote UE from the BSF. When requesting the GPI, it includes a non-zero 64-bit PRUK ID in the P-TID field. On reception of the GPI, the PKMF uses Ks(_ext)_NAF as the PRUK.
If the PKMF support the PC4a interface to the HSS of the UE, then the PKMF shall request an Authentication Vector (AV) for the UE. On receiving the AV, the PKMF locally forms the GPI including a non-zero 64-bit PRUK ID in the P-TID field and sets PRUK as above.
4c. The PKMF generate a random number as the KD Freshness Parameter. The PKMF uses the PRUK to calculate KD with the Relay Service Code, Nonce_1 and KD Freshness Parameter as inputs. The PKMF shall send the Remote UE Identity, KD, KD Freshness Parameter and the GPI if used to calculate a fresh PRUK to the UE-to-network relay.
5a. Using the supplied KD to protect the message, the UE-to-network relay sends a Direct Security Mode Command message to the Remote UE (see 6.5.2.2). This message shall contain the KD Freshness Parameter and the GPI if it received them from the PKMF.
5b. If the Remote UE receives a GPI, it calculates a new PRUK and associated PRUK ID (see step 4b above). The Remote UE derives KD from its PRUK and the received KD Freshness Parameter, Nonce_1 and the Relay Service Code (as described in Annex A.Y). It then processes the Direct Security Mode Command as described in 6.5.2.2. If this is successful, the Remote UE responds with a Direct Security Mode Complete message and the Remote UE and UE-to-network relay may start to exchange user data.
6.X.3.2.1.2
Re-synchronisation in GBA Push authentication
This subclause provides the flows when the UE discovers a synchronisation failure when processing the authentication challenge that was sent to it as part of the GPI (for details of synchronisation failures – see TS 33.102[aa]). Synchronisation failures can happen in both the attachment flow (described in subclause 6.X.3.2.1.1) and the rekeying flow (described in subclause 6.X.3.1.3). The re-synchronisation flow is shown in figure 6.X.3.2.1.2-1, which only shows the contents of messages that are different for the synchronisation case.

[image: image2.emf]1a. Direct Security Mode Command ()

1b. Direct Security Mode Fail (RAND, AUTS)

Remote

UE

UE-to-network

relay

PKMF of

Relay

2a. Key Request (RAND, AUTS)

2c. Key Response ()

HSS/BSF

of UE

2b. Fetch GPI or AV for user

(RAND, AUTS)

3a. Direct Security Mode Command ()

3b. Direct Security Mode Complete ()

0. Attach or rekeying flows before the Direct Security Mode Command

Figure 6.X.3.2.1.2-1: Re-synchronisation flows

This steps are the identical to the Attach and rekeying flows up to the Direct Security Mode Command in these flows

1a. The Direct Security Mode Command contains the same parameters as the Direct Security Mode Command in the Attach or rekeying flows. On processing the GPI parameter contained in this message, the ME receives a synchronisation failure response for the USIM.
1b. The Remote UE send a Direct Security Mode Failure to the relay that contains the RAND and AUTS parameters

2a. The relay send a Key Request message to the PKMF of the Relay and includes the RAND and AUTS received from the Remote UE.
2b. If the PKMF supports the Zpn interface to the BSF of the UE, the PKMF shall request a GBA Push Info (GPI – see TS 33.223[38]) for the Remote UE from the BSF and include the RAND and AUTS parameters. When requesting the GPI, it includes the 64-bit PRUK ID in the P-TID field. On reception of the GPI, the PKMF uses Ks(_ext)_NAF as the PRUK.

If the PKMF support the PC4a interface to the HSS of the UE, then the PKMF shall request an Authentication Vector (AV) for the UE and include the RAND and AUTS parameters. On receiving the AV, the PKMF locally forms the GPI including the 64-bit PRUK ID in the P-TID field and sets PRUK as above.
2c, 3a and 3b. These messages are identical to the corresponding messages in the Attach and rekeying flows.
6.X.3.2.1.3
Rekeying procedures
Due to the asymmetric nature of the keying for relays, there are three rekeying cases that need to be considered. Firstly there is the rekeying that only changes KD-Sess but not KD. Secondly there is the rekeying that is initiated by the Remote UE that changes KD and finally rekeying that is initiated by the relay that changes KD. Each of these is described in turn.
Rekeying without changing KD happens exactly as described in subclause 6.5.5.3. The Remote UE includes its PRUK ID as the Long Term ID in the Direct Rekey Request messages, whereas the relay does not include a Long Term Key ID.
A rekeying that changes KD that is triggered by the Remote UE is shown in figure 6.X.3.2.1.3-1. The steps follow subclause 6.5.5.3 and only message contents that are specific to this use are included

[image: image3.emf]1. Direct Rekey Request (PRUK ID)

Remote

UE

UE-to-network

relay

PKMF of

Relay

2a. Key Request (PRUK ID)

2c. Key Response ()

HSS/BSF

of UE

2b. Fetch GPI or AV for user ()

3a. Direct Security Mode Command ()

3b. Direct Security Mode Complete ()

Figure 6.X.3.2.1.3-1: Rekeying KD when rekeying was initiated by the Remote UE
1. The Remote UE send a Direct Rekey Request including its PRUK ID to the Relay.
2a, 2b, 2c, 3a and 3b. The content and handling of these messages are the same as messages in the Attach flow (subclause 6.X.3.2.1.1) except the security contexts are handled as in subclause 6.5.5.3.
A rekeying that changes KD that is initiated by the relay proceeds as follows. The relay sends a Direct Key Request that does not contain a Long Term ID. Instead of responding to this message, the Remote UE sends its own Direct Rekey Request and the procedure continues as for the rekeying that changes KD that is triggered by the Remote UE.
6.X.3.3.2
Messages between the Remote UE and ProSe Key Management Function

6.X.3.3.2.1
General

Key Request and Response messages are exchanged between the Remote UE and ProSe Key Management Function. The Remote UE uses these messages to request a PRUK to use with relays. These messages are detailed in the following subclauses.

6.X.3.3.2.2
Key Request and Key Response messages

The purpose of these messages is for the Remote UE to request the PRUK from the ProSe Key Management Function. The Remote UE knows from which ProSe Key Management Function(s) to get the needed PRUK(s) as the FQDN(s) of the PKMF(s) are either pre-provisioned or provided by the ProSe Function in the HPLMN of the Remote UE.
When sending a Key Request for a PRUK, the Remote UE shall include all the relevant details of all types of keys that the Remote UE is expecting to receive from the PKMF, e.g. any PGKs for one-to-many ProSe communication.

[image: image4.emf]Remote

UE

PKMF of

Relay

Key Request

Key Response (Success/Failure)

Figure 6.X.3.3.2.2-1: Key Request/Response for Remote UE
The protection for the Key Request and Key Response message is described in subclause 6.X.3.4.

When sending a Key Request message to request the ProSe Key Management Function to send to either get a PRUK or ensure its PRUK is upto date, the Remote UE shall include the following information;

-
An indication of whether the Remote UE wants to receive PRUKs from this PKMF.
-
PRUK ID (if any) that the Remote UE has for this PKMF. If it has none it send an all zero PRUK ID.
The ProSe Key Management Function shall check that the Remote UE is authorised to receive PRUKs. This is done by using the Remote UE identity that is bound to the keys that established the TLS tunnel in which the message is sent. If the Remote UE is not authorised, then the ProSe Key Management Function responds with the appropriate error.

The ProSe Key Management Function responds to the Remote UE with a Key Response message that includes the following parameters:

-
If the Remote UE is authorised to receive PRUKs, then the message may include a PRUK and PRUK ID
-
Otherwise, a status code to indicate why PRUKs will not be supplied.

If a PRUK and PRUK ID are included, the Remote UE shall store these and delete any previously stored ones that were obtained from this ProSe Key Management Function.

6.X.3.3.3
Messages between the Relay and ProSe Key Management Function

6.X.3.3.3.1
General

There are only Key Request/Response messages exchanged between the UE-to-network Relay and ProSe Key Management Function.

6.X.3.3.3.2
Key Request and Key Response messages

The purpose of these messages is for the Relay to request the KD from the ProSe Key Management Function.

[image: image5.emf]Relay

PKMF of

Relay

Key Request

Key Response (Success/Failure)

Figure 6.X.3.3.3.2-1: Key Request/Response for Relay
The protection for the Key Request and Key Response message is described in subclause 6.X.3.4.

When sending a Key Request message to request the ProSe Key Management Function to request a KD, the UE-to-network relay shall include the following information;

-
Either the PRUK ID or the IMSI that was provided in the Direct Communication Request message or Direct Rekey Request;

-
Relay Service Code that the Remote UE requested to use;
-
Nonce_1 that was sent from the Remote UE to the UE-to-network relay in either the Direct Commuications Request or Direct Rekey Request that triggered this Key Request; and
-
RAND and AUTS, in the case of a synchronisation failure of the AV in the GPI.
The ProSe Key Management Function shall check that the Relay is authorised to serve the identified Remote UE for the supplied Relay Service Code. This is done by using the Relay’s identity that is bound to the keys that established the TLS tunnel in which the message is sent. If the Relay is not authorised or the Remote UE can not be identified, then the ProSe Key Management Function responds with the appropriate error.
If the ProSe Key Management Function decides to provide a KD to the UE-to-network relay, then it generates a random number that it sends as the KD Freshness parameter to the UE-to-network relay. The ProSe Key Management Function also calculates the KD (as described in Annex A.Y) from either the PRUK related to the supplied PRUK ID or the new PRUK if this is to be updated (see subclause 6.X.3.2.1.1). In addition to these parameter, the ProSe Key Management Function also provides a Remote UE Identity that the UE-to-network relay provides to the MME. The Remote UE Identity is either the IMSI, MSISDN or a 128-bit string.
NOTE: In general, IMSI should not be sent outside of the operator network in order to protect user privacy. The UE-to-Network Relay cannot be regarded as a network entity in the traditional sense e.g. as an eNB. On the other hand, the PKMF may have a sufficient level of trust in a UE-to-Network Relays to provide the IMSI. Instead of sending the IMSI, the PKMF can send a 128-bit string to the UE-to-Network Relay instead of the IMSI. The string should be such that the MME map the character string to a wanted Remote UE identity (e.g. IMSI) but that the UE-to-Network Relay cannot deduce the Remote UE identity. How this mapping is done in the MME has not be specified by SA3. The mapping information needs to be provisioned into the MME.
The ProSe Key Management Function responds to the Relay with a Key Response message that includes the following parameters:

-
For a successful case,
-
a KD;

-
KD Freshness parameter;

-
an optional GPI; and
-
Remote UE Identity.
-
Otherwise, a status code to indicate why KD will not be supplied.

6.X.3.3
Protection of traffic between Remote UE or Relay and ProSe Function

In order to protect the messages between the Remote UE/UE-to-network Relay and ProSe Function, the Remote UE/UE-to-network relay shall support the procedures for the UE given in subclause 5.3.3.2 and the ProSe Function shall support the procedures for the network function given in subclause 5.3.3.2.

6.X.3.4

Protection of traffic between Remote UE or Relay and ProSe Key Management Function

In order to protect the messages between the Remote UE/ UE-to-network Relay and ProSe Key Management Function, the Remote UE/UE-to-network Relay shall support the procedures for the UE given in subclause 5.3.3.2 and the ProSe Key Management Function shall support the procedures for the network function given in subclause 5.3.3.2.

6.X.3.5
Protection of traffic between Remote UE and Relay
The signalling and user plane traffic sent between the Remote UE and UE-to-network relay are protected as described in subclause 6.5.6
**** NEXT CHANGE ****
A.Y
Calculation of KD for UE-to-network relays
When calculating KD from PRUK, the following parameters shall be used to form the input S to the KDF that is specified in Annex B of TS 33.220 [5]:

-
FC = 0x??
-
P0 = Relay Service Code
-
L0 = length of Relay Service Code (i.e. 0x00 0x03)
-
P1 = Nonce_1
-
L1 = length of Nonce_1 (i.e. 0x00 0x10)
-
P2 = KD Freshness Parameter

-
L2 = length of Nonce_2 (i.e. 0x00 0x10)
The input key shall be the 256-bit PRUK.

Editor’s note: FC value needs to be allocated.
**** NEXT CHANGE ****
E.3
XML Schema

Implementations in compliance with the present document shall implement the XML schema defined below for messages used in ProSe key management procedures.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="urn:3GPP:ns:ProSe:KeyManagement:2014"

 elementFormDefault="qualified"

 targetNamespace="urn:3GPP:ns:ProSe:KeyManagement:2014">

 <xs:annotation>

 <xs:documentation>

 Info for ProSe Key Management Messages Syntax

 </xs:documentation>

 </xs:annotation>

 <!-- Complex types defined for parameters with complicate structure -->

 <xs:complexType name="GroupKey-Request">

 <xs:sequence>

 <xs:element name="GroupId" type="xs:integer"/>

 <xs:element name="PGKId" type="xs:integer" maxOccurs="unbounded"/>

 <xs:element name="anyExt" type="anyExtType" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

 <xs:complexType name="GroupKey-Reject">

 <xs:sequence>

 <xs:element name="GroupId" type="xs:integer"/>

 <xs:element name="error-code" type="xs:integer"/>

 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

 <xs:complexType name="GroupKey-Response">

 <xs:sequence>

 <xs:element name="GroupId" type="xs:integer"/>

 <xs:element name="GroupMemberId" type="xs:integer"/>

 <xs:element name="AlgorithmInfo" type="xs:hexBinary" />

 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

 <xs:complexType name="PMK-info">

 <xs:sequence>

 <xs:element name="PMK-ID" type="xs:hexBinary" />

 <xs:element name="PMK" type="xs:hexBinary"/>

 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>
<xs:complexType name="IMSI-info">

 <xs:sequence>

 <xs:element name="MCC" type="xs:integer"/>

 <xs:element name="MNC" type="xs:integer"/>

 <xs:element name="MSIN" type="xs:integer"/>

 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

<xs:complexType name="MSISDN-info">

 <xs:sequence>

 <xs:element name="CC" type="xs:integer"/>

 <xs:element name="NDC" type="xs:integer"/>

 <xs:element name="SN" type="xs:integer"/>

 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

 <xs:complexType name="PRUK-info">

 <xs:sequence>

 <xs:element name="PRUKID" type="xs:hexBinary" />

 <xs:element name="PRUK" type="xs:hexBinary"/>

 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>
 <xs:complexType name="KDReq-info">

 <xs:sequence>
 <xs:element name="PRUKID" type="xs:hexBinary" minOccurs="0" />

 <xs:element name="IMSI" type="IMSI-info" minOccurs="0" />
 <xs:element name="RelayServiceCode" type="string" />
 <xs:element name="Nonce1" type="xs:hexBinary" />
 <xs:element name="RAND" type="xs:hexBinary" minOccurs="0" />

 <xs:element name="AUTS" type="xs:hexBinary" minOccurs="0" />
 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>
 <xs:complexType name="KDResp-info">

 <xs:sequence>

 <xs:element name="KeyKD" type="xs:hexBinary" />
 <xs:element name="KDFreshnessParameter" type="xs:hexBinary" />
 <xs:element name="GPI" type="xs:hexBinary" minOccurs="0" />
 <xs:element name="RemoteUEIMSI" type="IMSI-info" minOccurs="0" />
 <xs:element name="RemoteUEMSISDN" type="MSISDN-info" minOccurs="0" />
 <xs:element name="RemoteUEOtherID" type="xs:hexBinary" minOccurs="0" />
 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>
 <!-- Complex types defined for transaction-level -->

 <xs:complexType name="KeyReq-info">

 <xs:sequence>

 <xs:element name="transaction-ID" type="xs:integer"/>

 <xs:element name="AlgorithmAvailable" type="xs:hexBinary" minOccurs="0" maxOccurs="1"/>

 <xs:element name="GroupKeyReq" type="GroupKey-Request" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="GroupKeyStop" type="xs:integer" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="PRUKID" type="xs:hexBinary" minOccurs="0" />
 <xs:element name="KDReqinfo" type="KDReq-info" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="anyExt" type="anyExtType" minOccurs="0"/>
 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

 <xs:complexType name="KeyRsp-info">

 <xs:sequence>

 <xs:element name="transaction-ID" type="xs:integer"/>

 <xs:element name="GroupNotSupported" type="GroupKey-Reject" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="GroupResponse" type="GroupKey-Response" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="Key-info" type="PMK-info" minOccurs="0"/>
 <xs:element name="PRUKinfo" type="PRUK-info" minOccurs="0"/>
 <xs:element name="PRUKError" type="xs:integer" minOccurs="0"/>
 <xs:element name="KDRespinfo" type="KDResp-info" minOccurs="0"/>
 <xs:element name="KDError" type="xs:integer" minOccurs="0"/>
 <xs:element name="anyExt" type="anyExtType" minOccurs="0"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

 <!-- extension allowed -->

 <xs:complexType name="KeyManagementMsgExtType">

 <xs:sequence>

 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <!-- XML attribute for any future extensions -->

 <xs:complexType name="anyExtType">

 <xs:sequence>

 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

<!-- Top level Key Management Message definition -->

 <xs:element name="prose-key-management-message">

 <xs:complexType>

 <xs:choice>

 <xs:element name="KEY_REQUEST" type="KeyReq-info"/>

 <xs:element name="KEY_RESPONSE" type="KeyRsp-info"/>

 <xs:element name="message-ext" type="KeyManagementMsgExtType"/>

 <xs:any namespace="##other" processContents="lax"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

</xs:schema>

An entity receiving the XML body ignores any unknown XML element and any unknown XML attribute.

**** NEXT CHANGE ****
E.4.2
Semantics of <KEY_REQUEST>
The <KEY_REQUEST> element consists of:

1)
 <transaction-ID> element which contains the parameter defined in subclause E.5.2.2.1:

2)
zero or one <AlgorithmAvailable> element contains the parameter defined in subclause E.5.2.2.2.

3)
zero or more <GroupKeyRequest> element, each of which consists of:

a)
a <GroupId> element containing the parameter defined in subclause E.5.2.2.3;

b)
one or more <PGKId> element containing the parameter defined in subclause E.5.2.2.4;

c)
zero or one <anyExt> element containing elements defined in future releases;

d)
zero, one or more elements from other namespaces defined in future releases; and

e)
zero, one or more attributes defined in future releases;
4) zero or one <PRUKId> element containing the parameter defined in subclause E.5.2.2.A;
5) zero or one <KDRequest> element, each of which consists of:

a)
zero or one <PRUKId> element containing the parameter defined in subclause E.5.2.2.A;

b)
zero or one <IMSI> element containing the parameter defined in subclause E.5.2.2.C;
c)
one <RelayServiceCode> element containing the parameter defined in subclause E.5.2.2.D;

d)
one <Nonce1> element containing the parameter defined in subclause E.5.2.2.F;
e)
zero or one <RAND> element containing the parameter defined in subclause E.5.2.2.G;

f)
zero or one <AUTS> element containing the parameter defined in subclause E.5.2.2.H;
g)
zero or one <anyExt> element containing elements defined in future releases;

h)
zero, one or more elements from other namespaces defined in future releases; and

i)
zero, one or more attributes defined in future releases;
6)
zero or more <GroupKeyStop> element containing the parameter defined in subclause E.5.2.2.5.

7)
zero or one <anyExt> element containing elements defined in future releases;

8)
zero, one or more elements from other namespaces defined in future releases; and

9)
zero, one or more attributes defined in future releases.

E.4.3
Semantics of <KEY_RESPONSE>
The <KEY_RESPONSE> element consists of:

1)
a <transaction-ID> element which contains the parameter defined in subclause E.5.2.2.1: and

2)
zero or more <GroupNotSupported> element, each of which consists of :

a)
a <GroupId> element containing the parameter defined in subclause E.5.2.2.3;

b)
a <Error-Code> element containing the parameter defined in subclause E.5.2.2.5;

c)
zero, one or more elements defined in future releases; and

d)
zero, one or more attributes defined in future releases;

3)
zero or more <GroupResponse> element, each of which consists of:

a)
a <GroupId> element containing the parameter defined in subclause E.5.2.2.3;

b)
a <GroupMemberID> element containing the parameter defined in subclause E.5.2.2.6;

c)
a <AlgorithmInfo> element containing the parameter defined in subclause E.5.2.2.7;

d)
zero, one or more elements defined in future releases; and

e)
zero, one or more attributes defined in future releases;

4)
zero or one <Key-info> element, each of which consists of:

a)
a <PMK-ID> element containing the parameter defined in subclause E.5.2.2.8;

b)
a <PMK> element containing the parameter defined in subclause E.5.2.2.9;

c)
zero, one or more elements defined in future releases; and

d)
zero, one or more attributes defined in future releases;
5)
zero or one <PRUKinfo> element, each of which consists of:

a)
a <PRUKID> element containing the parameter defined in subclause E.5.2.2.A;

b)
a <PRUK> element containing the parameter defined in subclause E.5.2.2.B;

c)
zero, one or more elements defined in future releases; and

d)
zero, one or more attributes defined in future releases;
6)
zero or one <PRUKError> element element containing the parameter defined in subclause E.5.2.2.5;
7) zero or one <KDResponse> element, each of which consists of:

a)
a <KeyKD> element containing the parameter defined in subclause E.5.2.2.I;

b)
a <KDFrehsnessParameter> element containing the parameter defined in subclause E.5.2.2.J;

c)
zero or one <GPI> element containing the parameter defined in subclause E.5.2.2.K;
d)
zero or one <RemoteUEIMSI> element containing the parameter defined in subclause E.5.2.2.C;
e)
zero or one <RemoteUEMSISDN> element containing the parameter defined in subclause E.5.2.2.E;
f)
zero or one <RermoteUEOtherID> element containing the parameter defined in subclause E.5.2.2.L;
g)
zero, one or more elements defined in future releases; and

h)
zero, one or more attributes defined in future releases;

8) zero or one <KDError> element element containing the parameter defined in subclause E.5.2.2.5;
9)
zero or one <anyExt> element containing elements defined in future releases;

10)
zero, one or more elements from other namespaces defined in future releases; and

11)
zero, one or more attributes defined in future releases.
**** NEXT CHANGE ****
E.5.2.2.5
Error Code

This parameter is used to indicate the particular reason why the UE will not be receiving keys for a requested group. It is an integer in the 0-255 range encoded as follows:

0
Reserved

1
UE does not support the required security algorithms

2
The ProSe Key Management Function does not supply keys for this group

3
UE is not authorised to receive keys for this group

4
UE requested to stop receiving PGKs for this group
5 UE not authorised to receive PRUKs from this PKMF

6
PRUK ID or IMSI not recognised

7 UE-to-network relay not authorised to serve this UE
8-255

Unused

**** NEXT CHANGE ****
E.5.2.2.A
PRUK ID

This parameter is used to identify a PRUK. It is an 8 octet long binary parameter.

E.5.2.2.B
PRUK
This parameter is a key that is shared by the Remote UE and PKMF and is used to generate keys for protecting Remote UE to UE-to-network relay connections. It is a 32 octet long binary parameter.
E.5.2.2.C
IMSI
This parameter is used to carry the Remote UE's IMSI. The coding of IMSI is defined in 3GPP TS 23.003 [39].
E.5.2.2.D
Relay Service Code

This parameter is used to indicate the Relay Service Code for which the UE is requesting service. It is a 24-bit long string.

E.5.2.2.E
MSISDN
This parameter is used to carry the Remote UE's MSISDN. The coding of MSISDN is defined in 3GPP TS 23.003 [39].
E.5.2.2.F
Nonce 1
This random number is generetaed by the Remote UE to ensure fresh keys. It is a 16 octet long binary parameter.
E.5.2.2.G
RAND
This parameter is the RAND from the authemtication challenge used in the GBA PUSH authentication. It is a 16 octet long binary parameter.

E.5.2.2.H
AUTS
This parameter is the AUTS that is generated in a synchronisation failure. It is a 14 octet long binary parameter.

E.5.2.2.I
Key KD
This parameter is a key that is shared by the Remote UE and UE-to-netwrok relay and is used to generate keys for protecting Remote UE to UE-to-network relay connections. It is a 32 octet long binary parameter.
E.5.2.2.J
KD Freshness parameter
This random number is generetaed by the PKMF to ensure the KD that it derives is fresh. It is a 16 octet long binary parameter.
E.5.2.2.K
GPI
This is the GPI parameter that is sent to the UE as part of GBA PUSH proecdures (see TS 33.223[38]). It is a binary parameter.
E.5.2.2.L
Remote UE other identity
This parameter is a permanent identity of the Remote UE and is used when the KMF does not supply an IMSI of the Remote UE (e.g. the PKMF considers it a privacy issue sending IMSI to non-network elements). It is a 16 octet long binary parameter.

**** END OF CHANGES ****

_1514649026.vsd
1. Direct Rekey Request (PRUK ID)

_1516090247.vsd
Remote UE

UE-to-network relay

ProSe Function(s)

PKMF of Relay

0a. Remote UE get provisioned relay discovery parameters plus PKMF address

1a. Key Request (Relay Key Required, PRUK ID)

1b. Key Response (PRUK, PRUK ID)

0c. Relay get provisioned relay discovery parameters plus PKMF address

0d. Get Discovery security material

2. Model A or B Relay Discovery

0b. Get Discovery security material

3. Direct Communication Request (PRUK ID or IMSI, Relay Service Code)

4a. Key Request (PRUK ID or IMSI, Relay Service Code, Nonce_1)

4c. Key Response (KD, KD Freshness Parameter, GPI, Remote UE Identity)

_1508855647.vsd
Remote UE

PKMF of Relay

Key Request

_1514641982.vsd
1a. Direct Security Mode Command ()

_1508855237.vsd
Relay

PKMF of Relay

Key Request

