Meeting #24, Seoul, South Korea, 07 - 10 June 2004

Presentation of Specification to TSG or WG			
Presentation to:	TSG SA Meeting #24		
Document for presentation:	TS 33.246, Version 1.2.1		
Presented for:	Information		

Abstract of document:

The specification covers the security of the Multimedia Broadcast/Multicast Service (MBMS). The aim is to enable the secure transfer of some data to multiple users simultaneously. As multicast presents specific security concerns, the specification contains the threats to a multicast service and the security requirements that are derived from these threats. The specification then describes some security mechanisms to tackle those threats. These are a key management scheme that allows a Broadcast/Multicast Service Centre to securely distribute MBMS specific keys to known mobiles and a method of protecting (using the distributed keys) the data that is transmitted to the UE, such that only the intended recipients can decrypt the data.

Changes since last presentation to TSG Meeting:

The requirements have been moved to a normative Annex, as these will not be actually implemented and it was felt easier to read the specification with them there. Some requirements on the BM-SC to 3rd part content provider reference point were added at the request of SA2. Some threats were added to reflect a malicious user distributing MTKs. These threats are covered by existing requirements.

The various keys that will be used by MBMS have been defined and included in the specification. The relationship between the MBMS User Service and the keys has been clarified through the document (including the requirements). There are also some additions to the symbols and abbreviations to reflect changes made to the specification.

Text has been added to show how GBA_U will be used to generate the various user specific MBMS keys. The text also covers the conditions for the MBMS keys to be stored on the ME and UICC. The new text also covers the functionality that shall be supported by MBMS UICC and MEs.

The method of carrying the MTK to the mobile has been agreed. MTK is the key that is used to actually protect the data sent over an MBMS bearer. The text also includes how the UE checks that the MTK is fresh to avoid replay of MTKs.

Outstanding Issues:

The exact details of the application layer joining and leaving are still to be determined. Some input from SA4 on the exact nature of the application layer joining is needed.

The exact key derivation of MRK and MUK from the keys provided by GBA_U is still ffs. SA3 are communicating with ETSI SAGE over the design of a key derivation function.

The exact format of the delivery of MSKs still needs to be determined. It will be based on an extension of MIKEY as described in S3-040258. The exact combination of push/pull of MSK needs to be agreed.

The exact methods of protecting the data sent as part of an MBMS User Service are still open. SA3 has provided some possible solutions for SA4 comment. SA4 need to analyse these possibilities and ensure that fit with the SA4 requirements, e.g. any repair service or FEC that SA4 specify.

Contentious Issues:

None

3GPP TS 33.246 V1.2.1 (2004-06)

Technical Specification

3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Security; Security of Multimedia Broadcast/Multicast Service (Release 6)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented. This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPPTM system should be obtained via the 3GPP Organizational Partners' Publications Offices. Keywords UMTS, multimedia, broadcast, security

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© 2004, 3GPP Organizational Partners (ARIB, CCSA, ETSI, T1, TTA, TTC). All rights reserved.

Contents

Forev	vord	5
Introc	luction	5
1	Scope	6
2	References	6
3 3.1 3.2 3.3	Definitions, symbols and abbreviations Definitions Symbols Abbreviations	6 7
4	MBMS security architecture	7
5 5.1 5.2 5.3	MBMS security functions Authenticating and authorizing the user Key management and distribution Protection of the transmitted traffic	8 8
6 6.1 6.2 6.3 6.4 6.5	Security mechanisms Using GBA for MBMS Authentication and authorisation of a user Key update procedure MTK generation and validation at the UE Protection of the transmitted traffic	9
Anne	ex A (informative): Trust model	13
Anne	ex B (informative): Security threats	14
B.1 B.1.1 B.1.2 B.1.3 B.1.4 B.1.5	Threats associated with attacks on the radio interface Unauthorised access to multicast data Threats to integrity Denial of service attacks Unauthorised access to MBMS services Privacy violation	14 14 14 14
B.2 B.2.1 B.2.2 B.2.3 B.2.4 B.2.5	Threats associated with attacks on other parts of the system Unauthorised access to data Threats to integrity Denial of service A malicious UE generating MTKs for malicious use later on Unauthorised insertion of MBMS user data and key management data	15 15 15 15
Anne	ex C (normative): Multicast security requirements	17
C.1 C.1.1 C.1.2	Requirements on security service access Requirements on secure service access Requirements on secure service provision	17

Anne	Annex <x> (informative): Change history20</x>		
C.7	Requirements on content provider to BM-SC reference point	19	
C.6	Requirements on confidentiality protection of MBMS User Service data	18	
C.5	Requirements on integrity protection of MBMS User Service data	18	
C.4	Requirements on MBMS Key Management	18	
C.3	Requirements on Privacy	17	
C.2	Requirements on MBMS signaling protection	17	

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

5

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The security of MBMS provides different challenges compared to the security of services delivered over point-to-point services. In addition to the normal threat of eavesdropping, there is also the threat that it may not be assumed that valid subscribers have any interest in maintaining the privacy of the communications, and they may therefore conspire to circumvent the security solution (for example one subscriber may publish the decryption keys enabling non-subscribers to view broadcast content). Countering this threat requires the decryption keys to be updated frequently in a manner that may not be predicted by subscribers while making efficient use of the radio network.

1 Scope

The Technical Specification covers the security procedures of the Multimedia Broadcast/Multicast Service (MBMS) for 3GPP systems (UTRAN and GERAN). MBMS is a GPRS network bearer service over which many different applications could be carried. The actual method of protection may vary depending on the type of MBMS application.

6

2 References

The following documents contain provisions, which, through reference in this text, constitute provisions of the present document.

References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.

- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
- [2] 3GPP TS 22.146: "Multimedia Broadcast/Multicast Service; Stage 1".
- [3] 3GPP TS 23.246: "Multimedia Broadcast/Multicast Service (MBMS); Architecture and Functional Description".
- [4] 3GPP TS 33.102: "3G Security; Security Architecture".
- [5] 3GPP TS 22.246 "MBMS User Services"
- [6] 3GPP TS 33.220: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture".
- [7] 3GPP TS 31.102: "T3-specification describing MBMS application and interface procedures on UICC"
- [8] IETF RFC 2617 "HTTP Digest Authentication"

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply.

For the definitions of MBMS User Service refer to [5].

MFK = MBMS traffic key Freshness Key: This key is derived from MSK and is used to ensure that MTK is fresh.

MGK = MBMS traffic key Generation Key: This key is derived from MSK and is used to protect MTK.

MRK = MBMS Request Key: This key is to authorize the UE to the BM-SC when performing key requests etc.

MSK = MBMS Service Key: The MBMS Service key that is securely transferred (using the key MUK) from the BM-SC towards the UE. For MBMS streaming the MSK is not used directly to protect the MBMS User Service data (see MTK).

Editors Note: How the MSK is used for download is still under study.

MTK = MBMS Traffic Key: A key that is obtained by the UICC or ME by calling a decryption function F_t with a key derived from MSK. The key MTK is used to decrypt the received MBMS data on the ME.

MUK = MBMS User Key: The MBMS user individual key that is used by the BM-SC to protect the point to point transfer of MSK's to the UE.

Editors Note: The keys MSK and MUK may be stored within the UICC or the ME depending on the MBMS service. The function F_t may be realized on the ME or the UICC

3.2 Symbols

For the purposes of the present document, the following symbols apply:

$\mathbf{F}_{\mathbf{f}}$	MFK generation function
F_{g}	MGK generation function
$\mathbf{F}_{\mathbf{m}}$	Keyed MAC function used to check the freshness of MTK
\mathbf{F}_{t}	MTK generation function

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

MBMS	Multimedia Broadcast/Multicast Service
MGV-F	MTK Generation and Validation Function

4 MBMS security architecture

MBMS introduces the concept of a point-to-multipoint service into a 3G network. A requirement of a multicast service is to be able to securely transmit data to a given set of users. In order to achieve this, there needs to be a method of authentication, key distribution and data protection for a multicast service. The point-to-point services in a 3G network use the AKA protocol (see TS 33.102 [4]) to both authenticate a user and agree on keys to be used between that user and the radio network. These keys are subsequently used to provide protection of traffic between the network and the UE.

Figure 1: MBMS security architecture

Figure 1 gives an overview of the network elements involved in MBMS from a security perspective. Nearly all the security functionality for MBMS (beyond the normal network bearer security) resides in either the BM-SC or the UE.

The Broadcast Multicast – Service Centre (BM-SC) is a source for MBMS data. It could also be responsible for scheduling data and receiving data from third parties (this is beyond the scope of the standardisation work) for transmission. It is responsible for generating and distributing the keys necessary for multicast security to the UEs and for applying the appropriate protection to data that is transmitted as part of a multicast service. The BM-SC also provides the MBMS bearer authorisation for UEs attempting to establish multicast bearer.

The UE is responsible for receiving or fetching keys for the multicast service from the BM-SC and also using those keys to decrypt the MBMS data that is received.

5 MBMS security functions

5.1 Authenticating and authorizing the user

A UE is authenticated and authorised in two parts when participating in an MBMS User Service. Firstly when the UE establishes the MBMS bearer(s) to receive an MBMS User Service and secondly when the UE requests and receives MSKs for the MBMS User Service. The MBMS bearer establishment requires a point to point connection with the network on which authentication is performed using network security described in TS 33.102 [4]. Authorisation for the MBMS bearer establishment happens by the network making an authorisation request to the BM-SC to ensure that the UE is allowed to establish the MBMS bearer(s) corresponding to an MBMS User Service (see TS 23.246 [3] for the details). As MBMS bearer establishment authorisation lies outside the control of the MBMS bearer network (i.e. it is controlled by the BM-SC), there is an additional procedure to remove the MBMS bearer(s) related to a UE that is no longer authorised to access an MBMS User Service.

- Editor's Note: It was agreed that the GBA method will be used for MBMS Security (GBA-U + GBA-ME + MIKEY). It was agreed that the work would continue under the assumption of there being both the UICC-based solution and ME-based solution. If a Terminal is to support MBMS, then it will need to support GBA-U.
- Editor's Note: Authentication may also be needed for application layer joining and leaving. The final decision relies of work in SA4.

5.2 Key management and distribution

Like any service, the keys that are used to protect the transmitted data in a Multicast service should be regularly changed to ensure that they are fresh. This ensures that only legitimate users can get access to the data in the MBMS service. In particular frequent re-keying acts as a deterrent for an attacker to pass the MBMS keys to others users to allow those other users to access the data in an MBMS service.

The BM-SC is responsible for the generation and distribution of the MBMS keys to the UE. A UE has the ability to request a key when it does not have the relevant key to decrypt the data. This request may also be initiated by a message from the BM-SC to indicate that a new key is available.

- Editor's note: It needs to be decided if there is to be a minimum amount of traffic that is to be protected with one key, as this puts a lower limit on the frequency of key changes, e.g. one continuous transmission of data. It could also be possible for several of these minimum amounts to be transmitted with changing the key. It is ffs what this minimum amount should be and whether several of these minimum amounts can be transmitted without changing the key.
- Editor's note: If all users need to request a key update simultaneously then there may need to be some method of ensuring that all the users do not request a key update at the same time. This mechanism is ffs.
- Editor's note: The keys can be distributed to each user receiving the same MBMS service in point-to-point mode when the number of the users is relatively small. And the users receiving the same Multicast service within the same area can also be further combined into one to several subgroups to make it possible that the keys can be given to all users within one subgroup at a time in point-to-multipoint mode.

5.3 Protection of the transmitted traffic

The traffic for a particular MBMS service may require some protection depending on the sensitivity of the data being transmitted (e.g. it is possible that the data being transmitted by the MBMS service is actually protected by the DRM security method and hence requires no additional protection). This protection will be either confidentiality and integrity or just confidentiality. The protection is applied end-to-end between the BM-SC and the UEs and will be based on a symmetric key shared between the BM-SC and the UEs that are currently accessing the service. The actual method of protection specified may vary depending on the type of data being transmitted, e.g. media streaming application or file download.

Editor's note: It was agreed that the encryption should be done end-to-end between the UE and BM-SC, and not at either the Radio or the Core Network level. The actual method of protection was for further study.

Editor's note: It was noticed that when data is sent on a ptp MBMS bearer, it would be ciphered between the BM-SC and UE and also over the RAN. SA3 agreed that this "double ciphering" was unnecessary from a security point of view. This was indicated to RAN2 and GERAN2 in an LS (S3-030156) and the choice on whether to "double cipher" was left to these groups. RAN2 (S3-030328) indicated it would be easier to "double cipher" as this kept the RAN simpler, whereas GERAN2 (S3-030184) indicated that they would avoid "double ciphering".

6 Security mechanisms

6.1 Using GBA for MBMS

GBA[6] is used to agree keys that are needed to run an MBMS Multicast User service. MBMS imposes the following requirements on the MBMS capable UICCs and MEs:

- A UICC that contains MBMS key management functions shall implement GBA_U.
- An ME that supports MBMS shall implement GBA_U and GBA_ME, and shall be capable of utilising the MBMS key management functions on the UICC.

Before a user can access an MBMS User service, the UE needs to share GBA-keys with the BM-SC. If no valid GBA-keys are available at the UE, the UE shall perform a GBA run with the BSF of the home network as described within [6] section 5. The BM-SC will act as a NAF according to [6].

The MSKs for an MBMS User service shall be stored on either the UICC or the ME. Storing the MSKs on the UICC requires a UICC that contains the MBMS management functions (and by requirement is GBA aware) and requires that all of the network elements, i.e. HSS, BSF and BM-SC, to be GBA_U aware. As a result of the GBA_U run in these circumstances, the BM-SC will share a key Ks_ext_NAF with the ME and share a key Ks_int_NAF with the UICC. This key Ks_int_NAF is used by the BM-SC and the UICC as the key MUK to protect MSK deliveries to the UICC as described within clause 6.3. The key Ks_ext_NAF is used as the key MRK within the protocols as described within clause 6.2.

NOTE: A run of GBA_U on a GBA aware UICC will not allow the MSKs to be stored on the UICC, if the MBMS management functions are not present on the UICC.

In any other circumstance, a run of GBA results in the BM-SC sharing a key Ks_(ext)_NAF with the ME. This key Ks_(ext)_NAF is used by the BM-SC and the ME to derive the key MUK and the key MRK (MBMS Request Key). The key MUK is used to protect MSK deliveries to the ME as described within clause 6.3. The key MRK is used to authenticate the UE towards the MBMS within the protocols as described within clause 6.2.

6.2 Authentication and authorisation of a user

Editor's note: this section will contain the details on authentication and authorization of an MBMS user

Editor's Note: The exact details on how to derive the keys MRK and MUK from the GBA keys are for ffs.

When the user wants to join an MBMS user service, it shall use HTTP digest authentication [6] for authentication. HTTP digest is run between BM-SC and ME. The MBMS authentication procedure is based on the general user authentication procedure over Ua interface that is specified in chapter "Procedures using the bootstrapped Security Association" in [6]. The BM-SC will act as a NAF according to [6].

The following adaptations apply to HTTP digest:

- The transaction identifier as specified in [8] is used as username
- MRK (MBMS Request Key) is used as password.
- The joined MBMS user service is specified in client payload of HTTP Digest message.

Editor's Note: The contents of the client payload are FFS and may require input from TSG SA WG4.

Editor's Note: The use of bootstrapped keys for leaving an MBMS user service, for an MSK key request and request to a download repair server is for ffs.

Editor's Note: According to S3-040212, SA4 has a working assumption to use HTTP as the transport protocol but this is only agreed for the download repair service.

6.3 Key update procedure

Once a UE has joined a multicast service, the UE should try to get the MSK that will be used to 'protect' the data transmitted as part of this multicast service. If the UE fails to get hold of the MSK or receives confirmation that no updated MSK is necessary or available at this time, then, unless the UE has a still-valid, older MSK, the UE shall leave the MBMS user service. The UE tries to get the MSK using the second message in the below flow.

The BM-SC controls when the MSKs used in a multicast service are to be changed. The below flow describes how MSK changes are performed.

UE BM-SC

New key available

Request key

Deliver key / Request key rejection

The first message is sent out by the BM-SC to indicate that new MSKs are available. It is an optional message in the flow. If it is sent to all UEs, then the BM-SC should provide the rules to the UE for subsequent request for the new MSK when a UE joins a multicast service, to avoid simultaneous requesting from all the UEs.

Editor's note: A possible method for achieving the above is for the BM-SC to allocates different "request delay time" to different UEs; such that when the UEs receive the new key available message, they shall send the request key message after the delay requested by the BM-SC. Alternatively it is possible to use the key lifetime methods suggested in S3-040059.

The second message is used to request an MSK. This is sent by the UE when it either receives the first message in the flow and does not have the new MSK, or has just joined a multicasts service and does not have an MSK for that service or has received some protected content and does not have the MSK that was used to protect the content. If the UE fails to get hold of the updated MSK or receive confirmation that no updated MSK is necessary or available at this time, then, unless the UE has a still valid older MSK, the UE shall leave the MBMS service.

- After receiving the second message the BM-SC should send out the appropriate MSK to the UE protected by the relevant means, or reject the UE's key request with an indication of the cause. Upon successfully receiving the new MSK, the UE should store this key for later use.
- Editor's note: MIKEY was chosen as the method for carrying keys. The use of MIKEY will be based on the proposal in S3-040258.

6.4 MTK generation and validation at the UE

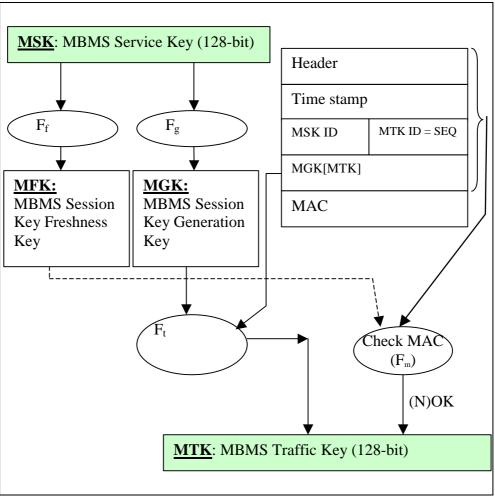


Figure 1: MTK Validation and Generation Function

The ME will call the (*MTK Generation and Validation Function*) MGV-F that is realized as part of the ME or as part of the UICC. It is assumed that the MBMS service specific data, MSK and the sequence number SEQs, have been stored within a secure storage (MGV-S). This MGV-S may be realized on the ME or on the UICC but for certain type of MBMS services the UICC shall be used as determined by the service provider. Both MSK and SEQs were transferred to the MGV-S with the execution of the key update procedures as described in section 6.2. The initial value of SEQs is determined by the service provider.

When the ME receives the MIKEY message (including e.g.MSK ID, MTK ID = SEQp, MGK[MTK], MAC) from the ptm data stream, it shall give the MIKEY message to the MGV-F. The MGV-F shall only calculate and deliver the MBMS Traffic Keys (MTK) to the ME if the ptm-key information is deemed to be fresh. How this shall be done is described below:

The MGV-F shall derive a key MFK (MBMS traffic key Freshness Key) from the MSK using a key derivation function F_f , and shall derive a key MGK (MBMS traffic key Generation Key) from the MSK using a key derivation function F_g .

The traffic key generation shall be performed in the following way:

The traffic key decrypt function F_t decrypts the received MGK[MTK] to obtain MTK.

The freshness check shall be performed in the following way:

The MGV-F shall compare the received SEQp, i.e. MTK ID from the MIKEY message with the stored SEQs. If SEQp is equal or lower than SEQs then the MGV-F shall indicate a failure to the ME. If SEQp is greater than SEQs then the MGV-F shall calculate the MAC using a keyed MAC function F_m with the received MIKEY message and the key MGK

11

as input. This MAC is compared with the MAC of the KEMAC payload in the MIKEY message.. If the MAC defers then the MGV-F will indicate a failure to the ME. If the MAC is equal then the MGV-F shall update SEQs with SEQp value and start with the generation of MTK. The MGV-F provides the MTK to the ME.

6.5 Protection of the transmitted traffic

The data transmitted to the UEs is protected by a symmetric key (an MTK) that is shared by the BM-SC and UEs that are accessing the MBMS service. The protection of the data is applied by the BM-SC. In order to determine which key was used to protect the data a Key_ID is included with the protected data. The Key_ID will uniquely identify the MSK and contain other information needed to calculate the MTK. If the UE does not have the MSK indicated by Key_ID, then it should fetch the MSK using the methods discussed in the clause 6.3. The MTK is derived according to the methods described in clause 6.4.

Note: including the Key_ID with the protected data stops the UE trying to decrypt and render content for which it does not have the MSK.

The below flow shows how the protected content is delivered to the UE

UE

BM-SC

Key_ID, Protected Content

After using a key to decrypt protected traffic, the UE deletes any older key for this multicast service.

Editor's note: this section may contain several protection methods.

Editor's note: if SRTP is chosen, the master key identifier can be used to indicate the current MBMS key whichever key management method is chosen

Annex A (informative): Trust model

The following trust relationship between the roles that are participating in MBMS services are proposed:

The user trusts the home network operator to provide the MBMS service according to the service level agreement. .

13

The user trusts the network operator after mutual authentication.

The network trusts an authenticated user using integrity protection and encryption at RAN level.

The network may have trust or no trust in a content provider.

The home network and visited network trust each other when a roaming agreement is defined, in the case the user is roaming in a VPLMN.

Annex B (informative): Security threats

B.1 Threats associated with attacks on the radio interface

The threats associated with attacks on the radio interface are split into the following categories, which are described in the following sub-chapters:

unauthorized access to multicast data;

threats to integrity;

denial of service;

unauthorized access to MBMS services;

privacy violation.

The attacks on the MBMS service announcements to the users on the radio interface are not discussed here, as these will most likely be transferred on a point-to-point connection (e.g. PS signaling connection), which is already secured today (integrity protected and optionally encrypted RAN level).

B.1.1 Unauthorised access to multicast data

A1: Intruders may eavesdrop MBMS multicast data on the air-interface.

- A2: Users that have not joined and activated a MBMS multicast service receiving that service without being charged.
- A3: Users that have joined and then left a MBMS multicast service continuing to receive the MBMS multicast service without being charged.
- A4: Valid subscribers may derive decryption keys (MTK) and distribute them to unauthorized parties.
- Note: It is assumed that the legitimate end user has a motivation to defeat the system and distribute the shared keys (MSK, MTK) that are a necessary feature of any broadcast security scheme.

B.1.2 Threats to integrity

B1: Modifications and replay of messages in a way to fool the user of the content from the actual source, e.g. replace the actual content with a fake one.

B.1.3 Denial of service attacks

C1: Jamming of radio resources. Deliberate manipulation of the data to disturb the communication.

B.1.4 Unauthorised access to MBMS services

- **D1**: An attacker using the 3GPP network to gain "free access" of MBMS services and other services on another user's bill.
- **D2**: An attacker using MBMS shared keys (MSK, MTK) to gain free access to content without any knowledge of the service provider.

Note: It cannot be assumed that keys held in a terminal are secure. No matter how the shared keys (MSK, MTK) are delivered to the terminal, we have to assume they can be derived in an attack. For example, the shared keys, while secure in the UICC, may be passed over an insecure SIM-ME interface.

B.1.5 Privacy violation

E1: The user identity could be exposed to the content provider, in the case the content provider is located in the 3GPP network, and then linked to the content.

B.2 Threats associated with attacks on other parts of the system

The threats associated with attacks on other parts of the system are split into the following categories, which are described in the following sub-chapters:

unauthorized access to data;

threats to integrity;

denial of service;

A malicious UE generating MTKs for malicious use later on;

Unauthorized insertion of MBMS user data and key management data.

B.2.1 Unauthorised access to data

- F1: It is assumed that the BM-SC and the GGSN are located in the same network. The BM-SC can though be located in a different place than the GGSN, and therefore can open up for intruders who may eavesdrop the new interface Gi and Gmb between the BM-SC and GGSN.
- F2: Intruders may eavesdrop the new interface between the content provider and the BM-SC.

B.2.2 Threats to integrity

- **G1**: It is assumed that the BM-SC and the GGSN are located in the same network. The BM-SC can though be located in a different place than the GGSN, and therefore can open up for new attacks on the new interfaces Gi and Gmb between the BM-SC and GGSN.
- G2: The new interface between the content provider and the BM-SC may open up for attacks as modifications of multimedia content.

B.2.3 Denial of service

H1: Deliberated manipulation of the data between the BM-SC <-> Content Provider to disturb the communication.

H2: Deliberated manipulation of the data between the BM-SC <-> GGSN to disturb the communication.

B.2.4 A malicious UE generating MTKs for malicious use later on.

I1: A malicious ME querying the MTK generation function for MTK's to use them later on in an attack (e.g. in order to use the retrieved MTKs within an unauthorized data insertion attacks (See B.2.5)).

B.2.5 Unauthorised insertion of MBMS user data and key management data

- J1: An ME, which deliberately inserts key mananagement and malicious data, encrypted with valid (previously retrieved) MTK from the MTK generation function, within the multicast stream.
- J2: An ME, which deliberately inserts key management and malicious data, encrypted with old (using replayed key management messages) MTK, within the multicast stream

Annex C (normative): Multicast security requirements

Editor's note: Not all the security requirements in this section have been agreed.

C.1 Requirements on security service access

C.1.1 Requirements on secure service access

R1a: A valid USIM shall be required to access any 3G service including the MBMS User Services.

R1b: It shall be possible to prevent intruders from obtaining unauthorized access of MBMS User Services by masquerading as authorized users.

Editor's note: No requirements shall be placed on the UE that requires UE to be customised to a particular customer prior to the point of sale

C.1.2 Requirements on secure service provision

R2a: It shall be possible for the network (e.g. BM-SC) to authenticate users at the start of, and during, service delivery to prevent intruders from obtaining unauthorized access to MBMS User Services.

Editor's note: Authentication during service is ffs.

R2b: It shall be possible to prevent the use of a particular USIM to access MBMS User Services.

Editor's Note: It is for FFS to what extent it is required to detect and prevent fraudulent use of MBMS services.

C.2 Requirements on MBMS signaling protection

- R3a: It shall be possible to protect against unauthorized modification, insertion, replay or deletion of MBMS signaling on the Gmb reference point.
- Editor's note: When the Gmb reference point is IP-based then NDS/IP methods according to TS 33.210 may be applied to fulfill requirement R3a. The Gmb interface is ffs.
- R3b: Unauthorized modification, insertion, replay or deletion of all signaling, on the RAN shall be prevented when the RAN selects a point-to-multipoint (ptm) link for the distribution of MBMS data to the UE

Editor's note: UTRAN Bearer signalling integrity protection will be turned off for point to multipoint MBMS sessions and GERAN has no bearer signalling integrity protection, even for point to point signalling.

C.3 Requirements on Privacy

R4a: The User identity should not be exposed to the content provider or linked to the content in the case the Content Provider is located outside the 3GPP operator's network.

Editor's note: This may already be covered by some national regulations.

R4b: MBMS identity and control information shall not be exposed when the RAN selects a point-to-multipoint link for the distribution of MBMS data to the UE.

Editor's note: UTRAN Bearer confidentiality protection will be turned off for point to multipoint MBMS sessions

C.4 Requirements on MBMS Key Management

R5a: The transfer of the MBMS keys between the MBMS key generator and the UE shall be confidentiality protected.

R5b: The transfer of the MBMS keys between the MBMS key generator and the UE may be integrity protected.

- R5c: The UE and MBMS key generator shall support the operator to perform re-keying as frequently as it believes necessary to ensure that
 - users that have joined an MBMS User Service multicast service, but then left, shall not gain further access to the MBMS User Service without being charged appropriately
 - users joining an MBMS User Service shall not gain access to data from previous transmissions in the MBMS User Service without having been charged appropriately
 - the effect of subscribed users distributing decryption keys to non-subscribed users shall be controllable.
- R5d: Only authorized users that have joined an MBMS User Service shall be able to receive MBMS keys delivered from the MBMS key generator.
- R5e: The MBMS keys shall not allow the BM-SC to infer any information about used UE-keys at radio level (i.e. if they would be derived from it).
- R5f: All keys used for the MBMS User Service shall be uniquely identifiable. The identity may be used by the UE to retrieve the actual key (based on identity match, and mismatch recognition) when an update was missed or was erroneous/incomplete.
- Editor's note: If ptm re- keying is used, the keys shall be delivered in a reliable way. Ptp re-keying is assumed to be reliable.
- R5g: The BM-SC shall be aware of where all MBMS specific keys are stored in the UE (i.e. ME or UICC).
- R5h: The function of providing MTK to the ME shall only deliver a MTK to the ME if the input values used for obtaining the MTK were fresh (have not been replayed) and came from a trusted source.

C.5 Requirements on integrity protection of MBMS User Service data

R6a: It shall be possible to protect against unauthorized modification, insertion, replay or deletion of MBMS User Service data sent to the UE on the radio interface. The use of integrity shall be optional.

Editor's note: It may be possible to detect the deletion of MBMS data packets, but it is impossible to prevent the deletion. Packets may be lost because of bad radio conditions, providing integrity protection will not help to detect or recover from this situation.

Note: the use of shared keys (integrity and confidentiality) to a group of untrusted users only prevents attacks of lower levels of sophistication, such as preventing eavesdroppers from simply listening in

R6b: The MBMS User Service data may be integrity protected with a common integrity key, which shall be available to all users that have joined the MBMS User Service.

R6c: It may be required to integrity protect the "BM-SC - GGSN" interface i.e. reference point Gi.

C.6 Requirements on confidentiality protection of MBMS User Service data

R7a: It shall be possible to protect the confidentiality of MBMS User Service data on the radio interface.

R7b: The MBMS User Service data may be encrypted with a common encryption key, which shall be available to all users that have joined the MBMS User Service.

R7c: It may be required to encrypt the MBMS User Service data on the "BM-SC - GGSN" interface, i.e. the reference points Gi.

R7d: It shall be infeasible for a man-in-the-middle to bid down the confidentiality protection used on protect the MBMS User Service from the BM-SC to the UE.

R7e: It shall be infeasible for an eavesdropper to break the confidentiality protection of the MBMS User Service when it is applied.

C.7 Requirements on content provider to BM-SC reference point

- R8a: The BM-SC shall be able to authenticate and authorize a 3rd party content provider that wishes to transmit data to the BM-SC.
- R8b: It shall be possible to integrity and confidentiality protect data sent from a 3rd party content provider to the BM-SC.

NOTE: This reference point will not be standardised.

Annex <X> (informative): Change history

Change history							
Date	TSG #	TSG Doc.	CR	Rev	Subject/Comment	Old	New
2002-09					Initial version supplied by Rapporteur		0.0.1
2002-11					Updated to include the threat and requirements discussed at SA3 #25.	0.0.1	0.0.2
2003-02					Updated to reflect changes to the requirements agreed at SA#26	0.0.2	0.0.3
2003-04					Updated to reflect changes agreed at the SA#27	0.0.3	0.10. 0
2003-07					Updated to reflect the decision on TEK distribution and independence of the MBMS keys from radio level keys	0.1.0	0.1.1
2003-08					Updated to reflect agreement in SA#29 on adding confidentiality requirements, editor's note about double ciphering, and text indicating that different security mechanisms may be needed to protect different protocols/codec that may be used in MBMS and re- organisation of the requirements section.	0.1.1	0.2.0
2003-09					Updated to reflect decision at Antwerp ad-hoc.	0.2.0	0.2.1
2003-11					Updated to reflect changes to requirements and threat at SA3#30	0.2.1	0.2.2
2003-11					Updated to reflect decisions taken at SA3#31while discussing tdoc 755 and attached pseudo CR.	0.2.2	0.2.3
2003-11					Updated to reflect all the other decisions taken at SA3#31	0.2.3	0.3.0
2003-11					Updated with some editorial modification and presented to the SA plenary for information	0.3.0	1.0.0
2004-02					Updated to reflect changes agreed at SA3#32	1.0.0	1.1.0
2004-04					Minor corrections agreed by e-mail discussion	1.1.0	1.1.1
2004-05					Updated to reflect the decisions taken at SA3#33	1.1.1	1.2.0
2004-06					Small editorial corrections	1.2.0	1.2.1

20

Unofficial 3GPP TS 33.246 v1.10.10

Technical Specification

3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Security; Security of Multimedia Broadcast/Multicast Service (Release 6)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented. This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices. Select keywords from list provided in specs database.

Keywords <keyword[, keyword]>

2

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© 2002, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC). All rights reserved.

Contents

Forev	word	5
Intro	duction	5
1	Scope	6
<u> </u>		
2	References	
3	Definitions, symbols and abbreviations	6
3.1	Definitions	6
3.2	Symbols	
3.3	Abbreviations	7
4	MBMS security architecture and requirements	7
41	Security requirements	7
4.1.1	Requirements on security service access	7
	1 Requirements on secure service access	
	2 Requirements on secure service provision	
4.1.2	Requirements on MBMS signaling protection	8
4.1.3	Requirements on Privacy	8
4.1.4		
4.1.5		
4.1.6	Requirements on confidentiality protection of MBMS multicast data	9
5	MBMS security functions	
5.1	Authenticating and authorizing the user	
5.2	Key management and distribution	
5.3	Protection of the transmitted traffic	
6	Security mechanisms	11
<u>6.1</u>	Authentication and authorisation of a user	11
6.2	Key update procedure	
<u>6.3</u> a	MTK generation and validation at the UE	12
6.3b	MTK generation and validation at the UE	
6.4	Protection of the transmitted traffic	
Anne	ex A (informative):Trust model	<u></u> 16
Anne	ex B (informative): Security threats	16
<u>B.1</u>	Threats associated with attacks on the radio interface	
<u>B.1.1</u>		
<u>B.1.2</u>		
<u>B.1.3</u>	Denial of service attacks	
<u>B.1.4</u>		
<u>B.1.5</u>	Privacy violation	17
B.2	Threats associated with attacks on other parts of the system	
B.2.1	Unauthorised access to data	
B.2.2		
B.2.3		

Anne	ex <x> (informative): Change history</x>	<u> </u>
Fores	word	5
	duction	
mtro	auction	······ ·
1	-Scope	6
2	References	6
Z		0
3	Definitions, symbols and abbreviations	6
3.1	- Definitions	6
<u>3.2</u> 3.3	Symbols	6 7
3.3	ADDIEVIATIONS	/
4	MBMS security architecture and requirements	7
4.1—	-Security requirements	7
4.1.1-	Requirements on security service access	7
	1 Requirements on secure service access	······
4.1.1.	2 Requirements on secure service provision Requirements on MBMS signaling protection	/
4.1.2		8
4.1.4	Requirements on MBMS Key Management	8
4.1.5		9
4.1.6	Requirements on confidentiality protection of MBMS multicast data	9
5	-MBMS security functions	0
5.1-	-Authenticating and authorizing the user	ر 0
5.1 5.2	-Key management and distribution	
5.3	Protection of the transmitted traffic	10
_		11
0 6.1	- Security mechanisms	<u> </u> 11
0.1 <u>6.2</u>	-Authentication and authorisation of a user	11 11
6.3	Protection of the transmitted traffic	11
0.5		11
Anne	ex A (informative):Trust model	13
		10
Anne	ex B (informative): Security threats	13
B.1 -	-Threats associated with attacks on the radio interface	13
		13
		14
B.1.3		14
B.1.4		14
B.1.5		14
B.2 -	-Threats associated with attacks on other parts of the system	14
B.2.1		14
B .2.2		14
B.2.3	Denial of service	15
Ann	ex <x> (informative): Change history</x>	16

4

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

5

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The security of MBMS provides different challenges compared to the security of services delivered over point-to-point services. In addition to the normal threat of eavesdropping, there is also the threat that it may not be assumed that valid subscribers have any interest in maintaining the privacy of the communications, and they may therefore conspire to circumvent the security solution (for example one subscriber may publish the decryption keys enabling non-subscribers to view broadcast content). Countering this threat requires the decryption keys to be updated frequently in a manner that may not be predicted by subscribers while making efficient use of the radio network.

1 Scope

The Technical Specification covers the security procedures of the Multimedia Broadcast/Multicast Service (MBMS) for 3GPP systems (UTRAN and GERAN). MBMS is a GPRS network bearer service over which many different applications could be carried. The actual method of protection may vary depending on the type of MBMS application.

6

2 References

The following documents contain provisions, which, through reference in this text, constitute provisions of the present document.

References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.

- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
- [2] 3GPP TS 22.146: "Multimedia Broadcast/Multicast Service; Stage 1".
- [3] 3GPP TS 23.246: "Multimedia Broadcast/Multicast Service (MBMS); Architecture and Functional Description".
- [4] 3GPP TS 33.102: "3G Security; Security Architecture".
- [5] 3GPP TS 22.246 "MBMS User Services"

3 Definitions, symbols and abbreviations

Delete from the above heading those words which are not applicable.

Subclause numbering depends on applicability and should be renumbered accordingly.

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply.

example: text used to clarify abstract rules by applying them literally (place saver to retain format).

MSK = MBMS Service Key: The MBMS Service key that is securely transferred (using the key MUK) from the BM-SC towards the UE. For MBMS streaming the MSK is not used directly to protect the MBMS data (see MTK).

Editors Note: How the MSK is used for download is still under study.

MTK = MBMS Traffic Key: A key that is obtained by the ME by calling a function fx (MSK, Key-deriv parameters). The key MTK is used to decrypt the received MBMS data on the ME.

Editors Note on MSK and MTK: These definitions are subject to further modification as two alternative two-tiered keying systems are still under consideration a) the SK_RAND model b) the key encryption model. For Case a) fx may be a PRF (hash function) while for case b) an encryption algorithm is needed. Key-deriv will be RAND for case a). For case b) Key-deriv will be a MTK encrypted with key derived from MSK.

MUK = MBMS User Key: The MBMS user individual key that is used by the BM-SC to protect the point to point transfer of MSK's to the UE.

Editors Note: The keys MSK and MUK may be stored within the UICC or the ME depending on the MBMS service. The function fx may be realized on the ME or the UICC

3.2 Symbols

For the purposes of the present document, the following symbols apply:

<symbol> <Explanation>

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

MBMS Multimedia Broadcast/Multicast Service

4 MBMS security architecture and requirements

MBMS introduces the concept of a point-to-multipoint service into a 3G network. A requirement of a multicast service is to be able to securely transmit data to a given set of users. In order to achieve this, there needs to be a method of authentication, key distribution and data protection for a multicast service. The point-to-point services in a 3G network use the AKA protocol (see TS 33.102 [4]) to both authenticate a user and agree on keys to be used between that user and the radio network. These keys are subsequently used to provide -protection of traffic between the network and the UE.

÷

Figure 1: MBMS security architecture

Figure 1 gives an overview of the network elements involved in MBMS from a security perspective. Nearly all the security functionality for MBMS (beyond the normal network bearer security) resides in either the BM-SC or the UE.

The Broadcast Multicast – Service Centre (BM-SC) is a source for MBMS data. It could also be responsible for scheduling data and receiving data from third parties (this is beyond the scope of the standardisation work) for transmission. It is responsible for generating and distributing the keys necessary for multicast security to the UEs and for applying the appropriate protection to data that is transmitted as part of a multicast service. The BM-SC also provides the MBMS bearer authorisation for UEs attempting to establish multicast bearer.

The UE is responsible for receiving or fetching keys for the multicast service from the BM-SC and also using those keys to decrypt the MBMS data that is received.

4.1 Security requirements

The following security requirements have been identified for MBMS multicast traffic.

Editor's note: Not all the security requirements in this section have been agreed.

4.1.1 Requirements on security service access

4.1.1.1 Requirements on secure service access

R1a: A valid USIM shall be required to access any 3G service including the MBMS service.

- R1b: It shall be possible to prevent intruders from obtaining unauthorized access of MBMS services by masquerading as authorized users.
- Editor's note: No requirements shall be placed on the UE that requires UE to be customised to a particular customer prior to the point of sale

8

4.1.1.2 Requirements on secure service provision

R2a: It shall be possible for the network (e.g. BM-SC) to authenticate users at the start of, and during, service delivery to prevent intruders from obtaining unauthorized access to MBMS services.

Editor's note: Authentication during service is ffs.

R2b: It shall be possible to prevent the use of a particular USIM to access MBMS services.

Editor's Note: It is for FFS to what extent it is required to detect and prevent fraudulent use of MBMS services.

4.1.2 Requirements on MBMS signaling protection

- R3a: It shall be possible to protect against unauthorized modification, insertion, replay or deletion of MBMS signaling on the Gmb reference point.
- Editor's note: When the Gmb reference point is IP-based then NDS/IP methods according to TS 33.210 may be applied to fulfill requirement R3a. The Gmb interface is ffs.
- R3b: Unauthorized modification, insertion, replay or deletion of all signaling, on the RAN shall be prevented when the RAN selects a point-to-multipoint (ptm) link for the distribution of MBMS data to the UE

Editor's note: UTRAN Bearer signalling integrity protection will be turned off for point to multipoint MBMS sessions and GERAN has no bearer signalling integrity protection, even for point to point signalling.

4.1.3 Requirements on Privacy

R4a: The User identity should not be exposed to the content provider or linked to the content in the case the Content Provider is located outside the 3GPP operator's network.

Editor's note: This may already be covered by some national regulations.

R4b: MBMS identity and control information shall not be exposed when the RAN selects a point-to-multipoint link for the distribution of MBMS data to the UE.

Editor's note: UTRAN Bearer confidentiality protection will be turned off for point to multipoint MBMS sessions

4.1.4 Requirements on MBMS Key Management

- R5a: The transfer of the MBMS keys between the MBMS key generator and the UE shall be confidentiality protected.
- R5b: The transfer of the MBMS keys between the MBMS key generator and the UE may be integrity protected.
- R5c: The UE and MBMS key generator shall support the operator to perform re-keying as frequently as it believes necessary to ensure that
 - users that have joined a multicast service, but then left, shall not gain further access to the multicast service without being charged appropriately
 - users joining a multicast service shall not gain access to data from previous transmissions in the multicast service without having been charged appropriately
 - the effect of subscribed users distributing decryption keys to non-subscribed users shall be controllable.

R5d: Only authorized users that have joined an MBMS multicast service shall be able to receive MBMS keys delivered from the MBMS key generator.

R5e: The MBMS keys shall not allow the BM-SC to infer any information about used UE-keys at radio level (i.e. if they would be derived from it).

9

- R5f: All keys used for the MBMS service shall be uniquely identifiable. The identity may be used by the UE to retrieve the actual key (based on identity match, and mismatch recognition) when an update was missed or was erroneous/incomplete.
- Editor's note: If ptm re- keying is used, the keys shall be delivered in a reliable way. Ptp re-keying is assumed to be reliable.
- R5g: The BM-SC shall be aware of where all MBMS specific keys are stored in the UE (i.e. ME or UICC).
- R5h: <u>A UICC, realizing tThe function of providing MTK to the MEsession keys for decrypting the streaming data at the UE, shall only deliver a MTKgive session keys back to the UE-ME if the input values used for obtaining the MTKsession keys were fresh (have not been replayed) and came from a trusted source.</u>

4.1.5 Requirements on integrity protection of MBMS multicast data

- R6a: It shall be possible to protect against unauthorized modification, insertion, replay or deletion of MBMS multicast data sent to the UE on the radio interface. The use of integrity shall be optional.
- Editor's note: It may be possible to detect the deletion of MBMS data packets, but it is impossible to prevent the deletion. Packets may be lost because of bad radio conditions, providing integrity protection will not help to detect or recover from this situation.
- Note: the use of shared keys (integrity and confidentiality) to a group of untrusted users only prevents attacks of lower levels of sophistication, such as preventing eavesdroppers from simply listening in
- R6b: The MBMS multicast data may be integrity protected with a common integrity key, which shall be available to all users that have joined the MBMS service.

R6c: It may be required to integrity protect the "BM-SC - GGSN" interface i.e. reference point Gi.

Editor's Note: It may be required to integrity protect the multimedia content on the "Content Provider - BM-SC" interface. As this interface shall not be standardized in 3GPP, according to TR 23.846, no such requirement can be defined by 3GPP.

4.1.6 Requirements on confidentiality protection of MBMS multicast data

R7a: It shall be possible to protect the confidentiality of MBMS multicast data on the radio interface.

R7b: The MBMS multicast data may be encrypted with a common encryption key, which shall be available to all users that have joined the MBMS service.

R7c: It may be required to encrypt the MBMS multicast data on the "BM-SC - GGSN" interface, i.e. the reference points Gi.

R7d: It shall be infeasible for a man-in-the-middle to bid down the confidentiality protection used on MBMS multicast session from the BM-SC to the UE.

R7e: It shall be infeasible for an eavesdropper to break the confidentiality protection of the MBMS multicast session when it is applied.

Editor's Note: It may be required to encrypt the multimedia content on the "Content Provider - BM-SC" interface. As this interface shall not be standardized in 3GPP, according to TR 23.846, no such requirement can be defined by 3GPP.

5 MBMS security functions

5.1 Authenticating and authorizing the user

A UE is authenticated and authorised in two parts when participating in an MBMS service. Firstly when the UE establishes a bearer to receive MBMS traffic and secondly when the UE request and receive keys for the MBMS service. The bearer establishment authentication is performed using the normal network security described in TS 33.102 [4]. Authorisation for the MBMS bearer establishment happens by the network making an authorisation request to the BM-SC to ensure that the UE is allowed to establish a bearer (see TS 23.246 [3] for the details). As MBMS bearer establishment authorisation lies outside the control of the network (i.e. controlled by the BM-SC), there is an additional procedure to remove a MBMS bearer related to a UE that is no longer authorised to access the MBMS service.

10

Editor's note: It was agreed to standardise a solution that allowed MBMS specific keys to be stored in either the ME or UICC in release 6. The choice of storage depends on whether the UICC has the ability to hold the keys or not. The differences between the two methods will only be visible in the UE, and the BM-SC would know which method of storing the keys in the UE will be used.

Editor's note: The use of AKA between the BM-SC and UE was proposed. It was concluded that the issue of bootstrapping and having the BM-SC in the visited network need to be further investigated.

5.2 Key management and distribution

Like any service, the keys that are used to protect the transmitted data in a Multicast service should be regularly changed to ensure that they are fresh. This ensures that only legitimate users can get access to the data in the MBMS service. In particular frequent re-keying acts as a deterrent for an attacker to pass the MBMS keys to others users to allow those other users to access the data in an MBMS service.

The BM-SC is responsible for the generation and distribution of the MBMS keys to the UE. A UE has the ability to request a key when it does not have the relevant key to decrypt the data. This request may also be initiated by a message from the BM-SC to indicate that a new key is available.

- Editor's note: It needs to be decided if there is to be a minimum amount of traffic that is to be protected with one key, as this puts a lower limit on the frequency of key changes, e.g. one continuous transmission of data. It could also be possible for several of these minimum amounts to be transmitted with changing the key. It is ffs what this minimum amount should be and whether several of these minimum amounts can be transmitted without changing the key.
- Editor's note: If all users need to request a key update simultaneously then there may need to be some method of ensuring that all the users do not request a key update at the same time. This mechanism is ffs.
- Editor's note: The keys can be distributed to each user receiving the same MBMS service in point-to-point mode when the number of the users is relatively small. And the users receiving the same Multicast service within the same area can also be further combined into one to several subgroups to make it possible that the keys can be given to all users within one subgroup at a time in point-to-multipoint mode.

5.3 Protection of the transmitted traffic

The traffic for a particular MBMS service may require some protection depending on the sensitivity of the data being transmitted (e.g. it is possible that the data being transmitted by the MBMS service is actually protected by the DRM security method and hence requires no additional protection). This protection will be either confidentiality and integrity or just confidentiality. The protection is applied end-to-end between the BM-SC and the UEs and will be based on a symmetric key shared between the BM-SC and the UEs that are currently accessing the service. The actual method of protection specified may vary depending on the type of data being transmitted, e.g. media streaming application or file download.

Editor's note: It was agreed that the encryption should be done end-to-end between the UE and BM-SC, and not at either the Radio or the Core Network level. The actual method of protection was for further study.

Editor's note: It was noticed that when data is sent on a ptp MBMS bearer, it would be ciphered between the BM-SC and UE and also over the RAN. SA3 agreed that this "double ciphering" was unnecessary from a security point of view. This was indicated to RAN2 and GERAN2 in an LS (S3-030156) and the choice on whether to "double cipher" was left to these groups. RAN2 (S3-030328) indicated it would be easier to "double cipher" as this kept the RAN simpler, whereas GERAN2 (S3-030184) indicated that they would avoid "double ciphering".

6 Security mechanisms

6.1 Authentication and authorisation of a user

Editor's note: this section will contain the details of how a user joins a particular Multicast Service

6.2 Key update procedure

Once a UE has joined a multicast service, the UE should try to get the <u>MSKhigh level key</u> that will be used to 'protect' the data transmitted as part of this multicast service. If the UE fails to get hold of the <u>MSKis key</u> or receives confirmation that no updated <u>MSKkey</u> is necessary or available at this time, then, unless the UE has a still-valid, older <u>MSKkey</u>, the UE shall leave the MBMS user service. The UE tries to get the <u>MSKhigh level key</u> using the second message in the below flow.

The BM-SC controls when the <u>MSK high level key</u>s used in a multicast service are to be changed. The below flow describes how <u>MSK the high level key</u> changes are performed.

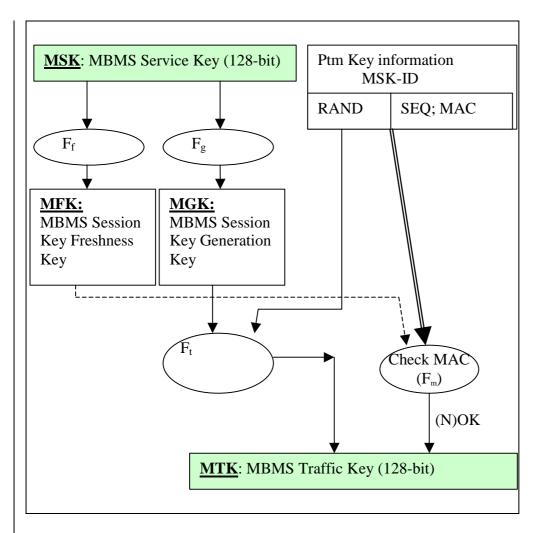
UE		BM-SC	
4	New key available		
•			
	Request key	→	
4	Deliver key		

UE		BM-SC
•	New key available	
	Request key	→
←	Deliver key / Request key rejection	1

The first message is sent out by the BM-SC to indicate that new <u>MSKkeys</u> are available. It is an optional message in the flow. If it is sent to all UEs, <u>then the BM-SC should provide the rules to the UE for subsequent request for the new</u> <u>MSK when a UE joins a multicast service, to avoid simultaneous requesting from all the UEs</u> then it needs to be ensured that all the UEs do not request the new key simultaneously.

Editor's note: A possible method for achieving the above is for the BM-SC to allocates different "request delay time" to different UEs; such that when the UEs receive the new key available message, they shall send the request key message after the delay requested by the BM-SC. Alternatively it is possible to use the key lifetime methods suggested in S3-040059.

The second message is used to request an <u>MSK-key</u>. This is sent by the UE when it either receives the first message in the flow and does not have the new <u>MSKkey</u>, or has just joined a multicasts service and does not have an <u>MSK-key</u> for that service or <u>a UE</u> has received some protected content <u>and does not havewhich it does the MSKkey</u> that was used to protect the content. If the UE fails to get hold of the updated <u>MSKkey</u> or receive confirmation that no updated <u>MSKkey</u> is necessary or available at this time, then, unless the UE has a still valid older <u>MSKkey</u>, the UE shall leave the MBMS service.


After receiving the second message the BM-SC should send out the appropriate <u>MSKkey</u> to the UE protected by the relevant means, or reject the UE's key request with an indication of the cause. Upon successfully receiving the new <u>MSKkey</u>, the UE should store this key for later use.

Editor's note: If OTA is used to carry MSKs to the UICC, the following recommendations shall be followed:

- OTA should not use DES in CBC mode,
- The keys used for the ptp transporting of MSK to the UICC shall not be shared among subscribers,
- OTA should not rely on the same keys for transporting MBMS data and other application data towards the UICC.
- Editor's note: MIKEY is being considered as the method for carrying keys. Possible optimisations were proposed at the ad-hoc in Antwerp (S3z030010). One identified issue was the possible need to terminate MIKEY in the UICC and/or terminal in the combined method. The use of MIKEY relates to the PTP delivery of a key

6.3a MTK generation and validation at the UE

Editor's note: Either this clause or 6.3b will be removed once it is agreed how to generate MTK.

Figure 1: MTK Validation and Generation Function.

Editor's note: It is ffs whether the inputs to the function Fs can be optimized.

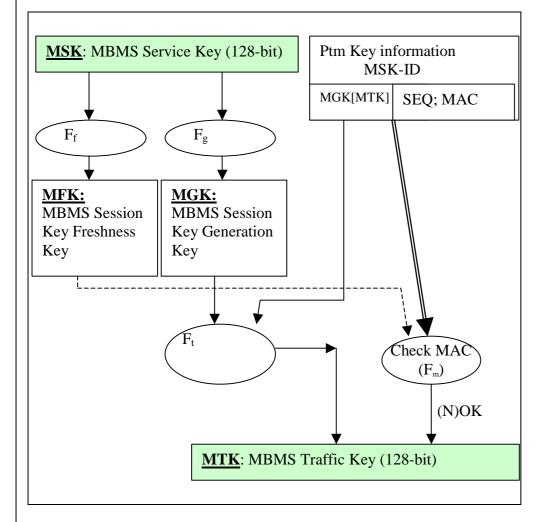
The ME will call the (*MTK Generation and Validation Function*) MGV-F that is realized as part of the ME or as part of the UICC. It is assumed that the MBMS service specific data, MSK and the sequence number SEQs, have been stored within a secure storage (MGV-S). This MGV-S may be realized on the ME or on the UICC but for certain type of MBMS services the UICC shall be used as determined by the service provider. Both MSK and SEQs were transferred to the MGV-S with the execution of the key update procedures as described in section 6.2. The initial value of SEQs is determined by the service provider.

13

<u>The MGV-F shall derive a key MFK (MBMS traffic key Freshness Key) from the MSK using a key derivation</u> <u>function F_f, and shall derive a key MGK (MBMS traffic key Generation Key) from the MSK using a key</u> <u>derivation function F_g.</u>

The traffic key generation shall be performed in the following way:

The traffic key generation function F_t uses RAND and the key MGK as input to produce MBMS Traffic key <u>MTK.</u>


The freshness check shall be performed in the following way:

Using a keyed MAC function F_m with the inputs SEQ, RAND and the key MGK, a MAC is calculated. This MAC is compared with the one received from the ptm key information. If the MAC defers then the MGV-F will indicate a failure to the ME. If the MAC is equal then the MGV-F shall compare the received SEQp from the ptm key information with the stored SEQs. If SEQp is greater than SEQs than the MGV-F shall update SEQs with SEQp value and start with the generation of MTK. If SEQp is equal or lower than SEQs then the MGV-F shall indicate a failure to the ME.

14

6.3b MTK generation and validation at the UE

Editor's note: Either this clause or 6.3a will be removed once it is agreed how to generate MTK

Figure 2: MTK Validation and Generation Function.

The ME will call the (*MTK Generation and Validation Function*) MGV-F that is realized as part of the ME or as part of the UICC. It is assumed that the MBMS service specific data, MSK and the sequence number SEQs, have been stored within a secure storage (MGV-S). This MGV-S may be realized on the ME or on the UICC but for certain type of MBMS services the UICC shall be used as determined by the service provider. Both MSK and SEQs were transferred to the MGV-S with the execution of the key update procedures as described in section 6.2. The initial value of SEQs is determined by the service provider.

When the ME receives {MSK Key-ID, SEQp, MGK[MTK], MAC} from the ptm data stream, it shall give that information to the MGV-F. The MGV-F shall only deliver the MBMS Traffic Keys (MTK) to the ME if the ptm-key information is deemed to be fresh. How this shall be done is described below:

<u>The MGV-F shall derive a key MFK (MBMS traffic key Freshness Key) from the MSK using a key derivation</u> <u>function F_f, and shall derive a key MGK (MBMS traffic key Generation Key) from the MSK using a key</u> <u>derivation function F_g.</u>

The traffic key generation shall be performed in the following way:

The traffic key decrypt function F_t decrypts the received MGK[MTK] to obtain MTK.

The freshness check shall be performed in the following way:

Using a keyed MAC function F_m with the inputs SEQ, RAND and the key MGK, a MAC is calculated. This MAC is compared with the one received from the ptm key information. If the MAC defers then the MGV-F will indicate a failure to the ME. If the MAC is equal then the MGV-F shall compare the received SEQp from the ptm key information with the stored SEQs. If SEQp is greater than SEQs than the MGV-F shall update SEQs with SEQp value and start with the generation of MTK. If SEQp is equal or lower than SEQs then the MGV-F shall indicate a failure to the ME.

15

6.36.4 Protection of the transmitted traffic

The data transmitted to the UEs is protected by a symmetric key (an MTK) that is shared by the BM-SC and UEs that are accessing the MBMS service. The protection of the data is applied by the BM-SC. In order to determine which key was used to protect the data a Key_ID is included with the protected data. The Key_ID will uniquely identify the high-level key-MSK and contain other information needed to calculate the low level keysMTK. If the UE does not have the MSK high level key indicated by Key_ID, then it should fetch the MSK high level key using the methods discussed in the previous clause 6.2. The MTK is derived according to the methods described in clause 6.3.

Note: including the Key_ID with the protected data stops the UE trying to decrypt and render content for which it does not have the <u>MSKcorrect key</u>.

The below flow shows how the protected content is delivered to the UE

UE

BM-SC

Key_ID, Protected Content

After using a key to decrypt protected traffic, the UE deletes any older key for this multicast service.

Editor's note: this section may contain several protection methods.

Editor's note: if SRTP is chosen, the master key identifier can be used to indicate the current MBMS key whichever key management method is chosen

Annex A (informative):Trust model

The following trust relationship between the roles that are participating in MBMS services are proposed:

The user trusts the home network operator to provide the MBMS service according to the service level agreement. .

16

The user trusts the network operator after mutual authentication.

The network trusts an authenticated user using integrity protection and encryption at RAN level.

The network may have trust or no trust in a content provider.

The home network and visited network trust each other when a roaming agreement is defined, in the case the user is roaming in a VPLMN.

Annex B (informative): Security threats

This annex contains some security threats that have been identified for MBMS.

B.1 Threats associated with attacks on the radio interface

The threats associated with attacks on the radio interface are split into the following categories, which are described in the following sub-chapters:

unauthorized access to multicast data;

threats to integrity;

denial of service;

unauthorized access to MBMS services;

privacy violation.

The attacks on the MBMS service announcements to the users on the radio interface are not discussed here, as these will most likely be transferred on a point-to-point connection (e.g. PS signaling connection), which is already secured today (integrity protected and optionally encrypted RAN level).

B.1.1 Unauthorised access to multicast data

A1: Intruders may eavesdrop MBMS multicast data on the air-interface.

- A2: Users that have not joined and activated a MBMS multicast service receiving that service without being charged.
- A3: Users that have joined and then left a MBMS multicast service continuing to receive the MBMS multicast service without being charged.

A4: Valid subscribers may derive <u>dencryption keys (MTK)</u> and distribute them to unauthorized parties.

Note: It is assumed that the legitimate end user has a motivation to defeat the system and distribute the shared keys (MSK, MTK) that are a necessary feature of any broadcast security scheme.

B.1.2 Threats to integrity

B1: Modifications and replay of messages in a way to fool the user of the content from the actual source, e.g. replace the actual content with a fake one.

17

B.1.3 Denial of service attacks

C1: Jamming of radio resources. Deliberated manipulation of the data to disturb the communication.

B.1.4 Unauthorised access to MBMS services

- **D1**: An attacker using the 3GPP network to gain "free access" of MBMS services and other services on another user's bill.
- **D2**: An attacker using MBMS <u>shared</u><u>encryption</u> keys (<u>MSK, MTK</u>) to gain free access to content without any knowledge of the service provider.
- Note: It cannot be assumed that keys held in a terminal are secure. No matter how the shared <u>encryption</u> keys (<u>MSK</u>, <u>MTK</u>) are delivered to the terminal, we have to assume they can be derived in an attack. For example, the shared keys, while secure in the UICC, may be passed over an insecure SIM-ME interface.

B.1.5 Privacy violation

E1: The user identity could be exposed to the content provider, in the case the content provider is located in the 3GPP network, and then linked to the content.

B.2 Threats associated with attacks on other parts of the system

The threats associated with attacks on other parts of the system are split into the following categories, which are described in the following sub-chapters:

unauthorized access to data;

threats to integrity;

denial of service.

B.2.1 Unauthorised access to data

- **F1**: It is assumed that the BM-SC and the GGSN are located in the same network. The BM-SC can though be located in a different place than the GGSN, and therefore can open up for intruders who may eavesdrop the new interface Gi and Gmb between the BM-SC and GGSN.
- F2: Intruders may eavesdrop the new interface between the content provider and the BM-SC.

B.2.2 Threats to integrity

- **G1**: It is assumed that the BM-SC and the GGSN are located in the same network. The BM-SC can though be located in a different place than the GGSN, and therefore can open up for new attacks on the new interfaces Gi and Gmb between the BM-SC and GGSN.
- **G2:** The new interface between the content provider and the BM-SC may open up for attacks as modifications of multimedia content.

B.2.3 Denial of service

H1: Deliberated manipulation of the data between the BM-SC <-> Content Provider to disturb the communication.

18

H2: Deliberated manipulation of the data between the BM-SC <-> GGSN to disturb the communication.

Annex <X> (informative): Change history

					Change history		
Date	TSG #	TSG Doc.	CR	Rev	Subject/Comment	Old	New
2002-09					Initial version supplied by Rapporteur		0.0.1
2002-11					Updated to include the threat and requirements discussed at SA3 #25.	0.0.1	0.0.2
2003-02					Updated to reflect changes to the requirements agreed at SA#26	0.0.2	0.0.3
2003-04					Updated to reflect changes agreed at the SA#27	0.0.3	0.10. 0
2003-07					Updated to reflect the decision on TEK distribution and independence of the MBMS keys from radio level keys	0.1.0	0.1.1
2003-08					Updated to reflect agreement in SA#29 on adding confidentiality requirements, editor's note about double ciphering, and text indicating that different security mechanisms may be needed to protect different protocols/codec that may be used in MBMS and re- organisation of the requirements section.	0.1.1	0.2.0
2003-09					Updated to reflect decision at Antwerp ad-hoc.	0.2.0	0.2.1
2003-11					Updated to reflect changes to requirements and threat at SA3#30	0.2.1	0.2.2
2003-11					Updated to reflect decisions taken at SA3#31while discussing tdoc 755 and attached pseudo CR.	0.2.2	0.2.3
2003-11					Updated to reflect all the other decisions taken at SA3#31	0.2.3	0.3.0
2003-11					Updated with some editorial modification and presented to the SA plenary for information	0.3.0	1.0.0
<u>2004-02</u>					Updated to reflect changes agreed at SA3#32	<u>1.0.0</u>	<u>1.1.0</u>
2004-04					Minor corrections agreed by e-mail discussion	<u>1.1.0</u>	<u>1.1.1</u>

Unofficial 3GPP TS 33.246 V1.24.14

Technical Specification

3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Security; Security of Multimedia Broadcast/Multicast Service (Release 6)

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented. This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification. Specifications and reports for implementation of the 3GPPTM system should be obtained via the 3GPP Organizational Partners' Publications Offices. Select keywords from list provided in specs database.

Keywords <u>UMTS, multimedia, broadcast, security</u><keyword[, keyword]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media.

© 2002, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC). All rights reserved.

Contents

Forev	word	<u></u> 6
Intro	duction	6
1	Scope	
1		
2	References	7
3	Definitions, symbols and abbreviations	
3.1	Definitions	
3.2	Symbols	
3.3	Abbreviations	
4	MBMS security architecture	
5	MBMS security functions	
5.1	Authenticating and authorizing the user	11 11
5.2	Key management and distribution	
5.3	Protection of the transmitted traffic	
6	Security mechanisms	12
<u>6.1</u>	Using GBA for MBMS	12
6.2	Authentication and authorisation of a user	12
6.3	Key update procedure	
6.4	MTK generation and validation at the UE	15
<u>6.5</u>	Protection of the transmitted traffic	
Anne	ex A (informative): Trust model	19
Anne	ex B (informative): Security threats	19
B .1	Threats associated with attacks on the radio interface	
B .1.1	Unauthorised access to multicast data	
<u>B.1.2</u>	Threats to integrity	20
<u>B.1.3</u>	Denial of service attacks	20
<u>B.1.4</u>		
<u>B.1.5</u>	Privacy violation	20
B .2	Threats associated with attacks on other parts of the system	
B .2.1	Unauthorised access to data	
<u>B.2.2</u>		
<u>B.2.3</u>		
<u>B.2.4</u>		
<u>B.2.5</u>	Unauthorised insertion of MBMS user data and key management data	21
Anne	ex C (normative): Multicast security requirements	
<u>C 1</u>	Requirements on security service access	
<u>C.1.1</u>		
$\frac{C.1.1}{C.1.2}$		

<u>C.2</u>	Requirements on MBMS signaling protection	22
C.3	Requirements on Privacy	
C.4	Requirements on MBMS Key Management	
C.5	Requirements on integrity protection of MBMS User Service data	
	Requirements on confidentiality protection of MBMS User Service data	
<u>C.7</u>	Requirements on content provider to BM-SC reference point	23
Ann	ex <x> (informative): Change history</x>	24
Fore	word	4
Intro	oduction	4
1	-Scope	5
1	*	
2		.
3	-Definitions, symbols and abbreviations	5
3.1- 3.2-	- Definitions Symbols	5
3.2 3.3	Abbreviations	6
4	- MBMS security architecture and requirements	6
4	Security requirements	
4.1.1		6
	.1 Requirements on secure service access	6
	.2 Requirements on secure service provision	7
4.1.2 4.1.3	1	7
4.1.3		7
4.1.5		
4.1.6		8
5	MBMS security functions	9
5.1-	-Authenticating and authorizing the user	
5.2-	-Key management and distribution	9
5.3 —	Protection of the transmitted traffic	9
6	Security mechanisms	10
6.1 —	-Authentication and authorisation of a user	
6.2	Key update procedure	
6.3a 6.3b	-MTK generation and validation at the UE	
0.30 - 6-4		12 14
0.4		
Ann	ex A (informative):Trust model	
Ann	ex B (informative): Security threats	
D 1		
B.I-	— Threats associated with attacks on the radio interface — Unauthorised access to multicast data	
B.1.2		13 16
B.1.2 B.1.3	Denial of service attacks	
B.1.4	4	16
B.1.5	5 Privacy violation	
<u>B-2</u>		
B.2.1		
B.2.2	2	
B.2.3	3Denial of service.	
Ann	ex <x> (informative): Change history</x>	
1 1 1 1 1 1		

4

5

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

6

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The security of MBMS provides different challenges compared to the security of services delivered over point-to-point services. In addition to the normal threat of eavesdropping, there is also the threat that it may not be assumed that valid subscribers have any interest in maintaining the privacy of the communications, and they may therefore conspire to circumvent the security solution (for example one subscriber may publish the decryption keys enabling non-subscribers to view broadcast content). Countering this threat requires the decryption keys to be updated frequently in a manner that may not be predicted by subscribers while making efficient use of the radio network.

1 Scope

The Technical Specification covers the security procedures of the Multimedia Broadcast/Multicast Service (MBMS) for 3GPP systems (UTRAN and GERAN). MBMS is a GPRS network bearer service over which many different applications could be carried. The actual method of protection may vary depending on the type of MBMS application.

7

2 References

The following documents contain provisions, which, through reference in this text, constitute provisions of the present document.

References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.

- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document *in the same Release as the present document*.
- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
- [2] 3GPP TS 22.146: "Multimedia Broadcast/Multicast Service; Stage 1".
- [3] 3GPP TS 23.246: "Multimedia Broadcast/Multicast Service (MBMS); Architecture and Functional Description".
- [4] 3GPP TS 33.102: "3G Security; Security Architecture".
- [5] 3GPP TS 22.246 "MBMS User Services"
- [6]
 3GPP TS 33.220: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture".
- [7]
 3GPP TS 31.102: "T3-specification describing MBMS application and interface procedures on UICC"
- [8] IETF RFC 2617 "HTTP Digest Authentication"

3 Definitions, symbols and abbreviations

Delete from the above heading those words which are not applicable.

Subclause numbering depends on applicability and should be renumbered accordingly.

3.1 Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply.

For the definitions of MBMS User Service refer to [5].

MFK = MBMS traffic key Freshness Key: This key is derived from MSK and is used to ensure that MTK is fresh.

MGK = MBMS traffic key Generation Key: This key is derived from MSK and is used to protect MTK.

MRK = MBMS Request Key: This key is to authorize the UE to the BM-SC when performing key requests etc.

MSK = MBMS Service Key: The MBMS Service key that is securely transferred (using the key MUK) from the BM-SC towards the UE. For MBMS streaming the MSK is not used directly to protect the MBMS <u>User Service</u> data (see MTK).

Editors Note: How the MSK is used for download is still under study.

MTK = MBMS Traffic Key: A key that is obtained by the <u>UICC or ME</u> by calling a <u>decryption function Effx with a key</u> <u>derived from (MSK, Key deriv parameters)</u>. The key MTK is used to decrypt the received MBMS data on the ME.-

Editors Note on MSK and MTK: These definitions are subject to further modification as two alternative two tieredkeying systems are still under consideration a) the SK_RAND model b) the key encryption model. For Case a) fx maybe a PRF (hash function) while for case b) an encryption algorithm is needed. Key-deriv will be RAND for case a). For case b) Key deriv will be a MTK encrypted with key derived from MSK.

MUK = MBMS User Key: The MBMS user individual key that is used by the BM-SC to protect the point to point transfer of MSK's to the UE.

Editors Note: The keys MSK and MUK may be stored within the UICC or the ME depending on the MBMS service. The function <u>Efr</u> may be realized on the ME or the UICC

3.2 Symbols

For the purposes of the present document, the following symbols apply:

<symbol></symbol>	————————————————————————————————————
\underline{F}_{g}	MGK generation function
<u>F</u> m	Keyed MAC function used to check the freshness of MTK
<u>F</u> t	MTK generation function

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

MBMS	Multimedia Broadcast/Multicast Service
MGV-F	MTK Generation and Validation Function

4 MBMS security architecture and requirements

MBMS introduces the concept of a point-to-multipoint service into a 3G network. A requirement of a multicast service is to be able to securely transmit data to a given set of users. In order to achieve this, there needs to be a method of authentication, key distribution and data protection for a multicast service. The point-to-point services in a 3G network use the AKA protocol (see TS 33.102 [4]) to both authenticate a user and agree on keys to be used between that user and the radio network. These keys are subsequently used to provide protection of traffic between the network and the UE.

Figure 1: MBMS security architecture

Figure 1 gives an overview of the network elements involved in MBMS from a security perspective. Nearly all the security functionality for MBMS (beyond the normal network bearer security) resides in either the BM-SC or the UE.

The Broadcast Multicast – Service Centre (BM-SC) is a source for MBMS data. It could also be responsible for scheduling data and receiving data from third parties (this is beyond the scope of the standardisation work) for transmission. It is responsible for generating and distributing the keys necessary for multicast security to the UEs and for applying the appropriate protection to data that is transmitted as part of a multicast service. The BM-SC also provides the MBMS bearer authorisation for UEs attempting to establish multicast bearer.

3GPP

The UE is responsible for receiving or fetching keys for the multicast service from the BM-SC and also using those keys to decrypt the MBMS data that is received.

4.1Security requirements

The following security requirements have been identified for MBMS multicast traffic.

Editor's note: Not all the security requirements in this section have been agreed.

4.1.1Requirements on security service access

4.1.1.1 Requirements on secure service access

R1a: A valid USIM shall be required to access any 3G service including the MBMS service.

- R1b: It shall be possible to prevent intruders from obtaining unauthorized access of MBMS services by masquerading as authorized users.
- Editor's note: No requirements shall be placed on the UE that requires UE to be customised to a particular customerprior to the point of sale

4.1.1.2 Requirements on secure service provision

R2a: It shall be possible for the network (e.g. BM SC) to authenticate users at the start of, and during, servicedelivery to prevent intruders from obtaining unauthorized access to MBMS services.

Editor's note: Authentication during service is ffs.

R2b: It shall be possible to prevent the use of a particular USIM to access MBMS services.

Editor's Note: It is for FFS to what extent it is required to detect and prevent fraudulent use of MBMS services.

4.1.2Requirements on MBMS signaling protection

- R3a: It shall be possible to protect against unauthorized modification, insertion, replay or deletion of MBMS signaling on the Gmb reference point.
- Editor's note: When the Gmb reference point is IP based then NDS/IP methods according to TS 33.210 may be applied to fulfill requirement R3a. The Gmb interface is ffs.
- R3b: Unauthorized modification, insertion, replay or deletion of all signaling, on the RAN shall be prevented when the RAN selects a point to multipoint (ptm) link for the distribution of MBMS data to the UE

Editor's note: UTRAN Bearer signalling integrity protection will be turned off for point to multipoint MBMSsessions and GERAN has no bearer signalling integrity protection, even for point to point signalling.

4.1.3Requirements on Privacy

R4a: The User identity should not be exposed to the content provider or linked to the content in the case the Content Provider is located outside the 3GPP operator's network.

Editor's note: This may already be covered by some national regulations.

R4b: MBMS identity and control information shall not be exposed when the RAN selects a point to multipoint link for the distribution of MBMS data to the UE.

Editor's note: UTRAN Bearer confidentiality protection will be turned off for point to multipoint MBMS sessions

4.1.4Requirements on MBMS Key Management

R5a: The transfer of the MBMS keys between the MBMS key generator and the UE shall be confidentialityprotected.- R5b: The transfer of the MBMS keys between the MBMS key generator and the UE may be integrity protected.

- R5c: The UE and MBMS key generator shall support the operator to perform re keying as frequently as it believes necessary to ensure that
 - □ users that have joined a multicast service, but then left, shall not gain further access to the multicast servicewithout being charged appropriately
 - Eusers joining a multicast service shall not gain access to data from previous transmissions in the multicast service without having been charged appropriately
 - the effect of subscribed users distributing decryption keys to non subscribed users shall be controllable.
- R5d: Only authorized users that have joined an MBMS multicast service shall be able to receive MBMS keys delivered from the MBMS key generator.
- R5e: The MBMS keys shall not allow the BM SC to infer any information about used UE keys at radio level (i.e. if they would be derived from it).
- R5f: All keys used for the MBMS service shall be uniquely identifiable. The identity may be used by the UE toretrieve the actual key (based on identity match, and mismatch recognition) when an update was missed or waserroneous/incomplete.
- Editor's note: If ptm re-keying is used, the keys shall be delivered in a reliable way. Ptp re-keying is assumed to be reliable.
- R5g: The BM SC shall be aware of where all MBMS specific keys are stored in the UE (i.e. ME or UICC).

R5h: The function of providing MTK to the ME shall only deliver a MTK to the ME if the input values used forobtaining the MTK were fresh (have not been replayed) and came from a trusted source.

4.1.5Requirements on integrity protection of MBMS multicast data

- R6a: It shall be possible to protect against unauthorized modification, insertion, replay or deletion of MBMS multicast data sent to the UE on the radio interface. The use of integrity shall be optional.
- Editor's note: It may be possible to detect the deletion of MBMS data packets, but it is impossible to prevent the deletion. Packets may be lost because of bad radio conditions, providing integrity protection will not help-to detect or recover from this situation.
- Note: the use of shared keys (integrity and confidentiality) to a group of untrusted users only prevents attacks of lower levels of sophistication, such as preventing eavesdroppers from simply listening in
- R6b: The MBMS multicast data may be integrity protected with a common integrity key, which shall be available to all users that have joined the MBMS service.

R6e: It may be required to integrity protect the "BM-SC - GGSN" interface i.e. reference point Gi.

Editor's Note: It may be required to integrity protect the multimedia content on the "Content Provider BM SC" interface. As this interface shall not be standardized in 3GPP, according to TR 23.846, no such requirement can be defined by 3GPP.

4.1.6Requirements on confidentiality protection of MBMS multicast data

R7a: It shall be possible to protect the confidentiality of MBMS multicast data on the radio interface.

R7b: The MBMS multicast data may be encrypted with a common encryption key, which shall be available to allusers that have joined the MBMS service.

R7c: It may be required to encrypt the MBMS multicast data on the "BM SC GGSN" interface, i.e. the reference points Gi.

R7d: It shall be infeasible for a man in the middle to bid down the confidentiality protection used on MBMSmulticast session from the BM SC to the UE. R7e: It shall be infeasible for an eavesdropper to break the confidentiality protection of the MBMS multicast session when it is applied.

Editor's Note: It may be required to encrypt the multimedia content on the "Content Provider BM SC" interface. As this interface shall not be standardized in 3GPP, according to TR 23.846, no such requirement can be defined by 3GPP.

5 MBMS security functions

5.1 Authenticating and authorizing the user

A UE is authenticated and authorised in two parts when participating in an MBMS <u>User Service</u>. Firstly when the UE establishes <u>thea MBMS</u> bearer(s) to receive an MBMS <u>User Service</u>traffie and secondly when the UE requests and receives <u>MSKkeys</u> for the MBMS <u>User Service</u>. The <u>MBMS</u> bearer establishment <u>requires a point to point connection</u> with the network on which authentication is performed using the normal network security described in TS 33.102 [4]. Authorisation for the MBMS bearer establishment happens by the network making an authorisation request to the BM-SC to ensure that the UE is allowed to establish thee <u>MBMS</u> bearer(s) corresponding to an <u>MBMS</u> User Service (see TS 23.246 [3] for the details). As MBMS bearer establishment authorisation lies outside the control of the <u>MBMS bearer</u> network (i.e. <u>it is controlled by the BM-SC</u>), there is an additional procedure to remove <u>athe</u> MBMS bearer(s) related to a UE that is no longer authorised to access <u>anthe MBMS User Service</u>.

Editor's Note: It was agreed that the GBA method will be used for MBMS Security (GBA-U + GBA-ME +

MIKEY). It was agreed that the work would continue under the assumption of there being both the <u>UICC-based solution and ME-based solution. If a Terminal is to support MBMS, then it will need to support GBA-U.</u> Editor's note: It was agreed to standardise a solution that allowed MBMS specific keys to be stored in either the ME or UICC in release 6. The choice of storage depends on whether the UICC-has the ability to hold the keys or not. The differences between the two methods will only be visible in the UE, and the BM SC would know which method of storing the keys in the UE will be used.

Editor's note: The use of AKA between the BM SC and UE was proposed. It was concluded that the issue of bootstrapping and having the BM-SC in the visited network need to be further investigated.

Editor's Note: Authentication may also be needed for application layer joining and leaving. The final decision relies of work in SA4.

5.2 Key management and distribution

Like any service, the keys that are used to protect the transmitted data in a Multicast service should be regularly changed to ensure that they are fresh. This ensures that only legitimate users can get access to the data in the MBMS service. In particular frequent re-keying acts as a deterrent for an attacker to pass the MBMS keys to others users to allow those other users to access the data in an MBMS service.

The BM-SC is responsible for the generation and distribution of the MBMS keys to the UE. A UE has the ability to request a key when it does not have the relevant key to decrypt the data. This request may also be initiated by a message from the BM-SC to indicate that a new key is available.

- Editor's note: It needs to be decided if there is to be a minimum amount of traffic that is to be protected with one key, as this puts a lower limit on the frequency of key changes, e.g. one continuous transmission of data. It could also be possible for several of these minimum amounts to be transmitted with changing the key. It is ffs what this minimum amount should be and whether several of these minimum amounts can be transmitted without changing the key.
- Editor's note: If all users need to request a key update simultaneously then there may need to be some method of ensuring that all the users do not request a key update at the same time. This mechanism is ffs.
- Editor's note: The keys can be distributed to each user receiving the same MBMS service in point-to-point mode when the number of the users is relatively small. And the users receiving the same Multicast service within the same area can also be further combined into one to several subgroups to make it possible that the keys can be given to all users within one subgroup at a time in point-to-multipoint mode.

5.3 Protection of the transmitted traffic

The traffic for a particular MBMS service may require some protection depending on the sensitivity of the data being transmitted (e.g. it is possible that the data being transmitted by the MBMS service is actually protected by the DRM security method and hence requires no additional protection). This protection will be either confidentiality and integrity or just confidentiality. The protection is applied end-to-end between the BM-SC and the UEs and will be based on a symmetric key shared between the BM-SC and the UEs that are currently accessing the service. The actual method of protection specified may vary depending on the type of data being transmitted, e.g. media streaming application or file download.

Editor's note: It was agreed that the encryption should be done end-to-end between the UE and BM-SC, and not at either the Radio or the Core Network level. The actual method of protection was for further study.

Editor's note: It was noticed that when data is sent on a ptp MBMS bearer, it would be ciphered between the BM-SC and UE and also over the RAN. SA3 agreed that this "double ciphering" was unnecessary from a security point of view. This was indicated to RAN2 and GERAN2 in an LS (S3-030156) and the choice on whether to "double cipher" was left to these groups. RAN2 (S3-030328) indicated it would be easier to "double cipher" as this kept the RAN simpler, whereas GERAN2 (S3-030184) indicated that they would avoid "double ciphering".

6 Security mechanisms

6.1 Using GBA for MBMS

<u>GBA[6]</u> is used to agree keys that are needed to run an MBMS Multicast User service. MBMS imposes the following requirements on the MBMS capable UICCs and MEs:

A UICC that contains MBMS key management functions shall implement GBA_U.

An ME that supports MBMS shall implement GBA_U and GBA_ME, and shall be capable of utilising the MBMS key management functions on the UICC.

Before a user can access an MBMS User service, the UE needs to share GBA-keys with the BM-SC. If no valid GBA-keys are available at the UE, the UE shall perform a GBA run with the BSF of the home network as described within [6] section 5. The BM-SC will act as a NAF according to [6].

The MSKs for an MBMS User service shall be stored on either the UICC or the ME. Storing the MSKs on the UICC requires a UICC that contains the MBMS management functions (and by requirement is GBA aware) and requires that all of the network elements, i.e. HSS, BSF and BM-SC, to be GBA U aware. As a result of the GBA U run in these circumstances, the BM-SC will share a key Ks ext NAF with the ME and share a key Ks int NAF with the UICC. This key Ks int_NAF is used by the BM-SC and the UICC as the key MUK to protect MSK deliveries to the UICC as described within clause 6.3. The key Ks_ext_NAF is used as the key MRK within the protocols as described within clause 6.2.

NOTE: A run of GBA_U on a GBA aware UICC will not allow the MSKs to be stored on the UICC, if the MBMS management functions are not present on the UICC.

In any other circumstance, a run of GBA results in the BM-SC sharing a key Ks (ext) NAF with the ME. This key Ks_(ext)_NAF is used by the BM-SC and the ME to derive the key MUK and the key MRK (MBMS Request Key). The key MUK is used to protect MSK deliveries to the ME as described within clause 6.3. The key MRK is used to authenticate the UE towards the MBMS within the protocols as described within clause 6.2.

6.24 Authentication and authorisation of a user

Editor's note: this section will contain the details on authentication and authorization of an MBMS userf how a userjoins a particular Multicast Service

Editor's Note: The exact details on how to derive the keys MRK and MUK from the GBA keys are for ffs.

When the user wants to join an MBMS user service, it shall use HTTP digest authentication [6] for authentication. HTTP digest is run between BM-SC and ME. The MBMS authentication procedure is based on the general user authentication procedure over Ua interface that is specified in chapter "Procedures using the bootstrapped Security Association" in [6]. The BM-SC will act as a NAF according to [6].

13

The following adaptations apply to HTTP digest:

- The transaction identifier as specified in [8] is used as username
- MRK (MBMS Request Key) is used as password.
- The joined MBMS user service is specified in client payload of HTTP Digest message.

Editor's Note: The contents of the client payload are FFS and may require input from TSG SA WG4.

Editor's Note: The use of bootstrapped keys for leaving an MBMS user service, for an MSK key request and request to a download repair server is for ffs.

Editor's Note: According to S3-040212, SA4 has a working assumption to use HTTP as the transport protocol but this is only agreed for the download repair service.

6.26.3 Key update procedure

Once a UE has joined a multicast service, the UE should try to get the MSK that will be used to 'protect' the data transmitted as part of this multicast service. If the UE fails to get hold of the MSK or receives confirmation that no updated MSK is necessary or available at this time, then, unless the UE has a still-valid, older MSK, the UE shall leave the MBMS user service. The UE tries to get the MSK using the second message in the below flow.

The BM-SC controls when the MSKs used in a multicast service are to be changed. The below flow describes how MSK changes are performed.

UE BM-SC

New key available

Request key

Deliver key / Request key rejection

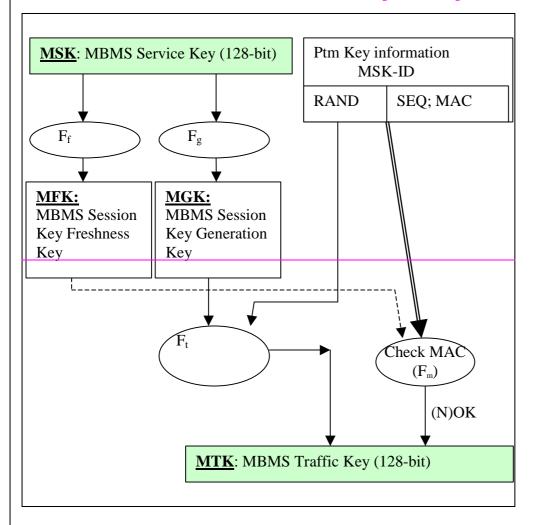
The first message is sent out by the BM-SC to indicate that new MSKs are available. It is an optional message in the flow. If it is sent to all UEs, then the BM-SC should provide the rules to the UE for subsequent request for the new MSK when a UE joins a multicast service, to avoid simultaneous requesting from all the UEs.

Editor's note: A possible method for achieving the above is for the BM-SC to allocates different "request delay time" to different UEs; such that when the UEs receive the new key available message, they shall send the request key message after the delay requested by the BM-SC. Alternatively it is possible to use the key lifetime methods suggested in S3-040059.

The second message is used to request an MSK. This is sent by the UE when it either receives the first message in the flow and does not have the new MSK, or has just joined a multicasts service and does not have an MSK for that service or has received some protected content and does not have the MSK that was used to protect the content. If the UE fails to get hold of the updated MSK or receive confirmation that no updated MSK is necessary or available at this time, then, unless the UE has a still valid older MSK, the UE shall leave the MBMS service.

After receiving the second message the BM-SC should send out the appropriate MSK to the UE protected by the relevant means, or reject the UE's key request with an indication of the cause. Upon successfully receiving the new MSK, the UE should store this key for later use.

14


Editor's note: If OTA is used to carry MSKs to the UICC, the following recommendations shall be followed:-

OTA should not use DES in CBC mode,

- The keys used for the ptp transporting of MSK to the UICC shall not be shared among subscribers,
- OTA should not rely on the same keys for transporting MBMS data and other application data towards the UICC.
- Editor's note: MIKEY was chosen is being considered as the method for carrying keys. The use of MIKEY will be based on the proposal in S3-040258. Possible optimisations were proposed at the ad hoc in Antwerp (S3z030010). One identified issue was the possible need to terminate MIKEY in the UICC and/or-terminal in the combined method. The use of MIKEY relates to the PTP delivery of a key

.3a MTK generation and validation at the UE

Editor's note: Either this clause or 6.3b will be removed once it is agreed how to generate MTK.

Figure 1: MTK Validation and Generation Function.

Editor's note: It is ffs whether the inputs to the function Fs can be optimized.

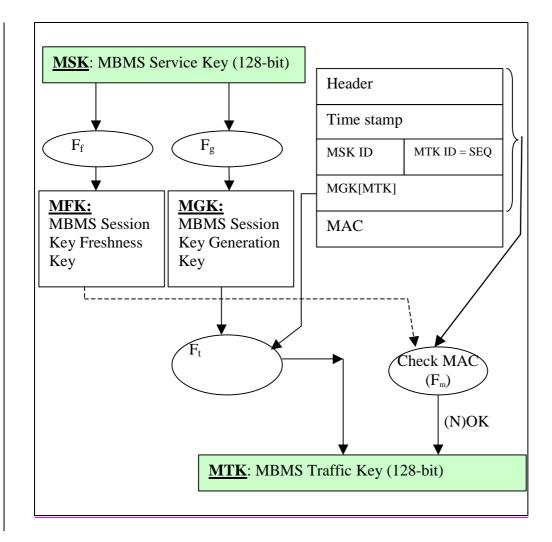
The ME will call the (*MTK Generation and Validation Function*) MGV F that is realized as part of the ME or as part of the UICC. It is assumed that the MBMS service specific data, MSK and the sequence number SEQs, have been stored within a secure storage (MGV S). This MGV S may be realized on the ME or on the UICC but for certain type of MBMS services the UICC shall be used as determined by the service provider. Both MSK and SEQs were transferred to

the MGV S with the execution of the key update procedures as described in section 6.2. The initial value of SEQs is determined by the service provider.

When the ME receives {MSK Key ID, SEQp, RAND, MAC} from the ptm data stream, it shall give that information to the MGV F. The MGV F shall only deliver the MBMS Traffic Keys (MTK) to the ME if the ptm key information is deemed to be fresh. How this shall be done is described below:

The MGV F shall derive a key MFK (MBMS traffic key Freshness Key) from the MSK using a key derivation function F_f, and shall derive a key MGK (MBMS traffic key Generation Key) from the MSK using a key derivation function F_g.

The traffic key generation shall be performed in the following way:


The traffic key generation function F_t uses RAND and the key MGK as input to produce MBMS Traffic key MTK.

The freshness check shall be performed in the following way:

Using a keyed MAC function F_m with the inputs SEQ, RAND and the key MGK, a MAC is calculated. This-MAC is compared with the one received from the ptm key information. If the MAC defers then the MGV Fwill indicate a failure to the ME. If the MAC is equal then the MGV-F shall compare the received SEQpfrom the ptm key information with the stored SEQs. If SEQp is greater than SEQs than the MGV F shall update SEQs with SEQp value and start with the generation of MTK. If SEQp is equal or lower than SEQs then the MGV F shall indicate a failure to the ME.

6.43b MTK generation and validation at the UE

Editor's note: Either this clause or 6.3a will be removed once it is agreed how to generate MTK

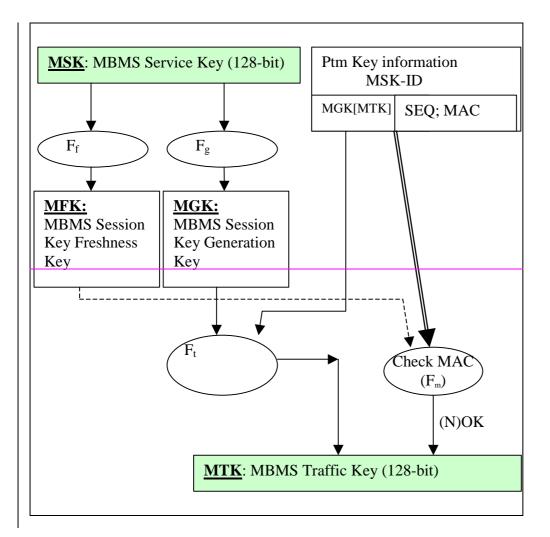


Figure 2: MTK Validation and Generation Function.

The ME will call the (*MTK Generation and Validation Function*) MGV-F that is realized as part of the ME or as part of the UICC. It is assumed that the MBMS service specific data, MSK and the sequence number SEQs, have been stored within a secure storage (MGV-S). This MGV-S may be realized on the ME or on the UICC but for certain type of MBMS services the UICC shall be used as determined by the service provider. Both MSK and SEQs were transferred to the MGV-S with the execution of the key update procedures as described in section 6.2. The initial value of SEQs is determined by the service provider.

17

When the ME receives the MIKEY message (including e.g. [MSK Key-ID, MTK ID = SEQp, MGK[MTK], MAC)] from the ptm data stream, it shall give the MIKEY message that information to the MGV-F. The MGV-F shall only calculate and deliver the MBMS Traffic Keys (MTK) to the ME if the ptm-key information is deemed to be fresh. How this shall be done is described below:

The MGV-F shall derive a key MFK (MBMS traffic key Freshness Key) from the MSK using a key derivation function F_f , and shall derive a key MGK (MBMS traffic key Generation Key) from the MSK using a key derivation function F_g .

The traffic key generation shall be performed in the following way:

The traffic key decrypt function F_t decrypts the received MGK[MTK] to obtain MTK.

The freshness check shall be performed in the following way:

The MGV-F shall compare the received SEQp, i.e. MTK ID from the MIKEY message with the stored SEQs. If SEQp is equal or lower than SEQs then the MGV-F shall indicate a failure to the ME. If SEQp is greater than SEQs then the MGV-F shall calculate the MAC $\frac{1}{2}$ using a keyed MAC function F_m with the received MIKEY message inputs SEQ, RAND and the key MGK as input, a MAC is calculated. This MAC is compared with the MAC of the KEMAC payload

Release 6

in the MIKEY message.one received from the ptm key information. If the MAC defers then the MGV-F will indicate a failure to the ME. If the MAC is equal then the MGV F shall compare the received SEQp from the ptm key information with the stored SEQs. If SEQp is greater than SEQs than the MGV-F shall update SEQs with SEQp value and start with the generation of MTK. If SEQp is equal or lower than SEQs then the MGV F shall indicate a failure to the ME. The MGV-F provides the MTK to the ME.

18

6.5____4-Protection of the transmitted traffic

The data transmitted to the UEs is protected by a symmetric key (an MTK) that is shared by the BM-SC and UEs that are accessing the MBMS service. The protection of the data is applied by the BM-SC. In order to determine which key was used to protect the data a Key_ID is included with the protected data. The Key_ID will uniquely identify the MSK and contain other information needed to calculate the MTK. If the UE does not have the MSK indicated by Key_ID, then it should fetch the MSK using the methods discussed in the clause 6.<u>3</u>2. The MTK is derived according to the methods described in clause 6.<u>4</u>3.

Note: including the Key_ID with the protected data stops the UE trying to decrypt and render content for which it does not have the MSK.

The below flow shows how the protected content is delivered to the UE

UE

BM-SC

Key_ID, Protected Content

After using a key to decrypt protected traffic, the UE deletes any older key for this multicast service.

Editor's note: this section may contain several protection methods.

Editor's note: if SRTP is chosen, the master key identifier can be used to indicate the current MBMS key whichever key management method is chosen

Annex A (informative):_ Trust model

The following trust relationship between the roles that are participating in MBMS services are proposed:

The user trusts the home network operator to provide the MBMS service according to the service level agreement. .

The user trusts the network operator after mutual authentication.

The network trusts an authenticated user using integrity protection and encryption at RAN level.

The network may have trust or no trust in a content provider.

The home network and visited network trust each other when a roaming agreement is defined, in the case the user is roaming in a VPLMN.

Annex B (informative): Security threats

This annex contains some security threats that have been identified for MBMS.

B.1 Threats associated with attacks on the radio interface

The threats associated with attacks on the radio interface are split into the following categories, which are described in the following sub-chapters:

unauthorized access to multicast data;

threats to integrity;

denial of service;

unauthorized access to MBMS services;

privacy violation.

The attacks on the MBMS service announcements to the users on the radio interface are not discussed here, as these will most likely be transferred on a point-to-point connection (e.g. PS signaling connection), which is already secured today (integrity protected and optionally encrypted RAN level).

B.1.1 Unauthorised access to multicast data

A1: Intruders may eavesdrop MBMS multicast data on the air-interface.

- A2: Users that have not joined and activated a MBMS multicast service receiving that service without being charged.
- A3: Users that have joined and then left a MBMS multicast service continuing to receive the MBMS multicast service without being charged.

A4: Valid subscribers may derive decryption keys (MTK) and distribute them to unauthorized parties.

Note: It is assumed that the legitimate end user has a motivation to defeat the system and distribute the shared keys (MSK, MTK) that are a necessary feature of any broadcast security scheme.

B.1.2 Threats to integrity

B1: Modifications and replay of messages in a way to fool the user of the content from the actual source, e.g. replace the actual content with a fake one.

B.1.3 Denial of service attacks

C1: Jamming of radio resources. Deliberate manipulation of the data to disturb the communication.

B.1.4 Unauthorised access to MBMS services

- **D1**: An attacker using the 3GPP network to gain "free access" of MBMS services and other services on another user's bill.
- **D2**: An attacker using MBMS shared keys (MSK, MTK) to gain free access to content without any knowledge of the service provider.
- Note: It cannot be assumed that keys held in a terminal are secure. No matter how the shared keys (MSK, MTK) are delivered to the terminal, we have to assume they can be derived in an attack. For example, the shared keys, while secure in the UICC, may be passed over an insecure SIM-ME interface.

B.1.5 Privacy violation

E1: The user identity could be exposed to the content provider, in the case the content provider is located in the 3GPP network, and then linked to the content.

B.2 Threats associated with attacks on other parts of the system

The threats associated with attacks on other parts of the system are split into the following categories, which are described in the following sub-chapters:

unauthorized access to data;

threats to integrity;

denial of service;

A malicious UE generating MTKs for malicious use later on;

Unauthorized insertion of MBMS user data and key management data.

B.2.1 Unauthorised access to data

- **F1**: It is assumed that the BM-SC and the GGSN are located in the same network. The BM-SC can though be located in a different place than the GGSN, and therefore can open up for intruders who may eavesdrop the new interface Gi and Gmb between the BM-SC and GGSN.
- F2: Intruders may eavesdrop the new interface between the content provider and the BM-SC.

B.2.2 Threats to integrity

G1: It is assumed that the BM-SC and the GGSN are located in the same network. The BM-SC can though be located in a different place than the GGSN, and therefore can open up for new attacks on the new interfaces Gi and Gmb between the BM-SC and GGSN.

G2: The new interface between the content provider and the BM-SC may open up for attacks as modifications of multimedia content.

B.2.3 Denial of service

H1: Deliberated manipulation of the data between the BM-SC <-> Content Provider to disturb the communication.

H2: Deliberated manipulation of the data between the BM-SC <-> GGSN to disturb the communication.

B.2.4 A malicious UE generating MTKs for malicious use later on.

II: A malicious ME querying the MTK generation function for MTK's to use them later on in an attack (e.g. in order to use the retrieved MTKs within an unauthorized data insertion attacks (See B.2.5)).

B.2.5 Unauthorised insertion of MBMS user data and key management data

- J1: An ME, which deliberately inserts key mananagement and malicious data, encrypted with valid (previously retrieved) MTK from the MTK generation function, within the multicast stream.
- J2: An ME, which deliberately inserts key management and malicious data, encrypted with old (using replayed key management messages) MTK, within the multicast stream

Annex C (normative): Multicast security requirements

Editor's note: Not all the security requirements in this section have been agreed.

C.1 Requirements on security service access

C.1.1 Requirements on secure service access

R1a: A valid USIM shall be required to access any 3G service including the MBMS User Services.

<u>R1b:</u> It shall be possible to prevent intruders from obtaining unauthorized access of MBMS User Services by masquerading as authorized users.

Editor's note: No requirements shall be placed on the UE that requires UE to be customised to a particular customer prior to the point of sale

C.1.2 Requirements on secure service provision

R2a: It shall be possible for the network (e.g. BM-SC) to authenticate users at the start of, and during, service delivery to prevent intruders from obtaining unauthorized access to MBMS User Services.

Editor's note: Authentication during service is ffs.

R2b: It shall be possible to prevent the use of a particular USIM to access MBMS User Services.

Editor's Note: It is for FFS to what extent it is required to detect and prevent fraudulent use of MBMS services.

C.2 Requirements on MBMS signaling protection

R3a: It shall be possible to protect against unauthorized modification, insertion, replay or deletion of MBMS signaling on the Gmb reference point.

Editor's note: When the Gmb reference point is IP-based then NDS/IP methods according to TS 33.210 may be applied to fulfill requirement R3a. The Gmb interface is ffs.

R3b: Unauthorized modification, insertion, replay or deletion of all signaling, on the RAN shall be prevented when the RAN selects a point-to-multipoint (ptm) link for the distribution of MBMS data to the UE

Editor's note: UTRAN Bearer signalling integrity protection will be turned off for point to multipoint MBMS sessions and GERAN has no bearer signalling integrity protection, even for point to point signalling.

C.3 Requirements on Privacy

<u>R4a: The User identity should not be exposed to the content provider or linked to the content in the case the Content</u> <u>Provider is located outside the 3GPP operator's network.</u>

Editor's note: This may already be covered by some national regulations.

R4b: MBMS identity and control information shall not be exposed when the RAN selects a point-to-multipoint link for the distribution of MBMS data to the UE.

Editor's note: UTRAN Bearer confidentiality protection will be turned off for point to multipoint MBMS sessions

C.4 Requirements on MBMS Key Management

R5a: The transfer of the MBMS keys between the MBMS key generator and the UE shall be confidentiality protected.

R5b: The transfer of the MBMS keys between the MBMS key generator and the UE may be integrity protected.

<u>R5c: The UE and MBMS key generator shall support the operator to perform re-keying as frequently as it believes</u> <u>necessary to ensure that</u>

 users that have joined an MBMS User Service multicast service, but then left, shall not gain further access to the MBMS User Service without being charged appropriately

• users joining an MBMS User Service shall not gain access to data from previous transmissions in the MBMS User Service without having been charged appropriately

• the effect of subscribed users distributing decryption keys to non-subscribed users shall be controllable.

<u>R5d: Only authorized users that have joined an MBMS User Service shall be able to receive MBMS keys delivered</u> from the MBMS key generator.

<u>R5e: The MBMS keys shall not allow the BM-SC to infer any information about used UE-keys at radio level (i.e. if</u> <u>they would be derived from it).</u>

<u>R5f: All keys used for the MBMS User Service shall be uniquely identifiable. The identity may be used by the UE</u> to retrieve the actual key (based on identity match, and mismatch recognition) when an update was missed or was erroneous/incomplete.

Editor's note: If ptm re- keying is used, the keys shall be delivered in a reliable way. Ptp re-keying is assumed to be reliable.

R5g: The BM-SC shall be aware of where all MBMS specific keys are stored in the UE (i.e. ME or UICC).

<u>R5h:</u> The function of providing MTK to the ME shall only deliver a MTK to the ME if the input values used for obtaining the MTK were fresh (have not been replayed) and came from a trusted source.

C.5 Requirements on integrity protection of MBMS User Service data

<u>R6a: It shall be possible to protect against unauthorized modification, insertion, replay or deletion of MBMS User</u> Service data sent to the UE on the radio interface. The use of integrity shall be optional.

Editor's note: It may be possible to detect the deletion of MBMS data packets, but it is impossible to prevent the deletion. Packets may be lost because of bad radio conditions, providing integrity protection will not help to detect or recover from this situation.

Note: the use of shared keys (integrity and confidentiality) to a group of untrusted users only prevents attacks of lower levels of sophistication, such as preventing eavesdroppers from simply listening in

<u>R6b: The MBMS User Service data may be integrity protected with a common integrity key, which shall be</u> <u>available to all users that have joined the MBMS User Service.</u>

R6c: It may be required to integrity protect the "BM-SC - GGSN" interface i.e. reference point Gi.

C.6 Requirements on confidentiality protection of MBMS User Service data

R7a: It shall be possible to protect the confidentiality of MBMS User Service data on the radio interface.

<u>R7b: The MBMS User Service data may be encrypted with a common encryption key, which shall be available to all users that have joined the MBMS User Service.</u>

<u>R7c: It may be required to encrypt the MBMS User Service data on the "BM-SC - GGSN" interface, i.e. the reference points Gi.</u>

<u>R7d:</u> It shall be infeasible for a man-in-the-middle to bid down the confidentiality protection used on protect the <u>MBMS User Service from the BM-SC to the UE.</u>

<u>R7e:</u> It shall be infeasible for an eavesdropper to break the confidentiality protection of the MBMS User Service when it is applied.

C.7 Requirements on content provider to BM-SC reference point

<u>R8a:</u> The BM-SC shall be able to authenticate and authorize a 3^{rd} party content provider that wishes to transmit data to the BM-SC.

<u>R8b:</u> It shall be possible to integrity and confidentiality protect data sent from a 3rd party content provider to the <u>BM-SC.</u>

NOTE: This reference point will not be standardised.

Annex <X> (informative): Change history

					Change history		
Date	TSG #	TSG Doc.	CR	Rev	Subject/Comment	Old	New
2002-09					Initial version supplied by Rapporteur		0.0.1
2002-11					Updated to include the threat and requirements discussed at SA3 #25.	0.0.1	0.0.2
2003-02					Updated to reflect changes to the requirements agreed at SA#26	0.0.2	0.0.3
2003-04					Updated to reflect changes agreed at the SA#27	0.0.3	0.10. 0
2003-07					Updated to reflect the decision on TEK distribution and independence of the MBMS keys from radio level keys	0.1.0	0.1.1
2003-08					Updated to reflect agreement in SA#29 on adding confidentiality requirements, editor's note about double ciphering, and text indicating that different security mechanisms may be needed to protect different protocols/codec that may be used in MBMS and re- organisation of the requirements section.	0.1.1	0.2.0
2003-09					Updated to reflect decision at Antwerp ad-hoc.	0.2.0	0.2.1
2003-11					Updated to reflect changes to requirements and threat at SA3#30	0.2.1	0.2.2
2003-11					Updated to reflect decisions taken at SA3#31while discussing tdoc 755 and attached pseudo CR.	0.2.2	0.2.3
2003-11					Updated to reflect all the other decisions taken at SA3#31	0.2.3	0.3.0
2003-11					Updated with some editorial modification and presented to the SA plenary for information	0.3.0	1.0.0
2004-02					Updated to reflect changes agreed at SA3#32	1.0.0	1.1.0
2004-04					Minor corrections agreed by e-mail discussion	1.1.0	1.1.1
2004-05					Updated to reflect the decisions taken at SA3#33	<u>1.1.1</u>	<u>1.2.0</u>
2004-06					Small editorial corrections	1.2.0	<u>1.2.1</u>