3GPP TSG-SA3 Meeting #26
Tdoc (
S3-020657

Oxford, England, 19-22 November

	CR-Form-v7

	CHANGE REQUEST

	

	(

	TS 55.216
	CR
	001
	(

rev
	-
	(

Current version:
	6.0.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	EGPRS algoritm

	
	

	Source:
(

	SA WG3

	
	

	Work item code:
(

	SEC1-CSALGO1
	
	Date: (

	14/11/2002

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	At SA3 #25 Ericsson presented a discussion paper in S3-020545 asking for clarification on the algorithm to be used for EGPRS.

The following extract has been taken from the SA3 #25 meeting report:

“TD S3‑020545 A5/3 and GEA3 and their relation with EGPRS. This was introduced by Ericsson and questions the use of A5/3 for EDGE and the data-rate for EGPRS and asks SA WG3 to discuss the issues raised in order to provide any necessary CRs to the next SA WG3 meeting. It was confirmed that A5/3 and GEA3 were suitable for both GSM/GPRS and EDGE variants, the algorithm specifications are unclear on this: The modulation scheme used in the PS domain does not affect the GEA3 algorithm mechanism. A5/3 (CS domain) has 2 modes of use, GSM standard mode and GSM EDGE mode. No CR to TS 43.020 was thought necessary, as implementers need to look at the algorithm specifications where the two modes of operation are clarified. It was agreed, however, to create a CR to the Technical Report TR 55.919 to clarify the use of the term "EDGE" in the specifications and the EGPRS bit-rates. K. Boman agreed to do this for the next SA WG3 meeting.”

It is proposed to change and clarify the wording in the Technical Specifications as well as TS 55.216.

	
	

	Summary of change:
(

	The term “EDGE” has been deleted from TS 55.216 as it very confusing i.e. the definition is unclear in 3GPP whether it applies for enhanced circuit-switched data or enhanced GPRS or both.

The term ECSD has been introduced as it is defined in 21.905 Vocabulary for 3GPP Specifications and stands for enhanced circuit-switched data.
The term EGPRS has been introduced as it is defined in 21.905 Vocabulary for 3GPP Specifications and stands for enhanced GPRS.
It’s been clarified that GEA3 shall be used for EGPRS.

	
	

	Consequences if
(

not approved:
	It’s unclear whether:

· the term EDGE means enhanced circuit-switched data or enhanced GPRS or both;

· what algorithm that shall be used for EGPRS.

	
	

	Clauses affected:
(

	

	
	

	
	Y
	N
	
	

	Other specs
(

	
	x
	 Other core specifications
(

	

	affected:
	x
	
	 Test specifications
	55.217, 55.218

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	SAGE draft 1.0 (technically equivalent to SA#17 approved version 1.0.0) is used for this CR, as electronic versions of 3GPP specification is not available on the 3GPP FTP site at present.

	ETSI/SAGE
Specification
	Version: 1.0
Date: 30th May 2002

	Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3 Encryption Algorithm for GPRS
Document 1: A5/3 and GEA3 Specifications

	
	

	
	

ADVANCE \u 5"

	Document History

	V1.0
	30th May 2002
	First publication

	
	
	

	
	
	

PREFACE

This specification has been prepared by the 3GPP Task Force, and gives a detailed specification of the A5/3 encryption algorithms for GSM and ECSD, and of the GEA3 encryption algorithm for GPRS.

This document is the first of three, which between them form the entire specification of the A5/3 and GEA3 algorithms:

· Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3 Encryption Algorithm for GPRS.

Document 1: A5/3 and GEA3 Specifications.

· Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3 Encryption Algorithm for GPRS.
Document 2: Implementors’ Test Data.

· Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3 Encryption Algorithm for GPRS.
Document 3: Design Conformance Test Data.

The normative part of the specification of the A5/3 and GEA3 algorithms is in the main body of this document. The annexes to this document are purely informative. Annex A gives a specification of the 3GPP f8 confidentiality algorithm, bringing out the (deliberate) commonality between it and the A5/3 and GEA3 algorithms. Annex B contains illustrations of functional elements of the algorithms, while Annex C contains an implementation program listing of the cryptographic algorithms specified in the main body of this document, written in the programming language C.

Documents 2 and 3 above are also purely informative.

The normative part of the specification of the block cipher (KASUMI) on which the A5/3 and GEA3 algorithms are based can be found in [5].

Blank Page

TABLE OF CONTENTS
1.
OUTLINE OF THE NORMATIVE PART
11
2.
INTRODUCTORY INFORMATION
11
2.1.
Introduction
11
2.2.
Notation
11
2.3.
List of Variables
12
3.
CORE FUNCTION KGCORE
14
3.1.
Introduction
14
3.2.
Inputs and Outputs
14
3.3.
Components and Architecture
14
3.4.
Initialisation
15
3.5.
Keystream Generation
15
4.
A5/3 ALGORITHM FOR GSM ENCRYPTION
16
4.1.
Introduction
16
4.2.
Inputs and Outputs
16
4.3.
Function Definition
16
5.
A5/3 ALGORITHM FOR ECSD ENCRYPTION
18
5.1.
Introduction
18
5.2.
Inputs and Outputs
18
5.3.
Function Definition
18
6.
GEA3 ALGORITHM FOR GPRS ENCRYPTION
20
6.1.
Introduction
20
6.2.
Inputs and Outputs
20
6.3.
Function Definition
20
ANNEX A Specification of the 3GPP Confidentiality Algorithm f8
23
A.1
Introduction
23
A.2
Inputs and Outputs
23
A.3
Function Definition
23
ANNEX B Figures of the Algorithms
25
ANNEX C Simulation Program Listings
29

REFERENCES

[1]
Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3 Encryption Algorithm for GPRS;
Document 1: A5/3 and GEA3 Specifications.

[2]
Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3 Encryption Algorithm for GPRS;
Document 2: Implementors’ Test Data.

[3]
Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3 Encryption Algorithm for GPRS;
Document 3: Design Conformance Test Data.

[4]
Specification of the 3GPP Confidentiality and Integrity Algorithms;
Document 1: f8 and f9 specifications.

[5]
Specification of the 3GPP Confidentiality and Integrity Algorithms;
Document 2: KASUMI specification.

NORMATIVE SECTION

This part of the document contains the normative specifications of the A5/3 and GEA3 encryption algorithms.

OUTLINE OF THE NORMATIVE PART

Section 2 introduces the algorithms and describes the notation used in the subsequent sections.

Section 3 specifies a core function KGCORE.

Section 4 specifies the encryption algorithm A5/3 for GSM in terms of the function KGCORE.

Section 5 specifies the encryption algorithm A5/3 for ECSD in terms of the function KGCORE.

Section 6 specifies the encryption algorithm GEA3 for GPRS in terms of the function KGCORE.

1. INTRODUCTORY INFORMATION

1.1. Introduction

In this document are specified three ciphering algorithms: A5/3 for GSM, A5/3 for ECSD, and GEA3 for GPRS (including EGPRS). The algorithms are stream ciphers that are used to encrypt/decrypt blocks of data under a confidentiality key KC. Each of these algorithms is based on the KASUMI algorithm that is specified in reference [5]. KASUMI is a block cipher that produces a 64-bit output from a 64-bit input under the control of a 128-bit key. The algorithms defined here use KASUMI in a form of output-feedback mode as a keystream generator.

The three algorithms are all very similar. We first define a core keystream generator function KGCORE (section 3); we then specify each of the three algorithms in turn (sections 4, 5 and 6) in terms of this core function.

1.2. Notation

1.2.1. Radix

We use the prefix 0x to indicate hexadecimal numbers.

1.2.2. Conventions

We use the assignment operator ‘=’, as used in several programming languages. When we write

<variable> = <expression>

we mean that <variable> assumes the value that <expression> had before the assignment took place. For instance,

x = x + y + 3

means

(new value of x) becomes (old value of x) + (old value of y) + 3.

1.2.3. Bit/Byte ordering

All data variables in this specification are presented with the most significant bit (or byte) on the left hand side and the least significant bit (or byte) on the right hand side. Where a variable is broken down into a number of sub-strings, the left most (most significant) sub-string is numbered 0, the next most significant is numbered 1 and so on through to the least significant.

For example an n-bit STRING is subdivided into 64-bit substrings SB0,SB1…SBi so if we have a string:

0x0123456789ABCDEFFEDCBA987654321086545381AB594FC28786404C50A37…

we have:

SB0 = 0x0123456789ABCDEF
SB1 = 0xFEDCBA9876543210
SB2 = 0x86545381AB594FC2
SB3 = 0x8786404C50A37…

In binary this would be:

000000010010001101000101011001111000100110101011110011011110111111111110…

with
SB0 = 0000000100100011010001010110011110001001101010111100110111101111
SB1 = 1111111011011100101110101001100001110110010101000011001000010000
SB2 = 1000011001010100010100111000000110101011010110010100111111000010
SB3 = 1000011110000110010000000100110001010000101000110111…

1.2.4. List of Symbols

=
The assignment operator.

(
The bitwise exclusive-OR operation

||
The concatenation of the two operands.

KASUMI[x]k
The output of the KASUMI algorithm applied to input value x
using the key k.

X[i]
The ith bit of the variable X. (X = X[0] || X[1] || X[2] || …..).

Y{i}
The ith octet of the variable Y. (Y = Y{0} || Y{1} || Y{2} || …..).

Zi
The ith 64-bit block of the variable Z. (Z = Z0 || Z1 || Z2 || ….).
1.3. List of Variables

A
a 64-bit register that is used within the KGCORE function to hold an intermediate value.

BLKCNT
a 64-bit counter used in the KGCORE function.

BLOCK1
a string of keystream bits output by the A5/3 algorithm — 114 bits for GSM, 348 bits for ECSD.

BLOCK2
a string of keystream bits output by the A5/3 algorithm — 114 bits for GSM, 348 bits for ECSD.

BLOCKS
an integer variable indicating the number of successive applications of KASUMI that need to be performed.

CA
an 8-bit input to the KGCORE function.

CB
a 5-bit input to the KGCORE function.

CC
a 32-bit input to the KGCORE function.

CD
a 1-bit input to the KGCORE function.

CE
a 16-bit input to the KGCORE function.

CK
a 128-bit input to the KGCORE function.

CL
an integer input to the KGCORE function, in the range 1…219 inclusive, specifying the number of output bits for KGCORE to produce.

CO
the output bitstream (CL bits) from the KGCORE function.

COUNT
a 22-bit frame dependent input to both the GSM and ECSD A5/3 algorithms.

DIRECTION
a 1-bit input to the GEA3 algorithm, indicating the direction of transmission (uplink or downlink).

INPUT
a 32-bit frame dependent input to the GEA3 algorithm.

KC
the cipher key that is an input to each of the three cipher algorithms defined here. Although at the time of writing the standards specify that KC is 64 bits long, the algorithm specifications here allow it to be of any length between 64 and 128 inclusive, to allow for possible future enhancements to the standards.

KLEN
the length of KC in bits, between 64 and 128 inclusive (see above).

KM
a 128-bit constant that is used to modify a key. This is used in the KGCORE function.

KS[i]
the ith bit of keystream produced by the keystream generator in the KGCORE function.

KSBi
the ith block of keystream produced by the keystream generator in the KGCORE function. Each block of keystream comprises 64 bits.

M
an input to the GEA3 algorithm, specifying the number of octets of output to produce.

OUTPUT
the stream of output octets from the GEA3 algorithm.

CORE FUNCTION KGCORE

1.4. Introduction

In this section we define a general-purpose keystream generation function KGCORE. The individual encryption algorithms for GSM, GPRS and ECSD will each be defined in subsequent sections by mapping the relevant inputs to the inputs of KGCORE, and mapping the output of KGCORE to the relevant output.

1.5. Inputs and Outputs

The inputs to KGCORE are given in table 1, the output in table 2:

	Parameter
	Comment

	CA
	8 bits CA[0]…CA[7]

	CB
	5 bits CB[0]…CB[4]

	CC
	32 bits CC[0]…CC[31]

	CD
	A single bit CD[0]

	CE
	16 bits CE[0]…CE[15] (see Note 1 below)

	CK
	128 bits CK[0]….CK[127]

	CL
	An integer in the range 1…219 inclusive, specifying the number of output bits to produce

Table 1. KGCORE inputs

	Parameter
	Comment

	CO
	CL bits CO[0]…CO[CL-1]

Table 2. KGCORE output

Note 1: All the algorithms specified in this document assign a constant, all-zeroes value to CE. More general use of CE is, however, available for possible future uses of KGCORE.

1.6. Components and Architecture

(See fig 1 Annex B)

The function KGCORE is based on the block cipher KASUMI that is specified in [2]. KASUMI is used in a form of output-feedback mode and generates the output bitstream in multiples of 64 bits.

The feedback data is modified by static data held in a 64-bit register A, and an (incrementing) 64-bit counter BLKCNT.

1.7. Initialisation

In this section we define how the keystream generator is initialised with the input variables before the generation of keystream bits as output.

We set the 64-bit register A to CC || CB || CD || 0 0 || CA || CE
i.e. A = CC[0]…CC[31] CB[0]…CB[4] CD[0] 0 0 CA[0]…CA[7] CE[0]…CE[15]

We set the key modifier KM to 0x55555555555555555555555555555555

We set KSB0 to zero.

One operation of KASUMI is then applied to the register A, using a modified version of the confidentiality key.

A = KASUMI[A]CK (KM
1.8. Keystream Generation

Once the keystream generator has been initialised in the manner defined in section 3.4, it is ready to be used to generate keystream bits. The keystream generator produces bits in blocks of 64 at a time, but the number CL of output bits to produce may not be a multiple of 64; between 0 and 63 of the least significant bits are therefore discarded from the last block, depending on the total number of bits specified by CL.

So let BLOCKS be equal to (CL/64) rounded up to the nearest integer. (For instance, if CL = 128 then BLOCKS = 2; if CL = 129 then BLOCKS = 3.)

To generate each keystream block (KSB) we perform the following operation:

For each integer n with 1 ≤ n ≤ BLOCKS we define:

KSBn = KASUMI[A (BLKCNT (KSBn-1]CK
where BLKCNT = n-1

The individual bits of the output are extracted from KSB1 to KSBBLOCKS in turn, most significant bit first, by applying the operation:

For n = 1 to BLOCKS, and for each integer i with 0 (i (63 we define:

CO[((n-1)*64)+i] = KSBn[i]

A5/3 ALGORITHM FOR GSM ENCRYPTION

1.9. Introduction

The GSM A5/3 algorithm produces two 114-bit keystream strings, one of which is used for uplink encryption/decryption and the other for downlink encryption/decryption.

We define this algorithm in terms of the core function KGCORE.

1.10. Inputs and Outputs

The inputs to the algorithm are given in table 3, the output in table 4:

	Parameter
	Size (bits)
	Comment

	COUNT
	22
	Frame dependent input COUNT[0]…COUNT[21]

	KC
	64–128
	Cipher key KC[0]… KC[KLEN-1], where KLEN is in the range 64…128 inclusive (see Notes 1 and 2 below)

Table 3. GSM A5/3 inputs

	Parameter
	Size (bits)
	Comment

	BLOCK1
	114
	Keystream bits BLOCK1[0]…BLOCK1[113]

	BLOCK2
	114
	Keystream bits BLOCK2[0]…BLOCK2[113]

Table 4. GSM A5/3 outputs

Note 1: At the time of writing, the standards specify that KC is 64 bits long. This specification of the A5/3 algorithm allows for possible future enhancements to support longer keys.

Note 2: It must be assumed that KC is unstructured data — it must not be assumed, for instance, that any bits of KC have predetermined values.

1.11. Function Definition

(See fig 2 Annex B)

We define the function by mapping the GSM A5/3 inputs onto the inputs of the core function KGCORE, and mapping the output of KGCORE onto the outputs of GSM A5/3.

So we define:

CA[0]…CA[7] = 0 0 0 0 1 1 1 1
CB[0]…CB[4] = 0 0 0 0 0
CC[0]…CC[9] = 0 0 0 0 0 0 0 0 0 0
CC[10]…CC[31] = COUNT[0]…COUNT[21]

CD[0] = 0

CE[0]…CE[15] = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CK[0]…CK[KLEN-1] = KC[0]…KC[KLEN-1]

If KLEN < 128 then

CK[KLEN]…CK[127] = KC[0]…KC[127 – KLEN]

(So in particular if KLEN = 64 then CK = KC || KC)

CL = 228

Apply KGCORE to these inputs to derive the output CO[0]…CO[227].

Then define:

BLOCK1[0]…BLOCK1[113] = CO[0]…CO[113]
BLOCK2[0]…BLOCK2[113] = CO[114]…CO[227]
A5/3 ALGORITHM FOR ECSD ENCRYPTION

1.12. Introduction

The ECSD A5/3 algorithm produces two 348-bit keystream strings, one of which is used for uplink encryption/decryption and the other for downlink encryption/decryption.

We define this algorithm in terms of the core function KGCORE.

1.13. Inputs and Outputs

The inputs to the algorithm are given in table 5, the output in table 6:

	Parameter
	Size (bits)
	Comment

	COUNT
	22
	Frame dependent input COUNT[0]…COUNT[21]

	KC
	64–128
	Cipher key KC[0]… KC[KLEN-1], where KLEN is in the range 64…128 inclusive (see Notes 1 and 2 below)

Table 5. ECSD A5/3 inputs

	Parameter
	Size (bits)
	Comment

	BLOCK1
	348
	Keystream bits BLOCK1[0]…BLOCK1[347]

	BLOCK2
	348
	Keystream bits BLOCK2[0]…BLOCK2[347]

Table 6. ECSD A5/3 outputs

Note 1: At the time of writing, the standards specify that KC is 64 bits long. This specification of the A5/3 algorithm allows for possible future enhancements to support longer keys.

Note 2: It must be assumed that KC is unstructured data — it must not be assumed, for instance, that any bits of KC have predetermined values.

1.14. Function Definition

(See fig 3 Annex B)

We define the function by mapping the ECSD A5/3 inputs onto the inputs of the core function KGCORE, and mapping the output of KGCORE onto the outputs of ECSD A5/3.

So we define:

CA[0]…CA[7] = 1 1 1 1 0 0 0 0
CB[0]…CB[4] = 0 0 0 0 0
CC[0]…CC[9] = 0 0 0 0 0 0 0 0 0 0
CC[10]…CC[31] = COUNT[0]…COUNT[21]

CD[0] = 0

CE[0]…CE[15] = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CK[0]…CK[KLEN-1] = KC[0]…KC[KLEN-1]

If KLEN < 128 then

CK[KLEN]…CK[127] = KC[0]…KC[127 – KLEN]

(So in particular if KLEN = 64 then CK = KC || KC)

CL = 696

Apply KGCORE to these inputs to derive the output CO[0]…CO[695].

Then define:

BLOCK1[0]…BLOCK1[347] = CO[0]…CO[347]
BLOCK2[0]…BLOCK2[347] = CO[348]…CO[695]
GEA3 ALGORITHM FOR GPRS ENCRYPTION

1.15. Introduction

The GPRS GEA3 algorithm produces an M-byte keystream string. M can vary; in this specification we assume that M will never exceed 216 = 65536.

We define this algorithm in terms of the core function KGCORE.
1.16. Inputs and Outputs

The inputs to the algorithm are given in table 7, the output in table 8:

	Parameter
	Size (bits)
	Comment

	INPUT
	32
	Frame dependent input INPUT[0]…INPUT[31]

	DIRECTION
	1
	Direction of transmission indicator DIRECTION[0]

	KC
	64–128
	Cipher key KC[0]… KC[KLEN-1], where KLEN is in the range 64…128 inclusive (see Notes 1 and 2 below)

	M
	
	Number of octets of output required, in the range 1 to 65536 inclusive

Table 7. GEA3 inputs

	Parameter
	Size (bits)
	Comment

	OUTPUT
	8M
	Keystream octets OUTPUT{0}…OUTPUT{M-1}

Table 8. GEA3 outputs

Note 1: At the time of writing, the standards specify that KC is 64 bits long. This specification of the GEA3 algorithm allows for possible future enhancements to support longer keys.

Note 2: It must be assumed that KC is unstructured data — it must not be assumed, for instance, that any bits of KC have predetermined values.

1.17. Function Definition

(See fig 4 Annex B)

We define the function by mapping the GEA3 inputs onto the inputs of the core function KGCORE, and mapping the output of KGCORE onto the outputs of GEA3.

So we define:

CA[0]…CA[7] = 1 1 1 1 1 1 1 1
CB[0]…CB[4] = 0 0 0 0 0
CC[0]…CC[31] = INPUT[0]…INPUT[31]

CD[0] = DIRECTION[0]

CE[0]…CE[15] = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CK[0]…CK[KLEN-1] = KC[0]…KC[KLEN-1]

If KLEN < 128 then

CK[KLEN]…CK[127] = KC[0]…KC[127 – KLEN]

(So in particular if KLEN = 64 then CK = KC || KC)

CL = 8M
Apply KGCORE to these inputs to derive the output CO[0]…CO[8M-1].

Then for 0 (i (M-1 define:

OUTPUT{i} = CO[8i]…CO[8i + 7]
where CO[8i] is the most significant bit of the octet.

INFORMATIVE SECTION

This part of the document is purely informative and does not form part of the normative specification of A5/3 and GEA3.

ANNEX A
Specification of the 3GPP Confidentiality Algorithm f8

A.1
Introduction

The algorithms defined in this specification have been designed to have much in common with the 3GPP confidentiality algorithm, to ease simultaneous implementation of multiple algorithms. To clarify this, a specification of f8 is given here in terms of the core function KGCORE. For the definitive specification of f8, the reader is referred to [5].

A.2
Inputs and Outputs

The inputs to the algorithm are given in table A.1, the output in table A.2:

	Parameter
	Size (bits)
	Comment

	COUNT
	32
	Frame dependent input COUNT[0]…COUNT[31]

	BEARER
	5
	Bearer identity BEARER[0]…BEARER[4]

	DIRECTION
	1
	Direction of transmission DIRECTION[0]

	CK
	128
	Confidentiality key CK[0]…CK[127]

	LENGTH
	
	The number of bits to be encrypted/decrypted
(1-20000)

Table A.1. f8 inputs

	Parameter
	Size (bits)
	Comment

	KS
	1-20000
	Keystream bits KS[0]…KS[LENGTH-1]

Table A.2. f8 output

Note: The definitive specification of f8 includes a bitstream IBS amongst the inputs, and gives the output as a bitstream OBS; both of these bitstreams are LENGTH bits long. OBS is obtained by the bitwise exclusive-or of IBS and KS. We present just the keystream generator part of f8 here, for closer comparison with A5/3 and GEA3.

A.3
Function Definition

(See fig 5 Annex B)

We define the function by mapping the f8 inputs onto the inputs of the core function KGCORE, and mapping the output of KGCORE onto the outputs of f8.

So we define:

CA[0]…CA[7] = 0 0 0 0 0 0 0 0
CB[0]…CB[4] = BEARER[0]…BEARER[4]
CC[0]…CC[31] = COUNT[0]…COUNT[31]

CD[0] = DIRECTION[0]

CE[0]…CE[15] = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CK[0]…CK[127] = CK[0]…CK[127]

CL = LENGTH
Apply KGCORE to these inputs to derive the output CO[0]…CO[LENGTH-1].

Then define:

KS[0]…KS[LENGTH-1] = CO[0]…CO[LENGTH-1]
ANNEX B
Figures of the Algorithms

[image: image1.wmf]KASUMI

CC || CB || CD || 00 || CA || CE

BLKCNT=0

CO[0] … CO[63]

CO[64] … CO[127]

CO[128] … CO[191]

A

CO[last bits]

KASUMI

KASUMI

KASUMI

KASUMI

BLKCNT=1

BLKCNT=2

BLKCNT=BLOCKS-1

CK

CK

CK

CK

CK

Å

 KM

Figure 1: KGCORE Core Keystream Generator Function

Note:
BLKCNT is specified as a 64-bit counter so there is no ambiguity in the expression
A (BLKCNT (KSBn-1 where all operands are of the same size. In a practical implementation, where the keystream generator is required to produce no more than a certain number of bits, only the least significant few bits of the counter need to be realised.

[image: image2.wmf]CA

CB

CC

CD

CK

CO (228 bits)

0…0 || COUNT

00000

00001111

0

K

C

 cyclically

repeated to

fill 128 bits

KGCORE

BLOCK1 (114 bits) || BLOCK2 (114 bits)

CE

0…0

Figure 2: GSM A5/3 Keystream Generator Function

[image: image3.wmf]CA

CB

CC

CD

CK

CO (696 bits)

0…0 || COUNT

00000

11110000

0

K

C

 cyclically

repeated to

fill 128 bits

KGCORE

BLOCK1 (348 bits) || BLOCK2 (348 bits)

CE

0…0

Figure 3: ECSD A5/3 Keystream Generator Function

[image: image4.wmf]CA

CB

CC

CD

CK

CO (8M bits)

INPUT

00000

11111111

DIRECTION

K

C

 cyclically

repeated to

fill 128 bits

KGCORE

OUTPUT (M octets)

CE

0…0

Figure 4: GEA3 Keystream Generator Function

[image: image5.wmf]CA

CB

CC

CD

CK

CO (LENGTH bits)

COUNT

BEARER

00000000

DIRECTION

CK

KGCORE

Keystream KS (LENGTH bits)

CE

0…0

Figure 5: 3GPP f8 Keystream Generator Function

	
	GSM A5/3
	ECSD A5/3
	GEA3
	f8

	CA
	0 0 0 0 1 1 1 1
	1 1 1 1 0 0 0 0
	1 1 1 1 1 1 1 1
	0 0 0 0 0 0 0 0

	CB
	0 0 0 0 0
	0 0 0 0 0
	0 0 0 0 0
	BEARER

	CC
	0...0||COUNT
	0...0||COUNT
	INPUT
	COUNT

	CD
	0
	0
	DIRECTION
	DIRECTION

	CE
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

	CK
	KC repeated to fill 128 bits
	CK

	CO
	BLOCK1||BLOCK2
	BLOCK1||BLOCK2
	OUTPUT
	KS

Table B.1: GSM A5/3, ECSD A5/3, GEA3 and f8 in terms of KGCORE
ANNEX C
Simulation Program Listings

kasumi.h

/*---

 *

Kasumi.h

 ---/

typedef unsigned char u8;

typedef unsigned short u16;

typedef unsigned int u32;

/*----- a 64-bit structure to help with endian issues -----*/

typedef union {

u32 b32[2];

u16 b16[4];

u8 b8[8];

} REGISTER64;

/*------------- prototypes --------------------------------*/

void KeySchedule(u8 *key);

void Kasumi(u8 *data);

kasumi.c

/*---

 *

Kasumi.c

 *---

 *

 *
A sample implementation of KASUMI, the core algorithm for the

 *
3GPP Confidentiality and Integrity algorithms.

 *

 *
This has been coded for clarity, not necessarily for efficiency.

 *

 *
This will compile and run correctly on both Intel (little endian)

 *
and Sparc (big endian) machines. (Compilers used supported 32-bit ints).

 *

 *
Version 1.1

08 May 2000

 *

 ---/

#include "Kasumi.h"

/*--------- 16 bit rotate left --*/

#define ROL16(a,b) (u16)((a<<b)|(a>>(16-b)))

/*------- unions: used to remove "endian" issues ------------------------*/

typedef union {

u32 b32;

u16 b16[2];

u8 b8[4];

} DWORD;

typedef union {

u16 b16;

u8 b8[2];

} WORD;

/*-------- globals: The subkey arrays -----------------------------------*/

static u16 KLi1[8], KLi2[8];

static u16 KOi1[8], KOi2[8], KOi3[8];

static u16 KIi1[8], KIi2[8], KIi3[8];

 /*---

 *
FI()

 *

The FI function (fig 3). It includes the S7 and S9 tables.

 *

Transforms a 16-bit value.

 ---/

static u16 FI(u16 in, u16 subkey)

{

u16 nine, seven;

static u16 S7[] = {

54, 50, 62, 56, 22, 34, 94, 96, 38, 6, 63, 93, 2, 18,123, 33,

55,113, 39,114, 21, 67, 65, 12, 47, 73, 46, 27, 25,111,124, 81,

53, 9,121, 79, 52, 60, 58, 48,101,127, 40,120,104, 70, 71, 43,

20,122, 72, 61, 23,109, 13,100, 77, 1, 16, 7, 82, 10,105, 98,

117,116, 76, 11, 89,106, 0,125,118, 99, 86, 69, 30, 57,126, 87,

112, 51, 17, 5, 95, 14, 90, 84, 91, 8, 35,103, 32, 97, 28, 66,

102, 31, 26, 45, 75, 4, 85, 92, 37, 74, 80, 49, 68, 29,115, 44,

64,107,108, 24,110, 83, 36, 78, 42, 19, 15, 41, 88,119, 59, 3};

static u16 S9[] = {

167,239,161,379,391,334, 9,338, 38,226, 48,358,452,385, 90,397,

183,253,147,331,415,340, 51,362,306,500,262, 82,216,159,356,177,

175,241,489, 37,206, 17, 0,333, 44,254,378, 58,143,220, 81,400,

 95, 3,315,245, 54,235,218,405,472,264,172,494,371,290,399, 76,

165,197,395,121,257,480,423,212,240, 28,462,176,406,507,288,223,

501,407,249,265, 89,186,221,428,164, 74,440,196,458,421,350,163,

232,158,134,354, 13,250,491,142,191, 69,193,425,152,227,366,135,

344,300,276,242,437,320,113,278, 11,243, 87,317, 36, 93,496, 27,

487,446,482, 41, 68,156,457,131,326,403,339, 20, 39,115,442,124,

475,384,508, 53,112,170,479,151,126,169, 73,268,279,321,168,364,

363,292, 46,499,393,327,324, 24,456,267,157,460,488,426,309,229,

439,506,208,271,349,401,434,236, 16,209,359, 52, 56,120,199,277,

465,416,252,287,246, 6, 83,305,420,345,153,502, 65, 61,244,282,

173,222,418, 67,386,368,261,101,476,291,195,430, 49, 79,166,330,

280,383,373,128,382,408,155,495,367,388,274,107,459,417, 62,454,

132,225,203,316,234, 14,301, 91,503,286,424,211,347,307,140,374,

 35,103,125,427, 19,214,453,146,498,314,444,230,256,329,198,285,

 50,116, 78,410, 10,205,510,171,231, 45,139,467, 29, 86,505, 32,

 72, 26,342,150,313,490,431,238,411,325,149,473, 40,119,174,355,

185,233,389, 71,448,273,372, 55,110,178,322, 12,469,392,369,190,

 1,109,375,137,181, 88, 75,308,260,484, 98,272,370,275,412,111,

336,318, 4,504,492,259,304, 77,337,435, 21,357,303,332,483, 18,

 47, 85, 25,497,474,289,100,269,296,478,270,106, 31,104,433, 84,

414,486,394, 96, 99,154,511,148,413,361,409,255,162,215,302,201,

266,351,343,144,441,365,108,298,251, 34,182,509,138,210,335,133,

311,352,328,141,396,346,123,319,450,281,429,228,443,481, 92,404,

485,422,248,297, 23,213,130,466, 22,217,283, 70,294,360,419,127,

312,377, 7,468,194, 2,117,295,463,258,224,447,247,187, 80,398,

284,353,105,390,299,471,470,184, 57,200,348, 63,204,188, 33,451,

 97, 30,310,219, 94,160,129,493, 64,179,263,102,189,207,114,402,

438,477,387,122,192, 42,381, 5,145,118,180,449,293,323,136,380,

 43, 66, 60,455,341,445,202,432, 8,237, 15,376,436,464, 59,461};

/* The sixteen bit input is split into two unequal halves, *

 * nine bits and seven bits - as is the subkey

 */

nine = (u16)(in>>7);

seven = (u16)(in&0x7F);

/* Now run the various operations */

nine = (u16)(S9[nine] ^ seven);

seven = (u16)(S7[seven] ^ (nine & 0x7F));

seven ^= (subkey>>9);

nine ^= (subkey&0x1FF);

nine = (u16)(S9[nine] ^ seven);

seven = (u16)(S7[seven] ^ (nine & 0x7F));

in = (u16)((seven<<9) + nine);

return(in);

}

 /*---

 * FO()

 *

The FO() function.

 *

Transforms a 32-bit value. Uses <index> to identify the

 *

appropriate subkeys to use.

 ---/

static u32 FO(u32 in, int index)

{

u16 left, right;

/* Split the input into two 16-bit words */

left = (u16)(in>>16);

right = (u16) in;

/* Now apply the same basic transformation three times */

left ^= KOi1[index];

left = FI(left, KIi1[index]);

left ^= right;

right ^= KOi2[index];

right = FI(right, KIi2[index]);

right ^= left;

left ^= KOi3[index];

left = FI(left, KIi3[index]);

left ^= right;

in = (((u32)right)<<16)+left;

return(in);

}

/*---

 * FL()

 *

The FL() function.

 *

Transforms a 32-bit value. Uses <index> to identify the

 *

appropriate subkeys to use.

 ---/

static u32 FL(u32 in, int index)

{

u16 l, r, a, b;

/* split out the left and right halves */

l = (u16)(in>>16);

r = (u16)(in);

/* do the FL() operations

*/

a = (u16) (l & KLi1[index]);

r ^= ROL16(a,1);

b = (u16)(r | KLi2[index]);

l ^= ROL16(b,1);

/* put the two halves back together */

in = (((u32)l)<<16) + r;

return(in);

}

 /*---

 * Kasumi()

 *

the Main algorithm (fig 1). Apply the same pair of operations

 *

four times. Transforms the 64-bit input.

 ---/

void Kasumi(u8 *data)

{

u32 left, right, temp;

DWORD *d;

int n;

/* Start by getting the data into two 32-bit words (endian corect) */

d = (DWORD*)data;

left = (((u32)d[0].b8[0])<<24)+(((u32)d[0].b8[1])<<16)

+(d[0].b8[2]<<8)+(d[0].b8[3]);

right = (((u32)d[1].b8[0])<<24)+(((u32)d[1].b8[1])<<16)

+(d[1].b8[2]<<8)+(d[1].b8[3]);

n = 0;

do{
temp = FL(left, n);

temp = FO(temp, n++);

right ^= temp;

temp = FO(right, n);

temp = FL(temp, n++);

left ^= temp;

}while(n<=7);

/* return the correct endian result */

d[0].b8[0] = (u8)(left>>24);

d[1].b8[0] = (u8)(right>>24);

d[0].b8[1] = (u8)(left>>16);

d[1].b8[1] = (u8)(right>>16);

d[0].b8[2] = (u8)(left>>8);

d[1].b8[2] = (u8)(right>>8);

d[0].b8[3] = (u8)(left);

d[1].b8[3] = (u8)(right);

}

/*---

 * KeySchedule()

 *

Build the key schedule. Most "key" operations use 16-bit

 *

subkeys so we build u16-sized arrays that are "endian" correct.

 ---/

void KeySchedule(u8 *k)

{

static u16 C[] = {

0x0123,0x4567,0x89AB,0xCDEF, 0xFEDC,0xBA98,0x7654,0x3210 };

u16 key[8], Kprime[8];

WORD *k16;

int n;

/* Start by ensuring the subkeys are endian correct on a 16-bit basis */

k16 = (WORD *)k;

for(n=0; n<8; ++n)

key[n] = (u16)((k16[n].b8[0]<<8) + (k16[n].b8[1]));

/* Now build the K'[] keys */

for(n=0; n<8; ++n)

Kprime[n] = (u16)(key[n] ^ C[n]);

/* Finally construct the various sub keys */

for(n=0; n<8; ++n)

{

KLi1[n] = ROL16(key[n],1);

KLi2[n] = Kprime[(n+2)&0x7];

KOi1[n] = ROL16(key[(n+1)&0x7],5);

KOi2[n] = ROL16(key[(n+5)&0x7],8);

KOi3[n] = ROL16(key[(n+6)&0x7],13);

KIi1[n] = Kprime[(n+4)&0x7];

KIi2[n] = Kprime[(n+3)&0x7];

KIi3[n] = Kprime[(n+7)&0x7];

}

}

/*---

 *

e n d o f k a s u m i . c

 ---/

kgcore.c

/*---

 *

KGCORE

 *---

 *

 *
A sample implementation of KGCORE, the heart of the

 *
A5/3 algorithm set.

 *

 *
This has been coded for clarity, not necessarily for

 *
efficiency.

 *

 *
This will compile and run correctly on both Intel

 * (little endian) and Sparc (big endian) machines.

 *

 *
Version 0.1

13 March 2002

 *

 ---/

#include "kasumi.h"

#include <stdio.h>

/*---

 * KGcore()

 *

Given ca, cb, cc, cd, ck, cl generate c0

 ---/

void KGcore(u8 ca, u8 cb, u32 cc, u8 cd, u8 *ck, u8 *co, int cl)

{

REGISTER64 A;

/* the modifier

*/

REGISTER64 temp;
/* The working register */

int i, n;

u8 key[16],ModKey[16];

/* Modified key

 */

u16 blkcnt;

/* The block counter */

/* Copy over the key */

for(i=0; i<16; ++i)

key[i] = ck[i];

/* Start by building our global modifier */

temp.b32[0] = temp.b32[1] = 0;

A.b32[0] = A.b32[1] = 0;

/* initialise register in an endian correct manner*/

A.b8[0] = (u8) (cc>>24);

A.b8[1] = (u8) (cc>>16);

A.b8[2] = (u8) (cc>>8);

A.b8[3] = (u8) (cc);

A.b8[4] = (u8) (cb<<3);

A.b8[4] |= (u8) (cd<<2);

A.b8[5] = (u8) ca;

/* Construct the modified key and then "kasumi" A */

for(n=0; n<16; ++n)

ModKey[n] = (u8)(ck[n] ^ 0x55);

KeySchedule(ModKey);

Kasumi(A.b8);
/* First encryption to create modifier */

/* Final initialisation steps */

blkcnt = 0;

KeySchedule(key);

/* Now run the key stream generator */

while(cl > 0)

{

/* First we calculate the next 64-bits of keystream */

/* XOR in A and BLKCNT to last value */

temp.b32[0] ^= A.b32[0];

temp.b32[1] ^= A.b32[1];

temp.b8[7] ^= blkcnt;

/* KASUMI it to produce the next block of keystream */

Kasumi(temp.b8);

/* Set <n> to the number of bytes of input data
*

 * we have to modify. (=8 if length <= 64)

*/

if(cl >= 64)

n = 8;

else

n = (cl+7)/8;

/* copy out the keystream */

for(i=0; i<n; ++i)

*co++ = temp.b8[i];

cl -= 64;

/* done another 64 bits */

++blkcnt;

/* increment BLKCNT */

}

}

/*---

 *

e n d o f K G c o r e . c

 ---/

a53f.c

/*---

 *

A5/3

 *---

 *

 *
A sample implementation of A5/3, the functions of the

 *
A5/3 algorithm set.

 *

 *
This has been coded for clarity, not necessarily for

 *
efficiency.

 *

 *
This will compile and run correctly on both Intel

 * (little endian) and Sparc (big endian) machines.

 *

 *
Version 0.1

13 March 2002

 *

 ---/

#include "kasumi.h"

#include <stdlib.h>

void KGcore(u8 ca, u8 cb, u32 cc, u8 cd, u8 *ck, u8 *co, int cl);

/*---

 * BuildKey()

 *
The KGcore() function expects a 128-bit key. This

 *
function builds that key from shorter length keys.

 ---/

static u8 *BuildKey(u8 *k, int len)

{

static u8 ck[16];

/* Where the key is built */

int i, n, sf;

u8 mask[]={0x1,0x3,0x7,0xF,0x1F,0x3F,0x7F,0xFF};

i = (len+7)/8;

/* Round to nearest byte */

if (i > 16)

i = 16;

/* limit to 128 bits
 */

for(n=0; n<i; ++n)
/* copy over the key */

ck[n] = k[n];

sf = len%8;

/* Any odd key length? */

/* If the key is less than 128-bits we need to replicate *

 * it as many times as is necessary to fill the key.
 */

if(len < 128)

{

n = 0;

if(sf)
/* Doesn't align to byte boundaries */

{

ck[i-1] &= mask[sf];

ck[i-1] += ck[0]<<sf;

while(i<16)

{

ck[i] = (ck[n]>>(8-sf)) + (ck[n+1]<<sf);

++n;

++i;

}

}

else

while(i<16)

ck[i++] = ck[n++];

}

return(ck);

}

/*---

 * The basic A5/3 functions.

 *
These follow a standard layout:

 *
- From the supplied key build the 128-bit required by

 * KGcore()

 * - Call the KGcore() function with the appropriate

 * parameters

 * - Take the generated Keystream and repackage it

 * in the required format.

 */

/*---

 * The standard GSM function

 ---/

void GSM(u8 *key, int klen, int count, u8 *block1, u8 *block2)

{

u8 *ck, data[32];

int i;

ck=BuildKey(key, klen);

KGcore(0x0F, 0, count, 0, ck, data, 228);

for(i=0; i<15; ++i)

{

block1[i] = data[i];

block2[i] = (data[i+14]<<2) + (data[i+15]>>6);

}

block1[14] &= 0xC0;

block2[14] &= 0xC0;

}

/*---

 * The standard GSM ECSD function

 ---/

void ECSD(u8 *key, int klen, int count, u8 *block1, u8 *block2)

{

u8 *ck, data[87];

int i;

ck=BuildKey(key, klen);

KGcore(0xF0, 0, count, 0, ck, data, 696);

for(i=0; i<44; ++i)

{

block1[i] = data[i];

block2[i] = (data[i+43]<<4) + (data[i+44]>>4);

}

block1[43] &= 0xF0;

block2[43] &= 0xF0;

}

/*---

 * The standard GEA3 function

 ---/

void GEA3(u8 *key, int klen, u32 input, u8 direction, u8 *block, int m)

{

u8 *ck, *data;

int i;

data = malloc(m);

ck=BuildKey(key, klen);

KGcore(0xFF, 0, input, direction, ck, data, m*8);

for(i=0; i<m; ++i)

block[i] = data[i];

free(data);

}

/*---

 *
E n d o f A 5 3 f . c

 ---/

a53f.h

void GSM(u8 *key, int klen, int count, u8 *block1, u8 *block2);

void ECSD(u8 *key, int klen, int count, u8 *block1, u8 *block2);

void GEA3(u8 *key, int klen, u32 input, u8 direction, u8 *block, int m);

�PAGE \# "'Page: '#'�'" �Page: 1��� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �Page: 1��� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �Page: 1��� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �Page: 1��� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �Page: 2��� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �Page: 2��� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �Page: 2��� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

A5/3 and GEA3 Algorithms

page 1 of 37
A5/3 and GEA3 Specifications Version 1.0

