[bookmark: _Toc59182750][bookmark: _Toc59184216][bookmark: _Toc59195151][bookmark: _Toc59439578][bookmark: _Toc67990001]3GPP TSG-SA5 Meeting #149	S5-234837
Berlin, Germany, 22-26 May 2023
	CR-Form-v12.1

	CHANGE REQUEST

	

	
	28.105
	CR
	0024
	rev
	1
	Current version:
	17.3.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:	
	 Rel-17 CR TS 28.105 Grammatical Corrections

	
	

	Source to WG:
	Nokia, Nokia Shanghai Bell

	Source to TSG:
	S5

	
	

	Work item code:
	TEI17
	
	Date:
	2022-11-04

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	In TS 28.105 there are a lot of grammatical errors that need to be corrected

	
	

	Summary of change:
	1> 6.2.2.3 remove “when” and add ‘s’ to ‘level’
2> 6.2.2.4 add article
3> 6.2.2.5 correct the tense
4> 7.3.2.1 remove extra ‘for’

	
	

	Consequences if not approved:
	Inaccurate language and wording may lead to confusion

	
	

	Clauses affected:
	6.2.2.3, 6.2.2.4, 6.2.2.5, 7.3.2.1

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	
Forge link of this CR:

	
	

	This CR's revision history:
	

	
1st Modified Section

[bookmark: _Toc106015860][bookmark: _Toc106098498][bookmark: _Toc130201971][bookmark: MCCQCTEMPBM_00000147]6.2.2.3	ML model and and ML entity selection
For a given machine learning-based use case, different entities that apply the respective ML model or AI/ML inference function may have different inference requirements and capabilities. For example, one consumer with specific responsibility and wish to have an AI/ML inference function supported by an ML model or entity trained for city central business district where mobile users move at speeds not exceeding 30 km/hr. On the other hand, another consumer, for the same use case may support a rural environment and as such wishes to have an ML model and AI/ML inference function fitting that type of environment. The different consumers need to know the available versions of ML entities, with the variants of trained ML models or entities and to select the appropriate one for their respective conditions.
Besides, there is no guarantee that the available ML models/entities have been trained according to the characteristics that the consumers expect. As such the consumers need to know the conditions for which the ML models or ML entities have been trained to then enable them to select the models that are best fit to their conditions and needs.
The models that have been trained may differ in terms of complexity and performance. For example, a generic comprehensive and complex model may have been trained in a cloud-like environment but when such a model cannot be used in the gNB and instead, a less complex model, trained as a derivative of this generic model, could be a better candidate. Moreover, multiple less complex models could be trained with different levels of complexity and performance which would then allow different relevant models to be delivered to different network functions depending on operating conditions and performance requirements. The network functions need to know the alternative models available and interactively request and replace them when needed and depending on the observed inferencerelated constraints and performance requirements.
[bookmark: _Toc106015861][bookmark: _Toc106098499][bookmark: _Toc130201972]6.2.2.4	Managing ML training processes
This machine learning capability relates to means for managing and controlling ML model/entity training processes.
To achieve the desired outcomes of any machine learning relevant use-case, the ML model applied for such analytics and decision making, needs to be trained with the appropriate data. The training may be undertaken in a managed function or in a management function.
In either case, the network (or the OAM system thereof) not only needs to have the required training capabilities but needs to also have the means to manage the training of the ML models/entities. The consumers need to be able to interact with the training process, e.g., to suspend or restart the process; and also need to manage and control the requests related to any such training process.
[bookmark: _Toc106015862][bookmark: _Toc106098500][bookmark: _Toc130201973]6.2.2.5	Handling errors in data and ML decisions
Traditionally, the ML models/entities (e.g., ML entity1 and ML entity2 in figure 6.2.2.5-1) are trained on good quality data, i.e., data that were collected correctly and reflected the real network status to represent the expected context in which the ML entity is meant to operate. Good quality data is void of errors, such as:
-	Imprecise measurements, with added noise (such as RSRP, SINR, or QoE estimations).
-	Missing values or entire records, e.g., because of communication link failures.
-	Records which are communicated with a significant delay (in case of online measurements).
Without errors, an ML entity can depend on a few precise inputs, and don't does not need to exploit the redundancy present in the training data. However, during inference, the ML entity is very likely to come across these inconsistencies. When this happens, the ML entity shows high error in the inference outputs, even if redundant and uncorrupted data are available from other sources.

Figure 6.2.2.5-1: The propagation of erroneous information
As such the system needs to account for errors and inconsistencies in the input data and the consumers should deal with decisions that are made based on such erroneous and inconsistent data. The system should:
1)	enable functions to undertake the training in a way that prepares the ML entities to deal with the errors in the training data, i.e., to identify the errors in the data during training;
2)	enable the MLT MnS consumers to be aware of the possibility of erroneous input data that are used by the ML entity.
[bookmark: _Toc106015880][bookmark: MCCQCTEMPBM_00000142][bookmark: MCCQCTEMPBM_00000148]
	
Next Modified Section

[bookmark: _Toc106015878][bookmark: _Toc106098516][bookmark: _Toc130201988][bookmark: _Toc106015923]7.3.2.1	Definition
[bookmark: MCCQCTEMPBM_00000042]The IOC MLTrainingRequest represents the ML model training request that is created by the ML training MnS consumer.
[bookmark: MCCQCTEMPBM_00000043][bookmark: MCCQCTEMPBM_00000044][bookmark: MCCQCTEMPBM_00000045][bookmark: MCCQCTEMPBM_00000046]The MLTrainingRequest MOI is contained under one MLTrainingFunction MOI. Each MLTrainingRequest is associated to at least one MLEntity.
[bookmark: MCCQCTEMPBM_00000047]The MLTrainingRequest may have a source to identify where it is coming from, and which may be used to prioritize the training resources for different sources. The sources may be for example the network functions, operator roles, or other functional differentiations.
[bookmark: MCCQCTEMPBM_00000048][bookmark: MCCQCTEMPBM_00000049]Each MLTrainingRequest may indicate the expectedRunTimeContext that describes the specific conditions for which the MLEntity should be trained for.
In case the request is accepted, the ML training MnS producer decides when to start the ML training. Once the MnS producer decides to start the training based on the request, the ML training MnS producer instantiates one or more MLTrainingProcess MOI(s) that are responsible to perform the followings:
-	collects (more) data for training, if the training data are not available or the data are available but not sufficient for the training;
-	prepares and selects the required training data, with consideration of the consumer’s request provided candidate training data if any. The ML training MnS producer may examine the consumer's provided candidate training data and select none, some or all of them for training. In addition, the ML training MnS producer may select some other training data that are available in order to meet the consumer’s requirements for the MLentity training;
[bookmark: MCCQCTEMPBM_00000050]-	trains the MLEntity using the selected and prepared training data.
[bookmark: MCCQCTEMPBM_00000051][bookmark: MCCQCTEMPBM_00000052][bookmark: MCCQCTEMPBM_00000053]The MLTrainingRequest may have a requestStatus field to represent the status of the specific MLTrainingRequest:
-	The attribute values are "NOT_STARTED", "TRAINING_IN_PROGRESS", "SUSPENDED", "FINISHED", and "CANCELLED".
[bookmark: MCCQCTEMPBM_00000054]-	When value turns to "TRAINING_IN_PROGRESS", the ML training MnS producer instantiates one or more MLTrainingProcess MOI(s) representing the training process(es) being performed per the request and notifies the MLT MnS consumer(s) who subscribed to the notification.
When all of the training process associated to this request are completed, the value turns to "FINISHED".

	
End of Modification

image1.emf

ML entity

1

ML entity

2

Network

Resources

ML Consumer

p

KPIs

Error

p

Microsoft_Word_97_-_2003_Document.doc

AIML Eentity1

AIML Eentity2

Network Resources

ML Consumer

p

KPIs

Error

p

[image: image1.emf][image: image2.emf][image: image3.emf][image: image4.emf]
