6.3.4 Power control

6.3.4.1 General

The requirements on power control accuracy apply under normal conditions.

6.3.4.2 Absolute power tolerance

6.3.4.2.1 Test purpose

To verify the ability of the UE transmitter to set its initial output power to a specific value at the start of a contiguous transmission or non-contiguous transmission with a long transmission gap, i.e. transmission gap is larger than 20ms.

6.3.4.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.4.2.3 Minimum conformance requirements

The absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame(1ms) at the start of a contiguous transmission or non-contiguous transmission with a transmission gap larger than 20ms. The tolerance includes the channel estimation error.

The minimum requirement specified in Table 6.3.4.2.3-1 apply in the power range bounded by the minimum output power as specified in sub-clause 6.3.1 and the maximum output power as specified in sub-clause 6.2.1.

Tolerance
± 9.0 dB

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3.4.2

6.3.4.2.4 Test description

6.3.4.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in clause 6.2D.3.4.1 for NS_03, NS_03U, NS_04 and NS_35. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

		Initial C	onditions			
Test Enviror	nment as specified in TS	38.508-1 [5]	Normal			
subclause 4	.1					
Test Freque	encies as specified in TS	38.508-1 [5]	Mid range (NOTE 2)			
subclause 4						
Test Channe	el Bandwidths as specifi	ed in TS 38.508-1	Lowest, Mid, Highest			
[5] subclaus	e 4.3.1					
Test SCS as	s specified in Table 5.3.	5-1	Lowest, Highest			
		Test Pa	rameters			
Test ID	Downlink Co	onfiguration	Uplink Configuration			
	Modulation	RB allocation	Modulation	RB allocation (NOTE 1)		
1	N/A for Absolute po	wer tolerance test	CP-OFDM QPSK	Outer_Full		
	cas	se				
NOTE 1: T	he specific configuration	n of each RF allocatio	n is defined in Table 6.1-	1.		
NOTE 2: F	or NR band n28, 30MH	z test channel bandwi	dth is tested with Low rar	nge test frequencies.		

Table 6.3.4.2.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3.4.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3.4.2.4.3. Note that PDCCH DCI format 0_1 sent after resetting uplink power with RRC Connection Reconfiguration, should have TPC command 0dB.

6.3.4.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 with TPC command 0dB for C_RNTI to schedule the UL RMC according to Table 6.3.4.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Measure the initial output power of the first sub-frame (1ms) of UE PUSCH first transmission.
- 3. Repeat for the two test points as indicated in section 6.3.4.2.4.3. The timing of the execution between the two test points shall be larger than 20ms.
- 6.3.4.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions:

Table 6.3.4.2.4.3-1: UplinkPowerControlCommon: Test point 1

Information Element	Value/remark	Comment	Condition
PUSCH-ConfigCommon::= SEQUENCE {			
p0-NominalWithGrant	-114	Test point 1 to verify a UE relative low initial power transmission	

Information Element	Value/remark	Comment	Condition
PUSCH-ConfigCommon::= SEQUENCE {			
p0-NominalWithGrant	-100	Test point 2 to verify a UE relative high initial power transmission	

Table 6.3.4.2.4.3-2: UplinkPowerControlCommon: Test point 2

Table 6.3.4.2.4.3-3: Void

Table 6.3.4.2.4.3-4: ServingCellConfigCommon

Derivation Path: 38.508-1[5], Table 4.6.3-168									
Information Element Value/remark Comment Condi									
ServingCellConfigCommon ::= SEQUENCE {									
ss-PBCH-BlockPower	18		SCS_15kHz						
	21		SCS_30kHz						
}									

Condition	Explanation
SCS_15kHz	SCS=15kHz for SS/PBCH block
SCS_30kHz	SCS=30kHz for SS/PBCH block

6.3.4.2.5 Test requirement

The requirement for the power measured in step (2) of the test procedure is not to exceed the values specified in Table 6.3.4.2.5-1 and 6.3.4.2.5-2.

			Channel bandwidth / expected output power (dBm)												
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	45 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
Exported	SCS15	- 17.6	- 14.4	- 12.6	- 11.3	- 10.4	-9.6	-8.3	-7.8	-7.3	N/A	N/A	N/A	N/A	N/A
Expected Measured	SCS30	- 18.2	- 14.8	- 12.8	- 11.5	- 10.5	-9.7	-8.3	-7.9	-7.4	-6.5	-5.8	-5.2	-4.7	-4.2
power	SCS60		- 15.2	-13	- 11.8	- 10.7	-9.8	-8.5	-8	-7.5	-6.6	-5.9	-5.3	-4.8	-4.3
Power tol	Power tolerance ± (9+TT)dB														
	Note 1: The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3.2.3														

Table 6.3.4.2.5-1: Absolute power tolerance: test point 1

			Channel bandwidth / expected output power (dBm)												
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	45 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
Expected	SCS15	-3.6	0.4	1.4	2.7	3.6	4.4	5.7	6.2	6.7	N/A	N/A	N/A	N/A	N/A
Measured	SCS30	-4.2	-0.8	1.2	2.5	3.5	4.3	5.7	6.2	6.6	7.5	8.2	8.8	9.3	9.8
power	SCS60	N/A	-1.2	1	2.2	3.3	4.2	5.5	6	6.5	7.4	8.1	8.7	9.2	9.7
Power tol	Power tolerance ± (9+TT)dB														
	-	-		Note 1: The higher power limit shall not exceed the maximum output power requirements defined in sub-clause 6.2.1.3											

Table 6.3.4.2.5-2: Absolute power tolerance: test point 2

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.0 dB	1.4 dB	1.4 dB
40MHz < BW ≤ 100MHz	1.4 dB	1.4 dB	1.4 dB

6.3.4.3 Relative power tolerance

6.3.4.3.1 Test purpose

To verify the ability of the UE transmitter to set its output power in a target sub-frame(1ms) relatively to the power of the most recently transmitted reference sub-frame if the transmission gap between these sub-frames is less than or equal to 20ms.

6.3.4.3.2 Test applicability

This test applies to all types of NR UE release 15 and forward.

6.3.4.3.3 Minimum conformance requirement

The UE shall meet the requirements specified in Table 6.3.4.3.3-1.

The minimum requirements specified in Table 6.3.4.3.3-1 apply when the power of the target and reference sub-frames are within the power range bounded by the minimum output power as defined in sub-clause 6.3.1 and the measured P_{UMAX} as defined in sub-clause 6.2.1.

To account for RF Power amplifier mode changes, 2 exceptions are allowed for each of two test patterns. The test patterns are a monotonically increasing power sweep and a monotonically decreasing power sweep over a range bounded by the requirements of minimum power and maximum power specified in subclauses 6.3.1 and 6.2.1, respectively. For those exceptions, the power tolerance limit is a maximum of \pm 6.0 dB in Table 6.3.4.3.3-1.

Power step ∆P (Up or down) (dB)	All combinations of PUSCH and PUCCH transitions (dB)	All combinations of PUSCH/PUCCH and SRS transitions between sub- frames (dB)	PRACH (dB)				
ΔP < 2	± 2.0 (NOTE)	± 2.5	± 2.0				
2 ≤ ∆P < 3	± 2.5	± 3.5	± 2.5				
3 ≤ ∆P < 4	± 3.0	± 4.5	± 3.0				
4 ≤ ΔP ≤ 10	± 3.5	± 5.5	± 3.5				
10 ≤ ∆P < 15	± 4.0	± 7.0	± 4.0				
15 ≤ ∆P	± 5.0	± 8.0	± 5.0				
NOTE: For PUSCH to PUSCH transitions with the allocated resource blocks fixed in frequency and no transmission gaps other than those generated by downlink subframes, DwPTS fields or Guard Periods: for a power step $\Delta P \le 1$ dB, the relative power tolerance for transmission is ± 0.7 dB.							

Table 6.3.4.3.3-1: Relative Power Tolerance

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3.4.3.

6.3.4.3.4 Test description

6.3.4.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3.4.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Test Francisco	amout as an estical in TO		onditions		
Test Enviro subclause 4	nment as specified in TS	5 30.500-1 [5]	Normal, TL/VL, TL/VH	, IN/VL, IN/VN	
	encies as specified in TS	38 508-1 [5]	Low range		
subclause 4		00.000-1 [0]	Low range		
	el Bandwidths as specif	ied in TS 38 508-1	Lowest, Mid, Highest		
[5] subclaus	-				
	s specified in TS 38.508	-1 [5] subclause	Lowest, Highest		
4.3.1			Lottoot, Thghoot		
-		Test Pa	rameters		
Ch BW	Downlink Co			nk Configuration	
	Modulation	RB Allocation	Modulation	RB allocation (NOTE 1)	
5MHz	N/A for Relative powe	r tolerance test case	DFT-s-OFDM	See Table 6.3.4.3.5-1	
			QPSK	See Table 6.3.4.3.5-2	
				See Table 6.3.4.3.5-7	
10MHz			DFT-s-OFDM	See Table 6.3.4.3.5-3	
			QPSK	See Table 6.3.4.3.5-4	
				See Table 6.3.4.3.5-7	
15MHz			DFT-s-OFDM	See Table 6.3.4.3.5-3	
			QPSK	See Table 6.3.4.3.5-4	
				See Table 6.3.4.3.5-7	
20MHz			DFT-s-OFDM	See Table 6.3.4.3.5-3	
			QPSK	See Table 6.3.4.3.5-4	
				See Table 6.3.4.3.5-7	
25MHz			DFT-s-OFDM	See Table 6.3.4.3.5-3	
			QPSK	See Table 6.3.4.3.5-4	
	1			See Table 6.3.4.3.5-7	
30MHz			DFT-s-OFDM	See Table 6.3.4.3.5-3	
			QPSK	See Table 6.3.4.3.5-4	
	1			See Table 6.3.4.3.5-7	
40MHz			DFT-s-OFDM	See Table 6.3.4.3.5-3	
			QPSK	See Table 6.3.4.3.5-4	
	4			See Table 6.3.4.3.5-7	
45MHz			DFT-s-OFDM QPSK	See Table 6.3.4.3.5-3	
				See Table 6.3.4.3.5-4	
				See Table 6.3.4.3.5-7	
50MHz			DFT-s-OFDM	See Table 6.3.4.3.5-3	
			QPSK	See Table 6.3.4.3.5-4	
				See Table 6.3.4.3.5-7	
60MHz			DFT-s-OFDM	See Table 6.3.4.3.5-5	
			QPSK	See Table 6.3.4.3.5-6	
	1			See Table 6.3.4.3.5-7	
70MHz			DFT-s-OFDM	See Table 6.3.4.3.5-5	
			QPSK	See Table 6.3.4.3.5-6	
				See Table 6.3.4.3.5-7	
80MHz			DFT-s-OFDM	See Table 6.3.4.3.5-5	
			QPSK	See Table 6.3.4.3.5-6	
	4			See Table 6.3.4.3.5-7	
90MHz			DFT-s-OFDM	See Table 6.3.4.3.5-5	
			QPSK	See Table 6.3.4.3.5-6	
	4			See Table 6.3.4.3.5-7	
100MHz			DFT-s-OFDM	See Table 6.3.4.3.5-5	
			QPSK	See Table 6.3.4.3.5-6	
	1			See Table 6.3.4.3.5-7	

- 670
- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3.4.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity NR, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5 Message contents are defined in clause 6.3.4.3.4.3.

6.3.4.3.4.2 Test procedure

The procedure is separated in various subtests to verify different aspects of relative power control. The power patterns of the subtests are described in figure 6.3.4.3.4.2-1 thru figure 6.3.4.3.4.2-5.

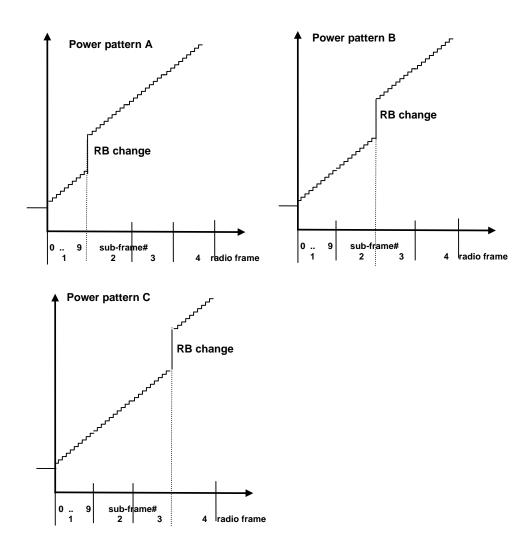


Figure 6.3.4.3.4.2-1: FDD ramping up test power patterns

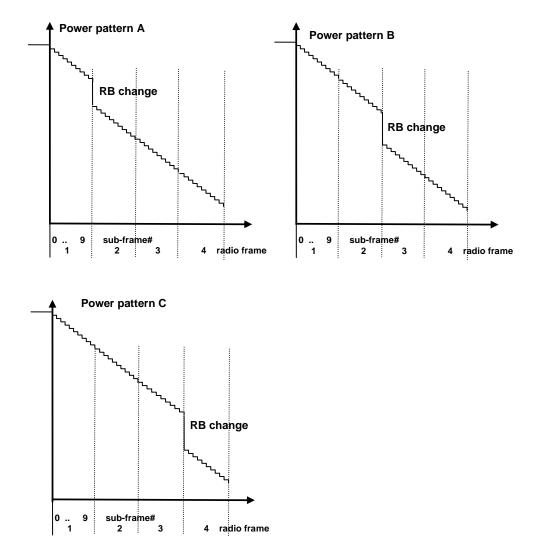


Figure 6.3.4.3.4.2-2: FDD ramping down test power patterns

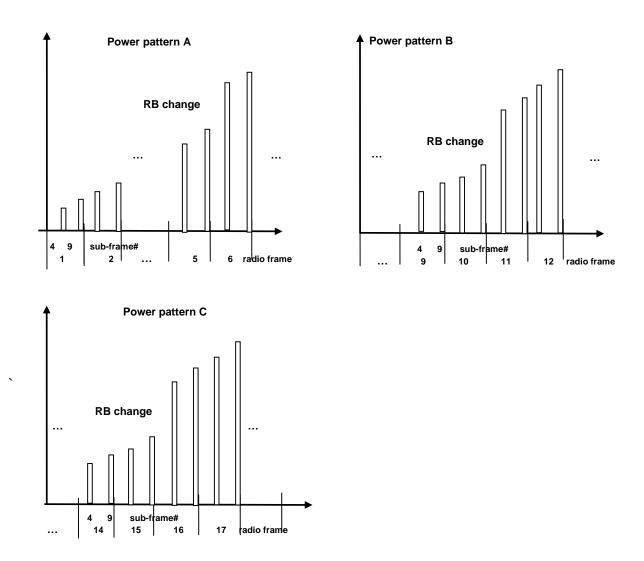


Figure 6.3.4.3.4.2-3: TDD ramping up test power patterns

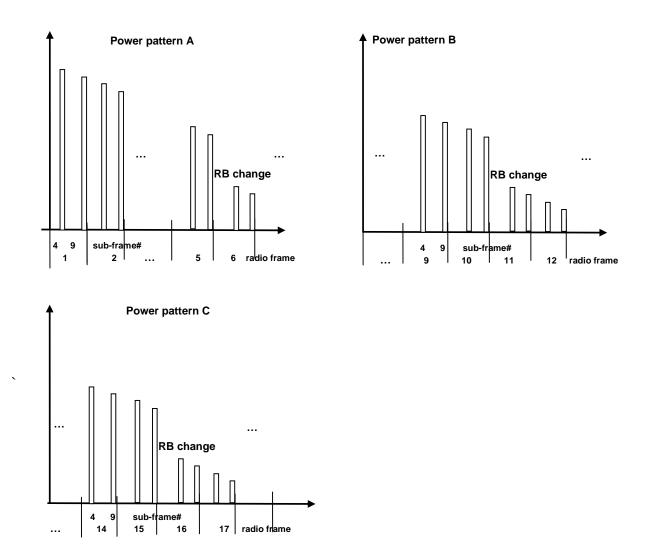


Figure 6.3.4.3.4.2-4: TDD ramping down test power patterns

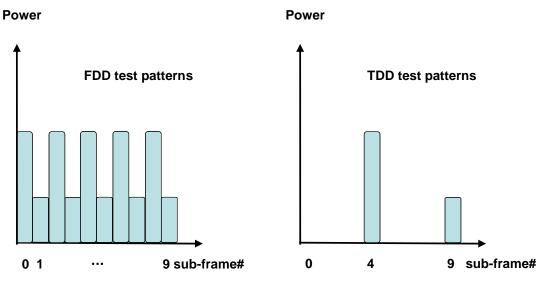


Figure 6.3.4.3.4.2-5: Alternating Test Power patterns

- 1. Sub test: ramping up pattern
 - 1.1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3.4.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level -33 dBm, where:
 - MU is the test system uplink power measurement uncertainty and is specified in Table F.1.2-1 for the carrier frequency f and the channel bandwidth BW.
 - Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [2], Table 6.3.4.3-1 and is 0.7dB for 1dB power step size, and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.
 - 1.2. Schedule the UE's PUSCH data transmission as described in Figure 6.3.4.3.4.2-1 (FDD pattern A: sub-test is divided in 4 arbitrary radio frames with 10 active uplink sub-frames per radio frame) and Figure 6.3.4.3.4.2-3 (TDD pattern A: sub-test is divided in 20 arbitrary radio frames with 2 active uplink sub-frames per radio frame). Uplink RB allocation as defined in table 6.3.4.3.5-1/6.3.4.3.5-3/ 6.3.4.3.5-5 depending on channel bandwidth. On the PDCCH format 0_1 for the scheduling of the PUSCH the SS will transmit a +1dB TPC command for every first slot in a sub-frame. Note that the measurement need not be done continuously, provided that interruptions are whole numbers of frames, and TPC commands of 0dB are sent during the interruption.
 - 1.3. Measure the power of PUSCH transmissions to verify the UE relative power control meet test requirements 6.3.4.3.5. For power transients between sub-frames, transient periods of 20us between sub-frames are excluded.
 - 1.4. Repeat the subtest different pattern B, C to move the RB allocation change at different points in the pattern as described in Table 6.3.4.3.5-1/6.3.4.3.5-3/ 6.3.4.3.5-5 to force bigger UE power steps at various points in the power range.

NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is no less than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F, clause F.4.2.

- 2. Sub test: ramping down pattern
 - 2.1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3.4.3.4.1-1. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as -(MU + Uplink power control window size) to -MU dB of the target power level 20.7 dBm, where:
 - MU is the test system uplink power measurement uncertainty and is specified in Table F.1.2-1 for the carrier frequency f and the channel bandwidth BW.
 - Uplink power control window size is same as defined in step 1.1.
 - 2.2. Schedule the UE's PUSCH data transmission as described in Figure 6.3.4.3.4.2-2 (FDD pattern A: sub-test is divided in 4 arbitrary radio frames with 10 active uplink slots per radio frame) and Figure 6.3.4.3.4.2-4 (TDD pattern A: sub-test is divided in 20 arbitrary radio frames with 2 active uplink sub-frames per radio frame). Uplink RB allocation as defined in table 6.3.4.3.5-2/6.3.4.3.5-4/ 6.3.4.3.5-6 depending on channel bandwidth. On the PDCCH format 0_1 for the scheduling of the PUSCH the SS will transmit a -1dB TPC command for every first slot in a sub-frame. Note that the measurement need not be done continuously, provided that interruptions are whole numbers of frames, and TPC commands of 0dB are sent during the interruption.
 - 2.3. Measure the power of PUSCH transmissions to verify the UE relative power control meet test requirements 6.3.4.4.5. For power transients between sub-frames, transient periods of 20us between sub-frames are excluded.
 - 2.4. Repeat the subtest different pattern B, C to move the RB allocation change at different points in the pattern as described in Table 6.3.4.3.5-2/6.3.4.3.5-4/ 6.3.4.3.5-6 to force bigger UE power steps at various points in the power range.
- NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is no greater than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F, clause F.4.3.
- 3. Sub test: alternating pattern
 - 3.1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3.4.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send uplink power control commands for PUSCH to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as (Uplink power control window size / 2) dB to + (Uplink power control window size / 2) dB of the target power level -10 dBm, where:
 - Uplink power control window size is same as defined in step 1.1.
 - 3.2. Schedule the UE's PUSCH data transmission as described in Figure 6.3.5.2.4.2-5 for 10 sub-frames an uplink RB allocation alternating pattern as defined in table 6.3.4.3.5-7 while transmitting 0dB TPC command for PUSCH via the PDCCH.
 - 3.3. Measure the power of PUSCH transmissions to verify the UE relative power control meet test requirements specified in clause 6.3.4.3.5. For power transients between sub-frames, transient periods of 20us between sub-frames are excluded.

NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.4.

6.3.4.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions:

Table 6.3.4.3.4.3-1: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED

6.3.4.3.5 Test requirement

Each UE power step measured in the test procedure 6.3.4.3.4.2 should satisfy the test requirements specified in Table 6.3.4.3.5-1 thru 6.3.4.3.5-7.

To account for RF Power amplifier mode changes 2 exceptions are allowed for each of ramping up and ramping down test patterns. For these exceptions the power tolerance limit is a maximum of $\pm (6.0 + TT) dB$. If there is an exception in the power step caused by the RB change for all test patterns (A, B, C) then fail the UE.

Test

SCS

[kHz]

ID

ramp up sub-test Uplink RB TPC Sub-Applicable Expected test sub-frames allocation Power step size command power PUSCH step size range (Up) (Up) ΔP [dB] ΔP [dB] [dB] Fixed = 1TPC=+1dB Sub-frames before RB 1 ∆P ≤ 1 dB 1 +/- (0.7 + TT) change 1RB to 5 RBs RB change TPC=+1dB 7 99 +/- (3 5 +

Table 6.3.4.3.5-1: Test Requirements Relative Power Tolerance for Transmission, channel BW 5MHz,

15	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	$4dB \le \Delta P < 10dB$	7.99 +/- (3.5 + TT)
		Sub-frames after RB change	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Sub-frames before RB change	Fixed = 1	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	2	RB change	1RB to 15 RBs	TPC=+1dB	12.76	10dB ≤ ΔP < 15dB	12.76 +/- (4 + TT)
		Sub-frames after RB change	Fixed = 15	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Sub-frames before RB change	Fixed = 1	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Sub-frames after RB change	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
30		Sub-frames before RB change	Fixed = 1	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	2	RB change	1RB to 10 RBs	TPC=+1dB	11.00	10dB ≤ ΔP < 15dB	11.00 +/- (4 + TT)
		Sub-frames after RB change	Fixed = 10	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
Note 1:	Positio	n of RB change:					
						uplink Sub-frames	
						uplink Sub-frames	
Note 2:			RB uplink allocation ck shall be RB# 0.	•	ter 30 active	uplink Sub-frames	
Note 3:	TT=0.7						
Note 4:			≥ Pmin. Pmin as o	defined in sub-	clause 6.3.1.		
L	Note 4: Applicable if $PUMAX \ge P \ge Pmin$. Pmin as defined in sub-clause 6.3.1.						

TPC Sub-Applicable Uplink RB Test Expected SCS test sub-frames allocation command power Power step size PUSCH ID step size range (Down) [kHz] (Down) ΔP [dB] ΔP [dB] [dB] Sub-frames Fixed = 5TPC=-1dB before RB $\Delta P \leq 1 dB$ 1 + (0.7 + TT)1 change 1 RB change 5 RBs to 1 RB TPC=-1dB 7.99 +/- (3.5 + 7.99 $4dB \le \Delta P < 10dB$ TT) Sub-frames Fixed = 1 TPC=-1dB after RB 1 + (0.7 + TT)1 $\Delta P \leq 1 dB$ change TPC=-1dB 15 Sub-frames Fixed = 15before RB 1 $\Delta P \leq 1 dB$ 1 + (0.7 + TT)change 2 TPC=-1dB **RB** change 15 RBs to 1 RB 10dB ≤ ∆P < 12.76 +/- (3.5 + 12.76 15dB TT) Sub-frames Fixed = 1TPC=-1dB after RB $\Delta P \leq 1 dB$ 1 + (0.7 + TT)1 change Sub-frames Fixed = 5TPC=-1dB before RB 1 ∆P ≤ 1 dB 1 +/- (0.7 + TT) change TPC=-1dB RB change 5 RBs to 1 RB 7.99 +/- (3.5 + 1 7.99 $4dB \le \Delta P < 10dB$ TT) TPC=-1dB Sub-frames Fixed = 1after RB $\Delta P \leq 1 \, dB$ 1 + (0.7 + TT)1 change Sub-frames TPC=-1dB 30 Fixed = 10before RB ∆P ≤ 1 dB 1 1 + (0.7 + TT)change TPC=-1dB 2 **RB** change 10 RBs to 1 RB 10dB ≤ ΔP < 11.00 11.00 +/- (4 + TT) 15dB Sub-frames Fixed = 1TPC=-1dB after RB 1 $\Delta P \leq 1 dB$ 1 + (0.7 + TT)change Note 1: Position of RB change: Pattern A the position of RB uplink allocation change is after 10 active uplink Sub-frames Pattern B the position of RB uplink allocation change is after 20 active uplink Sub-frames Pattern C the position of RB uplink allocation change is after 30 active uplink Sub-frames Note 2: The starting resource block shall be RB# 0. Note 3: TT=0.7dB

Table 6.3.4.3.5-2: Test Requirements Relative Power Tolerance for Transmission, channel BW 5MHz, ramp down sub-test

Note 4: Applicable if $PUMAX \ge P \ge Pmin$. Pmin as defined in sub-clause 6.3.1.

Table 6.3.4.3.5-3: Test Requirements Relative Power Tolerance for Transmission, channel BW 10MHz,15MHz, 20MHz, 25MHz, 30MHz, 40MHz, 45MHz, 50MHz ramp up sub-test

Test SCS [kHz]	Sub- test ID	Applicable sub- frames	Uplink RB allocation	TPC command	Expected power step size	Power step size range (Up)	PUSCH
					(Up) ΔΡ [dB]	ΔΡ [dB]	[dB]
		Subframes before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB change	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
15	2	RB change	1RB to 20 RBs	TPC=+1dB	14.01	10dB ≤ ∆P < 15dB	14.01 +/- (4 + TT)
		Subframes after RB change	Fixed = 20	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		Subframes before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	3	RB change	1RB to 50 RBs	TPC=+1dB	17.99	15dB ≤ ΔP	17.99 +/- (5 + TT)
		Subframes after RB change	Fixed = 50	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ∆P < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB change	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
30		Subframes before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	2	RB change	1RB to 24 RBs	TPC=+1dB	14.80	10dB ≤ ∆P < 15dB	14.80+/- (4 + TT)
		Subframes after RB change	Fixed = 24	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ∆P < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB change	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
60		Subframes before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	2	RB change	1RB to 10 RBs	TPC=+1dB	11.00	10dB ≤ ΔP < 15dB	11.00 +/- (4 + TT)
		Subframes after RB change	Fixed = 10	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)

Note 1:	Position of RB change:
	Pattern A the position of RB uplink allocation change is after 10 active uplink Subframes.
	Pattern B the position of RB uplink allocation change is after 20 active uplink Subframes
	Pattern C the position of RB uplink allocation change is after 30 active uplink Subframes.
Note 2:	The starting resource block shall be RB# 0.
Note 3:	TT=0.7dB
Note 4:	Applicable if PUMAX \geq P \geq Pmin. Pmin as defined in sub-clause 6.3.1.

Table 6.3.4.3.5-4: Test Requirements Relative Power Tolerance for Transmission, channel BW 10MHz,15MHz, 20MHz, 25MHz, 30MHz, 40MHz, 45MHz, 50MHz ramp down sub-test

_							1
Test SCS	Sub- test	Applicable sub-	Uplink RB allocation	TPC command	Expected power	Power step size	
[kHz]	ID	frames	anocation	command	step size	range (Down)	PUSCH
[]					(Down)	·	
					ΔP [dB]	ΔΡ [dB]	[dB]
		Subframes	Fixed = 5	TPC=-1dB			
		before RB			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change	5 DD (100	T DO (15			
	1	RB change	5 RBs to 1RBs	TPC=-1dB	7.99	$4dB \le \Delta P < 10dB$	7.99 +/- (3.5 + TT)
		Subframes after RB	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change			, I		1 +/- (0.7 + 11)
		Subframes	Fixed = 20	TPC=-1dB			
		before RB			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change					
15	2	RB change	20 RBs to 1 RB	TPC=-1dB	14.01	10dB ≤ ∆P < 15dB	14.01 +/- (4 + TT)
		Subframes	Fixed = 1	TPC=-1dB			
		after RB			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change Subframes	Fixed = 50	TPC=-1dB			
		before RB	1 1xed = 50		1	∆P ≤ 1 dB	1 +/- (0.7 + TT)
		change					, (on ,
	3	RB change	50 RBs to 1 RB	TPC=-1dB	17.99	15dB ≤ ΔP	17.99 +/- (5 + TT)
		Subframes	Fixed = 1	TPC=-1dB			
		after RB			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change	Final 6				
30		Subframes before RB	Fixed = 5	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		change			I		1 +/-0.7 + 11
	1	RB change	5 RBs to 1 RB	TPC=-1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Subframes	Fixed = 1	TPC=-1dB			
		after RB			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change					
		Subframes	Fixed = 24	TPC=-1dB	4		4 · / O 7 · TT
		before RB change			1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	2	RB change	24 RBs to 1 RB	TPC=-1dB	14.80	10dB ≤ ΔP < 15dB	14.80 +/- (4 + TT)
	_	Subframes	Fixed = 1	TPC=-1dB	1 1.00		
		after RB			1	∆P ≤ 1 dB	1 +/- (0.7 + TT)
		change					
		Subframes	Fixed = 5	TPC=-1dB			
		before RB			1	∆P ≤ 1 dB	1 +/- (0.7 + TT)
	1	change RB change	5 RBs to 1 RB	TPC=-1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Subframes	Fixed = 1	TPC=-1dB	1.99		1.33 +1 (3.3 + 11)
		after RB			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change					
60		Subframes	Fixed = 10	TPC=-1dB			
		before RB			1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	_	change			44.00		
	2	RB change	10 RBs to 1 RB	TPC=-1dB	11.00	10dB ≤ ΔP < 15dB	11.00 +/- (4 + TT)
		Subframes after RB	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change				$\Delta \Gamma \ge 1$ UD	1 +/- (0.7 + 11)
	I	onungo	I	I	I I		I

Position of RB change:
Pattern A the position of RB uplink allocation change is after 10 active uplink Subframes.
Pattern B the position of RB uplink allocation change is after 20 active uplink Subframes
Pattern C the position of RB uplink allocation change is after 30 active uplink Subframes.
The starting resource block shall be RB# 0.
TT=0.7dB
Applicable if PUMAX ≥ P ≥ Pmin. Pmin as defined in sub-clause 6.3.1.
F F -

Table 6.3.4.3.5-5: Test Requirements Relative Power Tolerance for Transmission, channel BW 60MHz,70MHz, 80MHz, 90MHz, 100MHz ramp up sub-test

Test SCS	Sub- test	Applicable sub-	Uplink RB allocation	TPC command	Expected power	Power step size	PUSCH
[kHz]	ID	frames			step size (Up)	range (Up)	FUSCH
					ΔP [dB]	ΔΡ [dB]	[dB]
		Subframes	1RB	TPC=+1dB			
		before RB change			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	$4dB \le \Delta P < 10dB$	7.99 +/- (3.5 + TT)
		Subframes after RB change	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes	1RB	TPC=+1dB			
		before RB change			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
30	2	RB change	1RB to 24 RBs	TPC=+1dB	14.80	10dB ≤ ∆P < 15dB	14.80 +/- (4 + TT)
		Subframes after RB	Fixed = 24	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change			I		1 +/- (0.7 + 11)
		Subframes before RB	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change			1	$\Delta P \leq 1 \text{ub}$	1 +/- (0.7 + 11)
	3	RB change	1RB to 81 RBs	TPC=+1dB	20.08	15dB < ΔP	20.08 +/- (5 + TT)
		Subframes after RB	Fixed = 81	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change			-		1 17 (0.7 1 1 1)
		Subframes before RB	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change			I	$\Delta F \ge 1$ ub	1 +/- (0.7 + 11)
	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ∆P < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change					, (en ,
60		Subframes before RB	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change			I		1 +/- (0.7 + 11)
	2	RB change	1RB to 75 RBs	TPC=+1dB	19.75	15dB < ΔP	19.75 +/- (5 + TT)
		Subframes after RB	Fixed = 75	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change					
Note 1:		n of RB change		ation change is	s after 10 act	ive uplink Subframes.	
	Pattern	B the position	of RB uplink alloc	ation change is	s after 20 act	ive uplink Subframes	
Noto 2:			•	•	s after 30 act	ive uplink Subframes.	
Note 2: Note 3:	The sta TT=0.7	•	block shall be RB	<i>+</i> U.			
Note 4:	Applica	ble if PUMAX	≥ P ≥ Pmin. Pmin a	as defined in s	ub-clause 6.3	3.1.	

Table 6.3.4.3.5-6: Test Requirements Relative Power Tolerance for Transmission, channel BW 60MHz,
70MHz, 80MHz, 90MHz, 100MHz ramp down sub-test

Test	Sub-	Applicable	Uplink RB	TPC	Expected	Deven etem eine	
SCS [kHz]	test ID	sub- frames	allocation	command	power step size	Power step size range (Down)	PUSCH
					(Down) ∆P [dB]	ΔΡ [dB]	[dB]
		Subframes	Fixed = 5	TPC=-1dB			
		before RB change			1	∆P ≤ 1 dB	1 +/-0.7 + TT
	1	RB change	5 RBs to 1 RB	TPC=-1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	Fixed = 24	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
30	2	RB change	24 RBs to 1 RB	TPC=-1dB	14.80	10dB ≤ ΔP < 15dB	14.80 +/- (4 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	Fixed = 81	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	3	RB change	81 RBs to 1 RB	TPC=-1dB	20.08	15dB < ΔP	20.08 +/- (5 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	∆P ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	Fixed = 5	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	5 RBs to 1 RB	TPC=-1dB	7.99	$4dB \le \Delta P < 10dB$	7.99 +/- (3.5 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
60		Subframes before RB change	Fixed = 75	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	2	RB change	75 RBs to 1 RB	TPC=-1dB	19.75	15dB < ΔP	19.75 +/- (5 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	∆P ≤ 1 dB	1 +/- (0.7 + TT)
Note 1: Note 2: Note 3:	Note 1: Position of RB change: Pattern A the position of RB uplink allocation change is after 10 active uplink Subframes. Pattern B the position of RB uplink allocation change is after 20 active uplink Subframes Pattern C the position of RB uplink allocation change is after 30 active uplink Subframes. Note 2: The starting resource block shall be RB# 0.						
Note 4:	TT=0.7 Applica		≥ P ≥ Pmin. Pmin a	as defined in s	ub-clause 6.3	3.1.	

BW	Test SCS [kHz]	Sub- test ID	Uplink RB allocation	TPC command	Expected power step size (Up or Down)	Power step size range (Up or Down)	PUSCH
					ΔΡ [dB]	ΔΡ [dB]	[dB]
		1	Alternating 1 and 2	TPC=0dB	3.01	$3dB \le \Delta P < 4dB$	3.01 +/- (3 + TT)
	15	2	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)
5		3	Alternating 1 and 15	TPC=0dB	11.76	10dB ≤ ΔP < 15dB	11.76 +/- (4 + TT)
		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ΔP < 4dB	3.01 +/- (3 + TT)
	30	2	Alternating 1 and 10	TPC=0dB	10.00	10dB ≤ ΔP < 15dB	10.00 +/- (4 + TT)
		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ΔP < 4dB	3.01 +/- (3 + TT)
		2	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)
	15	3	Alternating 1 and 20	TPC=0dB	13.01	10dB ≤ ΔP < 15dB	13.01 +/- (4 + TT)
		4	Alternating 1 and 50	TPC=0dB	16.99	15dB ≤ ΔP	16.99 +/- (5 + TT)
		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ΔP < 4dB	3.01 +/- (3 + TT)
10,15,20, 25,30,40,45, 50	30	2	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)
		3	Alternating 1 and 24	TPC=0dB	13.80	10dB ≤ ΔP < 15dB	13.80 +/- (4 + TT)
		1	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)
	60	2	Alternating 1 and 10	TPC=0dB	10.00	10dB ≤ ΔP < 15dB	10.00 +/- (4 + TT)
		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ΔP < 4dB	3.01 +/- (3 + TT)
	30	2	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)
		3	Alternating 1 and 81	TPC=0dB	19.08	15dB < ΔP	19.08 +/- (5 + TT)
60, 70,80,90,100		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ΔP < 4dB	3.01 +/- (3 + TT)
	60	2	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)
		3	Alternating 1 and 75	TPC=0dB	18.75	15dB < ΔP	18.75 +/- (5 + TT)
Note 1: The	starting r	esource	block shall be RB				
	Nata C), <u>A</u>		ote 2: TT=0.7		in out alours 0.0.1	
	Note 3	s: Applic	able IT PUMAX ≥	r ≥ Pmin. Pmi	n as defined	in sub-clause 6.3.1.	

Table 6.3.4.3.5-7: Test Requirements Relative Power Tolerance for Transmission, alternating sub-test

686

6.3.4.4 Aggregate power tolerance

6.3.4.4.1 Test purpose

To verify the ability of the UE transmitter to maintain its power during non-contiguous transmissions within 21ms in response to 0 dB commands with respect to the first UE transmission and all other power control parameters as specified in 38.213 kept constant.

6.3.4.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.3.4.4.3 Minimum conformance requirements

The aggregate power control tolerance is the ability of the UE transmitter to maintain its power in a sub-frame(1ms) during non-contiguous transmissions within 21ms in response to 0 dB commands with respect to the first UE transmission and all other power control parameters as specified in 38.213 kept constant.

The minimum requirement specified in Table 6.3.4.4.3-1 apply in the power range bounded by the minimum output power as specified in sub-clause 6.3.1 and the maximum output power as specified in sub-clause 6.2.2.

TPC command	UL channel	Aggregate power tolerance within 21ms
0 dB	PUCCH	± 2.5 dB
0 dB	PUSCH	± 3.5 dB

Table 6.3.4.4.3-1: Aggregate power tolerance

The normative reference for this requirement is TS 38.01-1 [2] clause 6.3.4.4

6.3.4.4.4 Test description

6.3.4.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3.4.4.4.1-1 and table 6.3.4.4.4.1-2. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3.4.4.4.1-1: Test Configuration Table: PUCCH sub-test

Initial Conditions				
Test Environment as specified in TS 38.508-1 [5] subclause 4.1		Normal		
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1		Mid range (NOTE 1)		
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1		Lowest, Mid, Highest		
Test SCS as sp	pecified in Table 5.3.5-1	Lowest, Highest		
	Test Parameters for Channel Bandwidths			
Test ID Downlink Configuration		Uplink Configuration		
N/A for aggregate power tolerance		PUCCH format = Format 1		
1	testcase	Length in OFDM symbols = 14		
NOTE 1: For NR band n28, 30MHz test channel bandwidth is tested with Low range test frequencies.				

		Initial Conditions	
Test Environment as specified in TS 38.508-1		Normal	
[5] subclause 4	l.1		
Test Frequence	es as specified in TS 38.508-1	Mid range (NOTE 2)	
[5] subclause 4	.3.1		
Test Channel E	Bandwidths as specified in TS	Lowest, Mid, Highest	
38.508-1 [5] su	bclause 4.3.1		
Test SCS as s	pecified in Table 5.3.5-1	Lowest, Highest	
	Test Paran	neters for Channel Bandwidths	
Test ID	Downlink Configuration	Uplink Configur	ation
	N/A for aggregate power	Modulation	RB allocation (NOTE 1)
1	tolerance testcase	CP-OFDM QPSK	Outer_Full
NOTE 1: The specific configuration of each RF allocation is defined in Table 6.1-1.			
NOTE 2: For NR band n28, 30MHz test channel bandwidth is tested with Low range test frequencies.			

Table 6.3.4.4.4.1-2: Test Configuration Table: PUSCH sub-test

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to G.0, G.1, G.2, G.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.3.4.4.4.1-1 (PUCCH sub-test) and Table 6.3.4.4.4.1-2 (PUSCH sub-test)
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3.4.4.4.3.

6.3.4.4.2. Test procedure

The procedure is separated in two subtests to verify PUCCH and PUSCH aggregate power control tolerance respectively. The uplink transmission patterns are described in figure 6.3.4.4.2-1.

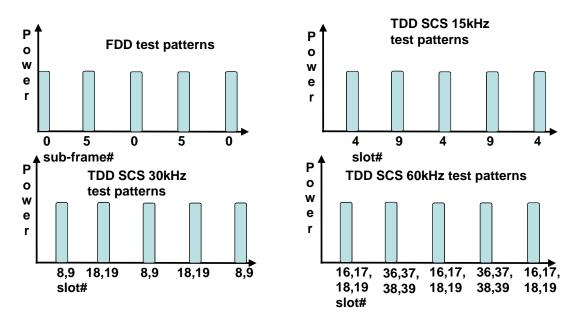


Figure 6.3.4.4.4.2-1 Test uplink transmission

- 1. PUCCH sub test:
 - 1.1. The SS transmits PDSCH via PDCCH DCI format 0_1 for C_RNTI to transmit the DL RMC according to Table 6.3.4.4.1-1. The SS sends downlink MAC padding bits on the DL RMC. The transmission of PDSCH will make the UE send uplink ACK/NACK using PUCCH. Send uplink power control commands for PUCCH to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as (Uplink power control window size / 2) dB to + (Uplink power control window size / 2) dB of the target power level + 0 dBm, where:
 - Uplink power control window size = 1dB (UE power step size) + 2.0dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [2], Table 6.3.4.3-1 and is 2.0dB for PUCCH with 1dB power step size, and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.
 - 1.2. Every 5 sub-frames (5ms) transmit to the UE downlink PDSCH MAC padding bits as well as 0 dB TPC command for PUCCH via the PDCCH to make the UE transmit ACK/NACK on the PUCCH for 1 sub-frame(1ms). The downlink transmission is scheduled in the appropriate slots to make the UE transmit PUCCH as described in figure 6.3.4.4.2-1
 - 1.3. Measure the power of 5 consecutive PUCCH transmissions to verify the UE transmitted PUCCH power is maintained within 21ms.
- 2. PUSCH sub test:
 - 2.1. The SS sends uplink scheduling information via PDCCH DCI format 0_1 for C_RNTI to schedule the PUSCH. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send uplink power control commands for PUSCH to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as (Uplink power control window size / 2) dB to + (Uplink power control window size / 2) dB of the target power level + 0 dBm, where:
 - Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [2], Table 6.3.4.3-1 and is 0.7dB for PUSCH with 1dB power step size, and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.
- NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.4.
 - 2.2. Every 5 sub-frames (5ms) schedule the UE's PUSCH data transmission for 1 sub-frame(1ms), and transmit 0 dB TPC command for PUSCH via the PDCCH to make the UE transmit PUSCH. The uplink transmission patterns are described in figure 6.3.4.4.2-1,
 - 2.3. Measure the power of 5 consecutive PUSCH transmissions to verify the UE transmitted PUSCH power is maintained within 21ms transmissions.

6.3.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.3.4.4.5 Test requirement

The requirement for the power measurements made in step (1.3) and (2.3) of the test procedure shall not exceed the values specified in Table 6.3.4.4.5-1. The power measurement period shall be 1 sub-frame(1ms).

TPC command UL channel		UL channel	Test requirement measured power		
later measurements shall be v		Given 5power measurements in the pattern, the 2^{nd} , and later measurements shall be within \pm (2.5 + TT) dB of the 1^{st} measurement.			
0 dE	3	PUSCH	Given 5 power measurements in the pattern, the 2^{nd} , and later measurements shall be within \pm (3.5 + TT) dB of the 1^{st} measurement.		
Note 1:	corresp period.				
Note 2:	TT=0.70	dB.			

Table 6.3.4.4.5-1: Power control tolerance

6.3A Output power dynamics for CA

6.3A.1 Minimum output power for CA

6.3A.1.0 Minimum conformance requirements

For inter-band carrier aggregation with uplink assigned to two NR bands, the minimum output power is defined per carrier and the requirement is specified in subclause 6.3.1.

For intra-band non-contiguous carrier aggregation, the minimum output power is defined per carrier and the requirement is specified in clause 6.3.1.

For intra-band contiguous carrier aggregation, the minimum output power is defined per carrier and the requirement is specified in clause 6.3.1.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3A.1.

6.3A.1.1 Minimum output power for CA (2UL CA)

6.3A.1.1.1 Test purpose

To verify the UE's ability to transmit with a broadband output power for 2UL CA below the value specified in the test requirement when the power is set to a minimum value.

6.3A.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support 2UL CA.

6.3A.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.1.0.

6.3A.1.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configurations specified in 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, and are shown in table 6.3A.1.1.4.1-1 or 6.3A.1.1.4.1-2. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

		Initial Conditions		
Test Environment as specified in TS		Normal, TL/VL, TL/VH, TH/VL, TH/VH		
38.508-1 [5]] subclause 4.1			
Test Freque	encies as specified in TS	Low range for PCC and SCC		
38.508-1 [5]] subclause 4.3.1	High range for PCC and SCC		
Test Chann	el Bandwidths as specified in	Lowest NRB_agg, Highest NR	B_agg	
TS 38.508-	TS 38.508-1 [5] subclause 4.3.1			
Test SCS a	Test SCS as specified in Table 5.3.5-1 Highest			
		Test Parameters		
Test ID	Downlink Configuration for	Ur	olink Configuration	
	PCC & SCC			
		Modulation for all CCs RB allocation (NOTE 1)		on (NOTE 1)
			PCC	SCC
1	1 N/A for this test DFT-s-OFDM QPSK Outer Full Outer Full			
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.				
NOTE 2: Test Channel Bandwidths and Test SCS are checked separately for each NR CA band combination, which applicable channel bandwidths and SCS are specified in Table 5.5A.3-1.				

Table 6.3A.1.1.4.1-1: Test Configuration Table for inter-band CA

Table 6.3A.1.1.4.1-2: Test Configuration Table for intra-band contiguous CA

		Initial Conditions		
Test Environment as specified in TS		Normal, TL/VL, TL/VH, TH/VL, TH/VH		
38.508-1 [5] subclause 4.1				
Test Freque	encies as specified in TS	Low range		
38.508-1 [5]	subclause 4.3.1	High range		
Test Chann	el Bandwidths as specified in	Lowest N _{RB_agg} , Highest N _{RB}	s_agg	
TS 38.508-1 [5] subclause 4.3.1				
Test SCS as	Test SCS as specified in Table 5.3.5-1 Highest			
		Test Parameters		
Test ID	Downlink Configuration for PCC & SCC	or Uplink Configuration		
		Modulation for all CCs RB allocation (NOTE 1)		on (NOTE 1)
			PCC	SCC
1	N/A for this test	DFT-s-OFDM QPSK Outer Full Outer Full		
NOTE 1: The specific configuration of each RB allocation is defined in 6.1A-1a				
NOTE 2: Test Channel Bandwidths and Test SCS are checked separately for each NR CA band combination, which				
applicable channel bandwidths and SCS are specified in Table 5.5A.3-1.				

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.3 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3A.1.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3A.1.1.4.3.

6.3A.1.1.4.2 Test procedure

1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.

- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause5.5.1. Message contents are defined in clause 6.3A.1.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133 [19], clause 9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3A.1.1.4.1-1 or 6.3A.1.1.4.1-2 on both PCC and SCC. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Send continuously uplink power control "down" commands for both carriers in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step to ensure that the UE transmits at its minimum output power.
- 6. Measure the mean power of the UE for each component carrier in the associated measurement channel bandwidth specified in Table 6.3A.1.1.5-1 for the specific channel bandwidth under test. The period of measurement shall be at least the continuous duration of 1ms in all active uplink slots and in the uplink symbols. For TDD, only slots consisting of only UL symbols are under test.

6.3A.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exception.

Table 6.3A.1.1.4.3-1: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED

6.3A.1.1.5 Test requirement

The minimum output power of each component carrier, derived in step 6 shall not exceed the values specified in Table 6.3A.1.1.5-1.

Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
- · ·		
5	-40+TT	4.515
10	-40+TT	9.375
15	-40+TT	14.235
20	-40+TT	19.095
25	-39+TT	23.955
30	-38.2+TT	28.815
40	-37+TT	38.895
50	-36+TT	48.615
60	-35.2+TT	58.35
70	-34.6+TT	68.07
80	-34+TT	78.15
90	-33.5+TT	88.23
100	-33+TT	98.31
NOTE 1: TT for each frequ	lency and channel bandwidth is	specified in Table 6.3A.1.1.5-
2		

Table 6.3A.1.1.5-1: Minimum output power

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.0	1.3
40MHz < BW ≤ 100MHz	1.3	1.3

6.3A.2 Transmit OFF power for CA

6.3A.2.0 Minimum conformance requirements

For inter-band carrier aggregation with uplink assigned to two NR bands, the transmit OFF power specified in subclause 6.3.2 is applicable for each component carrier when the transmitter is OFF on all component carriers. The transmitter is considered to be OFF when the UE is not allowed to transmit on any of its ports.

For intra-band contiguous carrier aggregation, the transmit OFF power specified in clause 6.3.2 is applicable for each component carrier when the transmitter is OFF on all component carriers. The transmitter is considered to be OFF when the UE is not allowed to transmit on any of its ports.

For intra-band non-contiguous carrier aggregation, the transmit OFF power specified in clause 6.3.2 is applicable for each component carrier when the transmitter is OFF on all component carriers. The transmitter is considered to be OFF when the UE is not allowed to transmit on any of its ports.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3A.2

6.3A.2.1 Transmit OFF power for CA (2UL CA)

6.3A.2.1.1 Test purpose

To verify that the UE transmit OFF power for 2UL CA is lower than the value specified in the test requirement.

6.3A.2.1.2 Test applicability

The requirements of 6.3A.2.1 apply in test cases 6.3A.3.1 Transmit ON/OFF time mask for CA (2UL CA) to all types of NR UE release 15 and forward that support 2UL CA. Therefore, no test case description and requirements are specified.

6.3A.2.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.2.0.

6.3A.2.1.4 Test description

This test is covered by clause 6.3A.3.1 Transmit ON/OFF time mask for 2UL CA.

6.3A.2.1.5 Test requirement

The requirement for the transmit OFF power of each component carrier shall not exceed the values specified in Table 6.3A.2.1.5-1.

Table 6.3A.2.1.5-1: Transmit OFF power

Channel bandwidth (MHz)	Transmit OFF power (dBm)	Measurement bandwidth (MHz)
5	-50+TT	4.515
10	-50+TT	9.375
15	-50+TT	14.235
20	-50+TT	19.095
25	-50+TT	23.955
30	-50+TT	28.815
40	-50+TT	38.895
50	-50+TT	48.615
60	-50+TT	58.35
80	-50+TT	78.15
100	-50+TT	88.23
NOTE 1: TT for each frequ 2	ency and channel bandwidth is	s specified in Table 6.3A.2.1.5-

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	FFS	FFS
40MHz < BW ≤ 100MHz	FFS	FFS

6.3A.3 Transmit ON/OFF time mask for CA

6.3A.3.0 Minimum conformance requirements

6.3A.3.0.1 Transmit ON/OFF time mask for intra-band contiguous CA

For s intra-band contiguous carrier aggregation, the general output power ON/OFF time mask specified in clause 6.3.3.2 is applicable for each component carrier during the ON power period and the transient periods. The OFF period as specified in clause 6.3.3.2 shall only be applicable for each component carrier when all the component carriers are OFF.

6.3A.3.0.2 Transmit ON/OFF time mask for intra-band non-contiguous CA

For s intra-band non-contiguous carrier aggregation, the general output power ON/OFF time mask specified in clause 6.3.3.1 is applicable for each component carrier during the ON power period and the transient periods. The OFF period as specified in clause 6.3.3.1 shall only be applicable for each component carrier when all the component carriers are OFF.

6.3A.3.0.3 Transmit ON/OFF time mask for inter-band CA

6.3A.3.0.3.1 General

For inter-band carrier aggregation with uplink assigned to two NR bands, the general output power ON/OFF time mask specified in clause 6.3.3.1 is applicable for each component carrier during the ON power period and the transient periods. The OFF period as specified in clause 6.3.3.1 shall only be applicable for each component carrier when all the component carriers are OFF.

6.3A.3.0.3.2 Time mask for switching between two uplink carriers

In addition to the requirements in 6.3A.3.3.1 and the maximum output power requirement specified in Table 6.2A.1.3-1 with uplink assigned to two NR bands, the switching time mask specified in this clause is applicable for an uplink band pair of an inter-band UL CA configuration when the capability *uplinkTxSwitchingPeriod* is present, and is only applicable for uplink switching mechanisms specified in clause 6.1.6 of TS 38.214 [10], where NR UL carrier 1 is capable of one transmit antenna connector and NR UL carrier 2 is capable of two transmit antenna connectors with 3dB boosting on the maximum output power when the capability *uplinkTxSwitchingPowerBoosting* is present and the IE *uplinkTxSwitchingPowerBoosting* is enabled, and the two uplink carriers are in different bands with different carrier frequencies. The UE shall support the switch between single layer transmission with one antenna port and two-layer transmission with two antenna ports on the two uplink carriers following the scheduling commands and rank adaptation, i.e., both single layer and two-layer transmission with 2 antenna ports, and single layer transmission with 1 antenna port shall be supported on NR UL carrier 2.

The switching periods described in Figure 6.3A.3.0.3.2-1a and Figure 6.3A.3.0.3.2-1b are located in either NR carrier 1 or carrier 2 as indicated in RRC signalling *uplinkTxSwitchingPeriodLocation* [7], and the length of uplink switching period *X* is less than the value indicated by UE capability *uplinkTxSwitchingPeriod*.

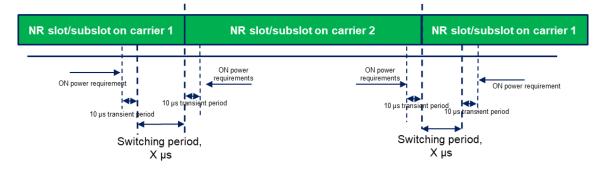
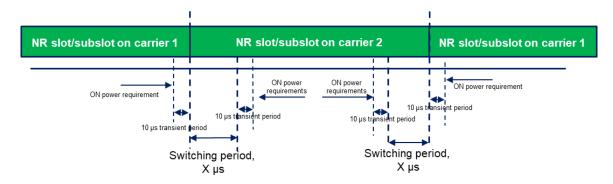



Figure 6.3A.3.0.3.2-1a: Time mask for switching between UL carrier 1 and UL Carrier 2, where the switching period is located in carrier 1

Figure 6.3A.3.0.3.2-1b: Time mask for switching between UL carrier 1 and UL Carrier 2, where the switching period is located in carrier 2

The requirements apply for the case of co-located and synchronized network deployment for the two uplink carriers.

The requirements apply for the case of single TAG for the two uplink carriers, i.e., the same uplink timing for the two carriers as described in clause 4.2 of TS 38.213 [8].

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3A.3.

6.3A.3.1 Transmit ON/OFF time mask for CA (2UL CA)

6.3A.3.1.1 Test purpose

To verify that the general ON/OFF time mask for CA (2UL CA) meets the requirements given in 6.3A.3.1.5

The transmit power time mask for transmit ON/OFF defines the transient period(s) allowed between transmit OFF power and transmit ON power symbols for CA.

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3A.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support 2UL CA.

6.3A.3.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.3.0.

6.3A.3.1.4 Test description

6.3A.3.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, and are shown in table 6.3A.3.1.4.1-1 or 6.3A.3.1.4.1-2. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3A.3.1.4.1-1: Test Configuration Table for inter-band CA

Initial Conditions				
Test Enviro	nment as specified in TS	Normal, TL/VL, TL/VH, TH/VL, TH/VH		
38.508-1 [5]] subclause 4.1			
Test Freque	Test Frequencies as specified in TS Low range for PCC and SCC			
] subclause4.3.1.1.3 for inter	High range for PCC and SC	CC	
band CA in	FR1			
Test Chann	el Bandwidths as specified in	Lowest N _{RB_agg} , Highest N _R	RB_agg	
TS 38.508-7	1 [5] subclause 4.3.1			
Test SCS as	s specified in Table 5.5A.3-1	Lowest, Highest		
		Test Parameters		
Test ID	Downlink Configuration for	Uplink Configuration		
	PCC & SCC			
		Modulation for all CCs RB allocation (NOTE 1)		on (NOTE 1)
			PCC	SCC
1	N/A for this test	DFT-s-OFDM QPSK	Inner Full	Inner Full
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.				
NOTE 2: T	NOTE 2: Test Channel Bandwidths and Test SCS are checked separately for each NR CA band combination, which			
applicable channel bandwidths and SCS are specified in Table 5.5A.3-1.				

Table 6.3A.3.1.4.1-2: Test Configuration Table for intra-band contiguous CA

Initial Conditions				
Test Enviror	Test Environment as specified in TS Normal, TL/VL, TL/VH, TH/VL, TH/VH			
38.508-1 [5]	subclause 4.1			
Test Freque	encies as specified in TS	Low range		
38.508-1 [5]	subclause4.3.1.1.3 for inter	High range		
band CA in	FR1			
Test Channe	el Bandwidths as specified in	Lowest NRB_agg, Highest Nr	RB_agg	
TS 38.508-1	1 [5] subclause 4.3.1			
Test SCS as	s specified in Table 5.5A.3-1	Lowest, Highest		
		Test Parameters		
Test ID	Downlink Configuration for	U	plink Configuration	
	PCC & SCC			
		Modulation for all CCs RB allocation (NOTE 1)		n (NOTE 1)
			PCC	SCC
1	N/A for this test	DFT-s-OFDM QPSK Inner Full Inner Full		
NOTE 1: The specific configuration of each RB allocation is defined in 6.1A-1a NOTE 2: Test Channel Bandwidths				
and Test SCS are checked separately for each NR CA band combination, which applicable channel				
bandwidths and SCS are specified in Table 5.5A.3-1.				

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.3 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.

- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3A.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3A.3.1.4.3.

6.3A.3.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause 5.5.1. Message contents are defined in clause 6.3A.3.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133 [19], clause 9.3).
- 4. SS sends uplink scheduling information via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3A.3.1.4.1-1 or 6.3A.3.1.4.1-2 on both PCC and SCC. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The UL assignment is such that the UE transmits on slots 8 for 15kHz SCS, on slots 8 and 18 for 30kHz SCS and on slots 17 and 37 for 60kHz SCS.
- 5. Send continuously uplink power control "up" commands for both carriers in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 6. On power sub test:
 - 6.1. Measure the sum of mean output power over all component carriers in the CA configuration of the UE PUSCH transmission during one slot of the radio access mode. For FDD band in inter-band CA with both TDD band and FDD band, only slots overlapping with only UL symbols in TDD are under test.
- 7. OFF power sub test:
 - 7.1. Measure the UE transmission OFF power for each component carrier during the slot prior to the PUSCH transmission, excluding a transient period of 10 µs in the end of the slot.
 - 7.2. Measure the UE transmission OFF power of each component carrier during the slot following the PUSCH transmission, excluding a transient period of 10 µs at the beginning of the slot.

6.3A.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exceptions.

Table 6.3A.3.1.4.3-1: PUSCH-ConfigCommon

Derivation Path: TS 38.508-1[5], Table 4.6.3-90				
Information Element	Value/remark	Comment	Condition	
PUSCH-ConfigCommon ::= SEQUENCE {				
p0-NominalWithGrant	-100			
}				

Derivation Path: TS 38.508-1[5], Table 4.6.3-192				
Information Element	Value/remark	Comment	Condition	
TDD-UL-DL-ConfigCommon ::= SEQUENCE {				
referenceSubcarrierSpacing	SubcarrierSpacing			
pattern1 SEQUENCE {				
dI-UL-TransmissionPeriodicity	ms5		FR1	
	ms10		FR1_15kHz	
nrofDownlinkSlots	6		FR1_15kHz	
	6		FR1_30kHz	
	14		FR1_60kHz	
nrofDownlinkSymbols	10		FR1_15kHz	
	6		FR1_30kHz	
	12		FR1_60kHz	
nrofUplinkSlots	3		FR1_15kHz,	
			FR1_30kHz	
	4		FR1_60kHz	
nrofUplinkSymbols	4		FR1_30kHz	
	2		FR1_15kHz,	
	8		FR1_60kHz	
}				
pattern2	Not present			
}	· · ·			

Table 6.3A.3.1.4.3-2: TDD-UL-DL-Config

698

Table 6.3A.3.1.4.3-3: PUSCH-TimeDomainResourceAllocationList

Derivation Path: T	S 38.508-1[5], Table 4.6.3-	122	
Information Element	Value/remark	Comment	Condition
PUSCH-TimeDomainResourceAllocationList ::=	2 entries		
SEQUENCE (SIZE(1maxNrofUL-Allocations)) OF {			
PUSCH-TimeDomainResourceAllocation[1]			
SEQUENCE {			
k2	4		FR1_15kHz,
			FR1_30kHz
	6		FR1_60kHz
mappingType	typeA		
startSymbolAndLength	27	Start	
		symbol(S)=0,	
		Length(L)=14	
}			
PUSCH-TimeDomainResourceAllocation[2]		addressed by	
SEQUENCE {		Msg3 PUSCH	
		time resource	
		allocation field of	
		the Random	
		Access Response	
		acc. to TS 38.213	
		[22] Table 8.2-1.	
k2	2	K_2 + Δ =4 acc. to	FR1_15kHz
		TS 38.214 [21]	
		Table 6.1.2.1.1-5	
		(NOTE 1)	
	6	K_2 + Δ =9 acc. to	FR1_30kHz
		TS 38.214 [21]	
		Table 6.1.2.1.1-5	
		(NOTE 1)	

mappingType	typeA		
startSymbolAndLength	27	Start symbol(S)=0, Length(L)=14	
}			
}			
NOTE 1: Values are chosen so that first slot of a TDD-UL-DL slot configuration period can be used for the Random Access Response and the last slot (of the same or another period) for the corresponding Msg3.			

Condition	Explanation	
FR1_15kHz	FR1 is used under the test. SCS is set to 15kHz.	
FR1_30kHz	FR1 is used under the test. SCS is set to 30kHz.	
FR1_60kHz	FR1 is used under the test. SCS is set to 60kHz.	

Table 6.3A.3.1.4.3-4: ServingCellConfigCommon

Derivation Path: 38.508-1[5], Table 4.6.3-168				
Information Element	Value/remark	Comment	Condition	
ServingCellConfigCommon ::= SEQUENCE {				
ss-PBCH-BlockPower	18		SCS_15kHz	
	21		SCS_30kHz	
}				

Condition	Explanation	
SCS_15kHz	SCS=15kHz for SS/PBCH block	
SCS_30kHz	SCS=30kHz for SS/PBCH block	

Table 6.3A.3.1.4.3-5: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED

Table 6.3A.3.1.4.3-6: FrequencyInfoUL-SIB

Derivation Path: TS 38.508-1 [5] Table 4.6.3-62 FrequencyInfoUL-SIB					
Information Element	Value/remark	Comment	Condition		
p-Max	20		Inter-band CA		
	19		intra-band contiguous for CA_n48B		
	18		intra-band contiguous for CA_n41C		
	17		intra-band contiguous for CA_n77C		

6.3A.3.1.5 Test requirement

The requirement for the transmit ON power and transmit OFF power for CA measured in steps 5, 6 and 7 of the test procedure shall not exceed the values specified in Table 6.3A.3.1.5-1.

		Channel bandwidth / minimum output power / measurement bandwidth											
	5	10	15	20	25	30	40	50	60	70	80	90	100
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
Transmit OFF power						≤ ·	-50+TT dE	ßm					
Transmission OFF Measurement bandwidth	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	68.07	78.15	88.23	98.31
Transmit ON power	For inter-band CA configurations, The test requirement of transmit on power of 2UL CA is the same as Test ID 9of Table 6.2A.2.1.5-1 as appropriate For intra-band contiguous CA configurations, The test requirement of transmit on power of 2UL CA is the same as Test ID 3 of Table 6.2A.2.1.5-1a, Table 6.2A.2.1.5-1b and 6.2A.2.1.5-1c as appropriate												
NOTE 1: TT for each frequency and channel bandwidth of OFF power is specified in Table 6.3A.3.1.5-2.													
NOTE 2: TT or each frequency and channel bandwidth of Transmit ON power is specified in Table 6.2A.2.1.5-3													

Table 6.3A.3.1.5-1: General ON/OFF time mask

Table 6.3A.3.1.5-2: Test Tolerance for OFF power

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	1.5	1.8
40MHz < BW ≤ 100MHz	1.7	1.8

6.3A.3.1_1 Time mask for switching between two uplink carriers

Editor's Note: The improvement for test procedure is FFS

6.3A.3.1_1.1 Test purpose

To verify that the time mask for switching between two uplink carriers meets the requirements given in 6.3A.3.0.3.2.

The time mask for switching between two uplink carriers defines the transient period(s) allowed between two uplink carriers for an uplink band pair of an inter-band UL CA configuration when the capability *uplinkTxSwitchingPeriod* is present.

6.3A.3.1_1.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support 2UL inter-band CA and dynamic UL Tx switching.

6.3A.3.1 1.3	Minimum conformance requirements
0.0/0.1_1.0	

The minimum conformance requirements are defined in clause 6.3A.3.0.3.2.

6.3A.3.1_1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, and are shown in table 6.3A.3.1_1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annexe C.2.

Table 6.3A.3.1_1.4.1-1: Test Configuration Table for inter-band CA Uplink switching

		Initial Conditions			
Test Environment as specified in TS		Normal			
38.508-1 [5] subclause 4.1					
Test Frequencies as specified in TS		Mid range for PCC and SCC			
38.508-1 [5]	subclause 4.3.1.1.3 for inter				
band CA in	FR1				
Test Chann	el Bandwidths as specified in	Highest N _{RB_agg}			
TS 38.508-1	[5] subclause 4.3.1				
Test SCS as	s specified in Table 5.5A.3-1	Highest			
		Test Parameters			
Test ID Downlink Configuration for		Uplink Configuration			
PCC & SCC					
	1000000				
		Modulation for all CCs	RB allocatio	n (NOTE 2)	
	1000000	Modulation for all CCs	RB allocatio PCC	n (NOTE 2) SCC	
1	N/A for this test	Modulation for all CCs DFT-s-OFDM QPSK		· · · ·	
1 NOTE 1: F		DFT-s-OFDM QPSK	PCC Inner Full	SCC Inner Full	
	N/A for this test	DFT-s-OFDM QPSK	PCC Inner Full	SCC Inner Full	
с	N/A for this test CC is the component carrier with	DFT-s-OFDM QPSK lower center frequency betwee s configured as Carrier2.	PCC Inner Full een two component ca	SCC Inner Full	
c NOTE 2: T NOTE 3: T	N/A for this test CC is the component carrier with onfigured as Carrier 1 and SCC is	DFT-s-OFDM QPSK lower center frequency betwe s configured as Carrier2. RB allocation is defined in Tal st SCS are checked separately	PCC Inner Full een two component ca ble 6.1-1. / for each NR CA band	SCC Inner Full Irriers. PCC is	

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.

2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.

- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3A.3.1_1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3A.3.1_1.4.3.

6.3A.3.1_1.4.2 Test procedure

- 1. Sub test 1: Switching period located in Carrier 1
 - 1.1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
 - 1.2. The SS shall configure SCC as per TS 38.508-1 [5] clause 5.5.1. Message contents are defined in clause 6.3A.3.1_1.4.3 with *uplinkTxSwitchingPeriodLocation-r16* configured TRUE on carrier1 and FALSE on carrier 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
 - 1.3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133 [19], clause 9.3).
 - 1.4. SS sends uplink scheduling information via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3A.3.1_1.4.1-1 on carrier 1 on slot n-1, where slot n is an uplink slot for carrier 2. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
 - 1.5. The SS sends uplink scheduling information via DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3A.3.1_1.4.1-1 on carrier 2 starting on slot n and slot m, with both slot n and slot m being uplink slots for carrier 2 and $m \ge n+20$ when SCS=15kHz ($m \ge n+40$ when SCS=30 kHz, $m \ge n+80$ when SCS=60 kHz). Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
 - 1.6. Measure the output power of UE PUSCH transmission for carrier 1 during slot n-1 excluding a transient period of 10 μs and a Switching period X μs in the end of slot n-1. The length of uplink switching period X is indicated by UE capability *uplinkTxSwitchingPeriod*.
 - 1.7. Measure the sum of output power of UE PUSCH transmission on carrier 2 over all antenna connectors during slot n and slot m excluding a transient period of 10 µs in the beginning of slot n and in the end of slot m
 - 1.8. SS sends uplink scheduling information via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3A.3.1_1.4.1-1 on carrier 1 on slot m+1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
 - 1.9. Measure the output power of UE PUSCH transmission for carrier 1 during slot m+1 excluding a switching period X and a transient period of 10 μs in the beginning of slot m+1. The length of uplink switching period X is indicated by UE capability *uplinkTxSwitchingPeriod*.
- 2. Sub test 2: Switching period located in Carrier 2
 - 2.1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
 - 2.2. The SS shall configure SCC as per TS 38.508-1 [5] clause 5.5.1. Message contents are defined in clause 6.3A.3.1_1.4.3 with *uplinkTxSwitchingPeriodLocation-r16* configured TRUE on carrier 2 and FALSE on carrier 1.

- 2.3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133 [19], clause 9.3). Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 2.4. SS sends uplink scheduling information via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3A.3.1_1.4.1-1 on carrier 1 on slot n-1, where slot n is an uplink slot for carrier 2. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2.5.The SS sends uplink scheduling information via DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3A.3.1_1.4.1-1 on carrier 2 on slot n (n ≥1) and slot m, with both slot n and slot m being uplink slots for carrier 2 and m ≥ n+20 when SCS=15kHz (m ≥ n+40 when SCS=30 kHz, m ≥ n+80 when SCS=60 kHz). Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2.6. Measure the output power of UE PUSCH transmission for carrier 1 during slot n-1, for carrier 1 excluding a transient period of 10 μs in the end of slot n-1.
- 2.7. Measure the sum of output power of UE PUSCH transmission on carrier 2 over all antenna connectors during during slot n and slot m excluding a switching period X and a transient period of 10 µs in the beginning of slot n and in the end of slot m. The length of uplink switching period X is indicated by UE capability *uplinkTxSwitchingPeriod*.
- 2.8. SS sends uplink scheduling information via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3A.3.1_1.4.1-1 on carrier 1 on slot m+1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC
- 2.9. Measure the output power of UE PUSCH transmission for carrier 1 during slot m+1 excluding a transient period of 10 μ s in the beginning of slot m+1.

6.3A.3.1_1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exceptions.

Derivation Path: TS 38.508-1[5], Table 4.6.3-19			
Information Element	Value/remark	Comment	Condition
CellGroupConfig ::= SEQUENCE {			
uplinkTxSwitchingOption-r16	switchedUL		switchedUL
			OR Both
	dualUL		dualUL

Table 6.3A.3.1_1.4.3-1: CellGroupConfig

Condition	Explanation
switchedUL	UE indicated supporting of switchedUL in uplinkTxSwitching-
	OptionSupport-r16
dualUL	UE indicated supporting of dualUL in uplinkTxSwitching-
	OptionSupport-r16
Both	UE indicated supporting of both in uplinkTxSwitching-OptionSupport-
	r16

Table 6.3A.3.1_1.4.3-2: Void

Table 6.3A.3.1_1.4.3-3: ServingCellConfig

Derivation Path: 38.508-1[5], Table 4.6.3-167					
Information Element	Value/remark	Comment	Condition		
ServingCellConfig ::= SEQUENCE {					
uplinkConfig SEQUENCE {					
uplinkTxSwitching-r16 CHOICE {					
setup SEQUENCE {					
uplinkTxSwitchingPeriodLocation-r16	TRUE		PL		
	FALSE		noPL		
uplinkTxSwitchingCarrier-r16	carrier1		1TxCC		
	carrier2		2TxCC		
}					
}					
}					
}					

Condition	Explanation		
PL	The location of UL Tx switching period is configured in this carrier		
noPL	The location of UL Tx switching period is not configured in this carrier		
1TxCC	The carrier is capable of one transmit antenna connector		
2TxCC	The carrier is capable of two transmit antenna connectors		

Table 6.3A.3.1_1.4.3-4: Void

Table 6.3A.3.1_1.4.3-5: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED

Table 6.3A.3.1_1.4.3-6: FrequencyInfoUL-SIB for inter-band CA

Derivation Path: TS 38.508-1 [5] Table 4.6.3-62 FrequencyInfoUL-SIB				
Information Element Value/remark Comment Condition			Condition	
p-Max	23			

6.3A.3.1_1.5 Test requirement

The requirement for the power of carrier 1 measured in step 1.6, 1.9, 2.6, 2.9 of the test procedure and the power of carrier 2 measured in step 1.7 and 2.7 shall not exceed the values specified in table 6.3A.3.1_1.5-1.

	Measured output power			
Transmit ON power	Same as Test ID 9 of Table 6.2A.2.1.5-1 as appropriate			
NOTE1: TT or each frequency and channel bandwidth of Transmit ON power is specified in Table 6.2A.2.1.5-3				

Table 6.3A.3.1_1.5-2: Void

6.3A.4 Power control for CA

6.3A.4.1 Absolute power tolerance for CA

6.3A.4.1.0 Minimum conformance requirements

The absolute power tolerance is the ability of the UE transmitter to set its initial output power to a specific value for the first sub-frame at the start of a contiguous transmission or non-contiguous transmission with a transmission gap on each active component carriers larger than 20ms. The requirement can be tested by time aligning any transmission gaps on the component carriers.

For intra-band contiguous carrier aggregation the absolute power control tolerance per component carrier is given in Table 6.3.4.2.3-1.

For intra-band non-contiguous carrier aggregation the absolute power control tolerance per component carrier is given in Table 6.3.4.2.3-1.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3A.4.

6.3A.4.1.1 Absolute power tolerance for CA (2UL CA)

Editor's Note:

This test case in incomplete when signalling is absent for dualPA-Architecture IE due to lack of core requirements.

6.3A.4.1.1.1 Test purpose

To verify the ability of the UE transmitter for 2UL CA to set its initial output power to a specific value at the start of a contiguous transmission or non-contiguous transmission on each active component carrier with a long transmission gap, i.e. transmission gap is larger than 20ms.

6.3A.4.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support intra-band contiguous and non-contiguous 2UL CA.

6.3A.4.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.4.1.0.

6.3A.4.1.1.4 Test description

6.3A.4.1.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configurations specified in 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, and are shown in table 6.3A.4.1.1.4.1-1 for intra-band contiguous CA and table 6.3A.4.1.1.4.1-2 for intra-band non-contiguous CA. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3A.4.1.1.4.1-1: Test Configuration Table for intra-band contiguous CA

	Initial Conditions								
Test Enviro	nment as specified in TS	Normal							
38.508-1 [5]] subclause 4.1								
Test Freque	encies as specified in TS	Mid range							
38.508-1 [5]	subclause 4.3.1								
Test Chann	el Bandwidths as specified in	Lowest N _{RB_agg} , Highest N	RB_agg						
TS 38.508-7	1 [5] subclause 4.3.1	_							
Test SCS as	s specified in Table 5.3.5-1	Lowest, Highest							
	Test Parameters								
Test ID	Downlink Configuration for	L	Jplink Configuration						
	PCC & SCC								
		Modulation for all CCs	RB allocatio	n (NOTE 1)					
			PCC	SCC					
1	N/A for this test	CP-OFDM QPSK	Outer_Full	Outer_Full					
NOTE 1: T	The specific configuration of each	RB allocation is defined in 6	6.1A-1a for contiguous R	B allocation.					
NOTE 2: T	est Channel Bandwidths and Tes	st SCS are checked separat	ely for each NR CA band	d combination, which					
a	pplicable channel bandwidths an	d SCS are specified in Table	e 5.5A.1-1.						
NOTE 3: If	f the UE supports multiple CC Co	mbinations in the CA Config	guration with the same N	RB_agg, only the					
С	combination with the highest NRB_F	⊳cc is tested.							

Table 6.3A.4.1.1.4.1-2: Test Configuration Table for intra-band non-contiguous CA

					In	itial Cond	itions							
Test Environment as specified in TS Normal														
38.508-1 [5] subclause 4.1														
Test Frequencies as specified in TS For test frequencies refer to "Range" columns														
	38.508-1 [5] subclause 4.3.1													
	Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1				Refer to "PCC N _{RB} "and "SCC N _{RB} " columns									
Test SCS as specified in Table 5.3.5-1 Lowest, Highest														
Test Parameters														
			CA	config /	CBW			DL		UL config				
ID	P	CC	SC	00							confi	CC	RB allocation (NOTE	
10	Band	Range	Band	Rang e	PCC N _{RB}	\mathbf{W}_{gap}	SCC N _{RB}	g	MOD	PCC	SCC			
2	nX	CC1	nX	CC2	Highest	Max	Highe	N/A	CP-	Outer_Full	Outer_Full			
					Nrb	(NOTE 4)	st N _{RB}		OFDM QPSK					
NOTE 1: The RB allocation is defined in table 6.1-1 for each CC. NOTE 2: Test Channel Bandwidths and Test SCS are checked separately for each NR CA band combination, which														
applicable channel bandwidths and SCS are specified in Table 5.5A.2-1. NOTE 3: If the UE supports multiple CC Combinations in the CA Configuration with the same N _{RB_agg} , only the combination with the highest N _{RB_PCC} is tested.														
NOT				•			based on	the PCC	and SCC	configuration				

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.3 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3A.1.1.4.1-1 and Table 6.3A.1.1.4.1-2 as appropriate.
- 5. Propagation conditions are set according to Annex B.0.

6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3A.4.1.1.4.3. Note that PDCCH DCI format 0_1 sent after resetting uplink power with RRC Connection Reconfiguration, should have TPC command 0dB.

708

6.3A.4.1.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause5.5.1. Message contents are defined in clause 6.3A.4.1.1.4.3. Any PDCCH DCI format 0_1 sent to the UE during the configuration should have TPC command 0dB.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133 [19], clause 9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 with TPC command 0dB for C_RNTI to schedule the UL RMC according to Table 6.3A.4.1.1.4.1-1 on both PCC and SCC. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Measure the initial output power of the first subframe of UE PUSCH first transmission for each component carrier.
- 6. Repeat for the two test points as indicated in section 6.3A.4.1.1.4.3. The timing of the execution between the two test points shall be larger than 20ms.

6.3A.4.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions:

Table 6.3A.4.1.1.4.3-0: ServingCellConfigCommon

Derivation Path: 38.508-1[5], Table 4.6.3-168								
Information Element	Value/remark	Comment	Condition					
ServingCellConfigCommon ::= SEQUENCE {								
ss-PBCH-BlockPower	18		SCS_15kHz					
	21		SCS_30kHz					
}								

Condition	Explanation
SCS_15kHz	SCS=15kHz for SS/PBCH block
SCS_30kHz	SCS=30kHz for SS/PBCH block

Table 6.3A.4.1.1.4.3-1: UplinkPowerControlCommon: Test point 1

Derivation Path: TS 38.508-1 [5] subclause 4.6.3 Table 4.6.3-119 PUSCH-ConfigCommon								
Information Element	Value/remark	Comment	Condition					
PUSCH-ConfigCommon::= SEQUENCE {								
p0-NominalWithGrant	-114	Test point 1 to verify a UE relative low initial power transmission						
}								

Information Element	Value/remark	Comment	Condition
PUSCH-ConfigCommon::= SEQUENCE {			
p0-NominalWithGrant	-108	Test point 2 to verify a UE relative high initial power transmission	

Table 6.3A.4.1.1.4.3-2: UplinkPowerControlCommon: Test point 2

6.3A.4.1.1.5 Test requirement

For intra-band contiguous CA, the absolute power control tolerance per component carrier measured in step (5) of the test procedure is not to exceed the values specified in Table 6.3A.4.1.1.5-1 and 6.3A.4.1.1.5-2.

			Channel bandwidth / expected output power (dBm)											
		5	10	15	20	25	30	40	50	60	70	80	90	1
		MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	Μ
Expected	SCS15	-17.6	-14.4	-12.6	-11.3	-10.4	-9.6	-8.3	-7.3	N/A	N/A	N/A	N/A	N
Measured	SCS30	-18.2	-14.8	-12.8	-11.5	-10.5	-9.7	-8.3	-7.4	-6.5	-5.8	-5.2	-4.7	-2
power	SCS60		-15.2	-13.0	-11.8	-10.7	-9.8	-8.5	-7.5	-6.6	-5.9	-5.3	-4.8	-2
Power tolerance		± (9+TT)dB												
Note 1: 7	Note 1: TT for each duplex, Sub-Carrier Spacing, frequency and channel bandwidth is specified in Table 6.3A.4.1.1.5-3.													

			Channel bandwidth / expected output power (dBm)											
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	
Evposted	SCS1 5	-11.6	-7.6	-6.6	-5.3	-4.4	-3.6	-2.3	-1.3	N/A	N/A	N/A	N/A	
Expected Measured	SCS3 0	-12.2	-8.8	-6.8	-5.5	-4.5	-3.7	-2.3	-1.4	-0.5	0.2	0.8	1.3	
power	SCS6 0	N/A	-9.2	-7	-5.8	-4.7	-3.8	-2.5	-1.5	-0.6	0.1	0.7	1.2	
Power tolerance		± (9+TT)dB												
Note 1: TT for each duplex, Sub-Carrier Spacing, frequency and channel bandwidth is specified in Table 6.3A.4.1.1.5-3.														

Table 6.3A.4.1.1.5-3: Test Tolerance

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.0 dB	1.4 dB	1.4 dB
40MHz < BW ≤ 100MHz	1.4 dB	1.4 dB	1.4 dB

6.3A.4.2 Relative power tolerance for CA

6.3A.4.2.0 Minimum conformance requirements

For intra-band contiguous and non-contiguous carrier aggregation, the requirements apply when the power of the target and reference sub-frames on each component carrier exceed the minimum output power as defined in subclause 6.3A.1.0 and the total power is limited by P_{UMAX} as defined in subclause 6.2A.4.0. The UE shall meet the following

requirements for transmission on both assigned component carriers when the average transmit power per PRB is aligned across both assigned carriers in the reference sub-frame:

- a) for all possible combinations of PUSCH and PUCCH transitions per component carrier, the corresponding requirements given in Table 6.3.4.3.3-1;
- b) for SRS transitions on each component carrier, the requirements for combinations of PUSCH/PUCCH and SRS transitions given in Table 6.3.4.3.3-1 with simultaneous SRS of constant SRS bandwidth allocated in the target and reference subframes;
- c) for RACH on the primary component carrier, the requirements given in Table 6.3.4.3.3-1 for PRACH.

For a) and b) above, the power step ΔP between the reference and target subframes shall be set by a TPC command and/or an uplink scheduling grant transmitted by means of an appropriate DCI Format.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3A.4.

6.3A.4.2.1 Relative power tolerance for CA (2UL CA)

Editor's Note: This test case is incomplete for UL intra-band non-contiguous CA because MPR and P_{CMAX_L} are not evaluated.

6.3A.4.2.1.1 Test purpose

To verify the ability of the UE transmitter to set its output power of each component carrier in a target sub-frame(1ms) relatively to the power of the most recently transmitted reference sub-frame if the transmission gap between these sub-frames is less than or equal to 20ms.

6.3A.4.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support intra-band contiguous 2UL CA.

6.3A.4.2.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.4.2.0.

6.3A.4.2.1.4 Test description

6.3A.4.2.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configurations specified in 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, and are shown in table 6.3A.4.2.1.4.1-1 and table 6.3A.4.2.1.4.1-2. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

		Initial Conditions				
Test Enviro	nment as specified in TS	Normal				
38.508-1 [5]] subclause 4.1					
Test Freque	encies as specified in TS	Mid range				
38.508-1 [5]] subclause 4.3.1					
Test Chann	el Bandwidths as specified in	Lowest N _{RB_agg} , Highest N _{RB_agg}				
TS 38.508-1 [5] subclause 4.3.1						
Test SCS a	s specified in Table 5.3.5-1	Lowest, Highest				
		Test Parameters				
Test ID	Downlink Configuration for	or Uplink Configuration				
	PCC & SCC					
		Modulation for all CCs RB allocations (Note 3)				
			(Lcrb @ F	RB _{start})		
			PCC	SCC		
1	N/A for this test	DFT-s-OFDM QPSK	5@(N _{RB} -5)	1@0		
			5@(N _{RB} -5)	8@0		
			1@(N _{RB} -1)	1@0		
			8@(N _{RB} -8)	8@0		
	est Channel Bandwidths and Tes			combination, which		
	applicable channel bandwidths and SCS are specified in Table 5.5A.1-1.					
	NOTE 2: If the UE supports multiple CC Combinations in the CA Configuration with the same NRB_agg, only the					
	combination with the highest NRB_PCC is tested.					
	he UL allocation is changed as p					
C	combinations used, with the seque	ence of usage as determined	by the test procedure fo	r each sub-test.		

Table 6.3A.4.2.1.4.1-1: Test Configuration Table for intra-band contiguous CA

Table 6.3A.4.2.1.4.1-2: Test Configuration Table for intra-band non-contiguous CA

	Initial Conditions						
Tes	Test Environment as specified in TS 38.508- Normal						
1 [5	1 [5] subclause 4.1						
Tes	Test Frequencies as specified in TS 38.508- Refer to Range column						
1 [5	1 [5] subclause 4.3.1						
Tes	t Channe	I Bandwidths a	as specifie	d in TS	Lowest N _{RB_agg} , Highest N	RB_agg	
38.5	508-1 [5]	subclause 4.3.	1				
Tes	t SCS as	specified in Ta	able 5.3.5 [.]	-1	Lowest, Highest		
					Test Parameters		
Т				DL	U	olink Configuration	
es		Range		Confi	Modulation for all	RB allocation	ns (Note 3)
t				g	CCs	(L _{скв} @	RB _{start})
ID	PCC	Wgap	SCC			PCC	SCC
1	CC1	Max Wgap	CC2	N/A	DFT-s-OFDM QPSK	5@0	1@0
						5@0	8@0
						1@0	1@0
						8@0	8@0
 NOTE 1: Test Channel Bandwidths and Test SCS are checked separately for each NR CA band combination, which applicable channel bandwidths and SCS are specified in Table 5.5A.2-1. NOTE 2: If the UE supports multiple CC Combinations in the CA Configuration with the same N_{RB_agg}, only the combination with the highest N_{RB_PCC} is tested. NOTE 3: The UL allocation is changed as part of the test procedure. The Test Configuration Table entries list the combinations used, with the sequence of usage as determined by the test procedure for each sub-test. 							

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.3 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.

- 4. The UL Reference Measurement Channel is set according to Table 6.3A.4.2.1.4.1-1 and Table 6.3A.4.2.1.4.1-2 as appropriate.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3A.4.2.1.4.3.

6.3A.4.2.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause5.5.1. Message contents are defined in clause 6.3A.4.2.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133, clause 9.3).
- 4. The procedure is separated in various subtests to verify different aspects of relative power control. The power changes of the subtests are shown by diagrams in the Test Procedure. In this test case, the term P_{CMAX_L} MAX{T_L, T_{LOW}(P_{CMAX_L}) } defined in TS 38.101 [2] clause 6.2.4A is used, to ensure the UE is not tested outside its power capability.
- 5. Sub test: SCC power increase
 - 5.1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3A.4.2.1.4.1-1 for intra-band contiguous CA and Table 6.3A.4.2.1.4.1-2 for intra-band non-contiguous CA on both PCC and SCC. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send the appropriate TPC commands for PUSCH on each component carrier to the UE to ensure that the UE transmits PUSCH on the PCC and on the SCC with powers nearest to PCC_{RefSet}, 0 and SCC_{RefSet}, 0 respectively, as defined in Table 6.3A.4.2.1.4.2-1. The powers and allocations are chosen so the average transmit power per PRB is aligned across both assigned carriers in the reference sub-frame. Measure PCC_{RefMeas}, 0 and SCC_{RefMeas}, 0 in the Reference subframe, and after the SCC allocation is increased, measure PCC_{TargetMeas}, 0 and SCC_{TargetMeas}, 0 in the Target subframe.

PCC		scc			
Parameter Value		Parameter	Value		
Reference subframe					
PCC _{RefSet, 0} , dBm/N _{RB alloc}	(SCC _{RefSet, 0}) +7	SCC _{RefSet, 0} , dBm/N _{RB alloc}	-17		
PCC allocation, NRB alloc	5	SCC allocation, NRB alloc	1		
Measured power, dBm/N _{RB alloc}	PCC _{RefMeas, 0}	Measured power, dBm/N _{RB alloc}	SCCRefMeas, 0		
Target subframe			·		
PCC _{TargetSet, 0} , dBm/N _{RB alloc}	(SCC _{RefSet, 0}) +7	SCC _{TargetSet, 0} , dBm/N _{RB alloc}	(SCC _{RefSet, 0}) +9		
PCC allocation, NRB alloc	5	SCC allocation, NRB alloc	8		
Measured power, dBm/N _{RB alloc}	PCC _{TargetMeas, 0}	Measured power, dBm/N _{RB alloc}	SCC _{TargetMeas, 0}		

Table 6.3A.4.2.1.4.2-1: Power settings and RB allocations for SCC power increase, step n=0

5.2. Calculate the Total uplink power across both CCs in dBm as 10log₁₀((PCC_{TargetMeas, n} in mW) + (SCC_{TargetMeas, n} in mW)). If (P_{CMAX_L} – MAX{T_L, T_{LOW}(P_{CMAX_L}) } - Total uplink power) > 1dB, continue to step 5.3. Otherwise, go to step 5.6.

- 5.3. For the PCC, calculate the change in power as (PCC_{TargetMeas, n} PCC_{RefMeas, n}) and compare to the PCC Test requirement specified in Table 6.3A.4.2.1.5-1. If the result meets the Test requirement, continue to step 5.4. Otherwise, fail the UE for this subtest.
- 5.4. For the SCC, calculate the change in power as (SCC_{TargetMeas, n} SCC_{RefMeas, n}) and compare to the SCC Test requirement specified in Table 6.3A.4.2.1.5-1. If the result meets the Test requirement, continue to step 5.5. Otherwise, fail the UE for this subtest.
- 5.5. Send the appropriate TPC commands for PUSCH on each component carrier to the UE to ensure that the UE transmits PUSCH on the PCC and on the SCC with powers nearest to PCC_{RefSet, n+1} and SCC_{RefSet, n+1} respectively, as defined in Table 6.3A.4.2.1.4.2-2. Measure PCC_{RefMeas, n} and SCC_{RefMeas, n}.in the Reference subframe, and after the SCC allocation is increased, measure PCC_{TargetMeas, n} and SCC_{TargetMeas, n}.in the Target subframe. Repeat steps 5.2 to 5.4.

Table 6.3A.4.2.1.4.2-2: Power settings and RB allocations for SCC power increase, step n+1

PCC		scc			
Parameter Value		Parameter	Value		
Reference subframe					
PCC _{RefSet, n+1} , dBm/N _{RB alloc}	(SCC _{RefSet, n+1}) +7	SCC _{RefSet, n+1} , dBm/N _{RB alloc}	SCCTargetMeas, n +2dB)		
PCC allocation, N _{RB alloc}	5	SCC allocation, NRB alloc	1		
Measured power, dBm/N _{RB alloc}	PCC _{RefMeas, n+1}	Measured power, dBm/N _{RB alloc}	SCC _{RefMeas, n+1}		
Target subframe					
PCC _{TargetSet, n+1} , dBm/N _{RB alloc}	(SCC _{RefSet, n+1}) +7	SCCTargetSet, n+1, dBm/NRB alloc	(SCC _{RefSet, n+1}) +9		
PCC allocation, NRB alloc	5	SCC allocation, NRB alloc	8		
Measured power, dBm/N _{RB alloc}	PCCTargetMeas, n+1	Measured power, dBm/N _{RB alloc}	SCCTargetMeas, n+1		

5.6. If the requirements specified in Table 6.3A.4.2.1.5-1 are all met, pass the UE for this subtest.

- 6. Sub test: SCC power decrease
 - 6.1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3A.4.2.1.4.1-1 for intra-band contiguous CA and Table 6.3A.4.2.1.4.1-2 for intra-band non-contiguous CA on both PCC and SCC. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send the appropriate TPC commands for PUSCH on each component carrier to the UE to ensure that the UE transmits PUSCH on the PCC and on the SCC with powers nearest to PCC_{RefSet, 0} and SCC_{RefSet, 0} respectively, as defined in Table 6.3A.4.2.1.4.2-3. The powers and allocations are chosen so the average transmit power per PRB is aligned across both assigned carriers in the reference sub-frame. Measure PCC_{RefMeas, 0} and SCC_{RefMeas, 0} in the Reference subframe, and after the SCC allocation is decreased, measure PCC_{TargetMeas, 0} and SCC_{TargetMeas, 0} in the Target subframe.

713

PCC		SCC	
Parameter Value		Parameter	Value
Reference subframe			
PCCRefSet, 0, dBm/NRB alloc	(SCC _{RefSet, 0}) -2	SCC _{RefSet, 0} , dBm/N _{RB alloc}	Pcmax_L - MAX{TL, TLOW(PCMAX_L) } -5
PCC allocation, NRB alloc	5	SCC allocation, NRB alloc	8
Measured power, dBm/N _{RB alloc}	PCC _{RefMeas} , 0	Measured power, dBm/N _{RB alloc}	SCCRefMeas, 0
Target subframe			
PCC _{TargetSet, 0} , dBm/N _{RB alloc}	(SCC _{RefSet, 0}) -2	SCC _{TargetSet, 0} , dBm/N _{RB alloc}	(SCC _{RefSet, 0}) -9
PCC allocation, NRB alloc	5	SCC allocation, NRB alloc	1
Measured power, dBm/N _{RB alloc}	PCCTargetMeas, 0	Measured power, dBm/N _{RB alloc}	SCCTargetMeas, 0

Table 6.3A.4.2.1.4.2-3: Power settings and RB allocations for SCC power decrease, step n=0

- 6.2. If the uplink (power for each CC (-20dBm)) is > 1dB, continue to step 6.3. Otherwise, go to step 6.6.
- 6.3. For the PCC, calculate the change in power as (PCC_{TargetMeas, n} PCC_{RefMeas, n}) and compare to the PCC Test requirement specified in Table 6.3A.4.2.1.5-2. If the result meets the Test requirement, continue to step 6.4. Otherwise, fail the UE for this subtest.
- 6.4. For the SCC, calculate the change in power as (SCC_{TargetMeas, n} SCC_{RefMeas, n}) and compare to the SCC Test requirement specified in Table 6.3A.4.2.1.5-2. If the result meets the Test requirement, continue to step 6.5. Otherwise, fail the UE for this subtest.
- 6.5. Send the appropriate TPC commands for PUSCH on each component carrier to the UE to ensure that the UE transmits PUSCH on the PCC and on the SCC with powers nearest to PCC_{RefSet, n+1} and SCC_{RefSet, n+1} respectively, as defined in Table 6.3A.4.2.1.4.2-4. Measure PCC_{RefMeas, n} and SCC_{RefMeas, n}.in the Reference subframe, and after the SCC allocation is decreased, measure PCC_{TargetMeas, n} and SCC_{TargetMeas, n}.in the Target subframe. Repeat steps 6.2 to 6.4.

Table 6.3A.4.2.1.4.2-4: Power settings and RB allocations for SCC power decrease, step n+1

PCC		SCC		
Parameter Value		Parameter	Value	
Reference subframe				
PCC _{RefSet, n+1} , dBm/N _{RB alloc}	(SCC _{RefSet, n+1}) -2	SCCRefSet, n+1, dBm/NRB alloc	SCCTargetMeas, n -2dB	
PCC allocation, N _{RB alloc}	5	SCC allocation, N _{RB alloc}	8	
Measured power, dBm/N _{RB alloc}	PCC _{RefMeas, n+1}	Measured power, dBm/N _{RB alloc}	SCC _{RefMeas, n+1}	
Target subframe				
PCCTargetSet, n+1, dBm/NRB alloc	(SCC _{RefSet, n+1}) -2	SCC _{TargetSet, n+1} , dBm/N _{RB alloc}	(SCC _{RefSet, n+1}) -9	
PCC allocation, NRB alloc	5	SCC allocation, NRB alloc	1	
Measured power, dBm/N _{RB alloc}	PCCTargetMeas, n+1	Measured power, dBm/N _{RB alloc}	SCCTargetMeas, n+1	

6.6. If the requirements specified in Table 6.3A.4.2.1.5-2 are all met, pass the UE for this subtest.

- 7. Sub test: PCC and SCC power increase together
 - 7.1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3A.4.2.1.4.1-1 for intra-band contiguous CA and Table 6.3A.4.2.1.4.1-2 for intra-band non-contiguous CA on both PCC and SCC. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send the appropriate TPC commands for PUSCH on each component carrier to the UE to ensure that the UE transmits PUSCH on the PCC and on the SCC with powers nearest to PCC_{RefSet, 0} and SCC_{RefSet, 0} respectively, as defined in Table 6.3A.4.2.1.4.2-5. The powers and allocations are chosen so the average transmit power per PRB is aligned across both assigned carriers in the reference sub-frame. Measure PCC_{RefMeas, 0} and SCC_{RefMeas, 0} and SCC_{RefMeas, 0} in the Reference subframe, and after the PCC and SCC allocation are increased, measure PCC_{TargetMeas, 0} and SCC_{TargetMeas, 0} in the Target subframe.

Table 6.3A.4.2.1.4.2-5: Power settings and RB allocations for PCC and SCC power increase, step n=0

PCC		SCC			
Parameter Value		Parameter	Value		
Reference subframe					
PCC _{RefSet, 0} , dBm/N _{RB alloc}	-17	SCC _{RefSet, 0} , dBm/N _{RB alloc}	-17		
PCC allocation, NRB alloc	1	SCC allocation, NRB alloc	1		
Measured power, dBm/N _{RB alloc}	PCC _{RefMeas} , 0	Measured power, dBm/N _{RB alloc}	SCC _{RefMeas, 0}		
Target subframe			·		
PCC _{TargetSet, 0} , dBm/N _{RB alloc}	(PCC _{RefSet, 0}) +9	SCC _{TargetSet, 0} , dBm/N _{RB alloc}	(SCC _{RefSet, 0}) +9		
PCC allocation, NRB alloc	8	SCC allocation, NRB alloc	8		
Measured power, dBm/N _{RB alloc}	PCC _{TargetMeas, 0}	Measured power, dBm/N _{RB alloc}	SCC _{TargetMeas, 0}		

- $\begin{array}{ll} \mbox{7.2.} & Calculate the Total uplink power across both CCs in dBm as $10log_{10}((PCC_{TargetMeas, n} in mW) + (SCC_{TargetMeas, n} in mW)). If (P_{CMAX_L} MAX\{T_L, T_{LOW}(P_{CMAX_L})\} Total uplink power) > 1dB, continue to step 7.3. Otherwise, go to step 7.6. \end{array}$
- 7.3. For the PCC, calculate the change in power as (PCC_{TargetMeas, n} PCC_{RefMeas, n}) and compare to the PCC Test requirement specified in Table 6.3A.4.2.1.5-3. If the result meets the Test requirement, continue to step 7.4. Otherwise, fail the UE for this subtest.
- 7.4. For the SCC, calculate the change in power as (SCC_{TargetMeas, n} SCC_{RefMeas, n}) and compare to the SCC Test requirement specified in Table 6.3A.4.2.1.5-3. If the result meets the Test requirement, continue to step 7.5. Otherwise, fail the UE for this subtest.
- 7.5. Send the appropriate TPC commands for PUSCH on each component carrier to the UE to ensure that the UE transmits PUSCH on the PCC and on the SCC with powers nearest to PCC_{RefSet, n+1} and SCC_{RefSet, n+1} respectively, as defined in Table 6.3A.4.2.1.4.2-6. Measure PCC_{RefMeas, n} and SCC_{RefMeas, n} in the Reference subframe, and after the PCC and SCC allocation are increased, measure PCC_{TargetMeas, n} and SCC_{TargetMeas, n} in the Target subframe. Repeat steps 7.2 to 7.4.

PCC		SCC				
Parameter Value		Parameter	Value			
Reference subframe	Reference subframe					
PCC _{RefSet, n+1} , dBm/N _{RB alloc}	(Max (PCC _{TargetMeas, n} , SCC _{TargetMeas, n})) +2dB	SCC _{RefSet, n+1} , dBm/N _{RB alloc}	(Max (PCCTargetMeas, n, SCCTargetMeas, n)) +2dB			
PCC allocation, N _{RB alloc}	1	SCC allocation, N _{RB alloc}	1			
Measured power, dBm/N _{RB alloc}	PCCRefMeas, n+1	Measured power, dBm/N _{RB alloc}	SCCRefMeas, n+1			
Target subframe	Target subframe					
PCCTargetSet, n+1, dBm/NRB alloc (SCCRefSet, n+1) +9		SCCTargetSet, n+1, dBm/NRB alloc	(SCC _{RefSet, n+1}) +9			
PCC allocation, NRB alloc	8	SCC allocation, NRB alloc	8			
Measured power, dBm/N _{RB alloc}	PCCTargetMeas, n+1	Measured power, dBm/N _{RB alloc}	SCCTargetMeas, n+1			

Table 6.3A.4.2.1.4.2-6: Power settings and RB allocations for PCC and SCC power increase, step n+1

- 7.6. If the requirements specified in Table 6.3A.4.2.1.5-3 are all met, pass the UE for this subtest.
- 8. Sub test: PCC and SCC power decrease together
 - 8.1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3A.4.2.1.4.1-1 for intra-band contiguous CA and Table 6.3A.4.2.1.4.1-2 for intra-band non-contiguous CA on both PCC and SCC. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send the appropriate TPC commands for PUSCH on each component carrier to the UE to ensure that the UE transmits PUSCH on the PCC and on the SCC with powers nearest to PCC_{RefSet}, 0 and SCC_{RefSet}, 0 respectively, as defined in Table 6.3A.4.2.1.4.2-7. The powers and allocations are chosen so the average transmit power per PRB is aligned across both assigned carriers in the reference sub-frame. Measure PCC_{RefMeas}, 0 and SCC_{RefMeas}, 0 in the Reference subframe, and after the PCC and SCC allocation are decreased, measure PCC_{TargetMeas}, 0 and SCC_{TargetMeas}, 0 in the Target subframe.

Table 6.3A.4.2.1.4.2-7: Power settings and RB allocations for PCC and SCC power decrease, step n=0

PCC		SCC		
Parameter Value		Parameter	Value	
Reference subframe				
PCC _{RefSet, 0} , dBm/N _{RB alloc}	PCMAX_L - MAX{TL, TLOW(PCMAX_L) } -6	SCC _{RefSet, 0} , dBm/N _{RB alloc}	PCMAX_L - MAX{TL, TLOW(PCMAX_L) } -6	
PCC allocation, N _{RB alloc}	8	SCC allocation, NRB alloc	8	
Measured power, dBm/N _{RB alloc}	PCC _{RefMeas, 0}	Measured power, dBm/N _{RB alloc}	SCC _{RefMeas, 0}	
Target subframe				
PCCTargetSet, 0, dBm/NRB alloc (PCCRefSet, 0) -9		SCC _{TargetSet, 0} , dBm/N _{RB alloc}	(SCC _{RefSet, 0}) -9	
PCC allocation, NRB alloc	1	SCC allocation, N _{RB alloc}	1	
Measured power, dBm/N _{RB alloc}	PCC _{TargetMeas, 0}	Measured power, dBm/N _{RB alloc}	SCC _{Target} Meas, 0	

- 717
- 8.2. If the uplink (power for each CC (-20dBm)) is > 1dB, continue to step 8.3. Otherwise, go to step 8.6.
- 8.3. For the PCC, calculate the change in power as (PCC_{TargetMeas, n} PCC_{RefMeas, n}) and compare to the PCC Test requirement specified in Table 6.3A.4.2.1.5-4. If the result meets the Test requirement, continue to step 8.4. Otherwise, fail the UE for this subtest.
- 8.4. For the SCC, calculate the change in power as (SCC_{TargetMeas, n} SCC_{RefMeas, n}) and compare to the SCC Test requirement specified in Table 6.3A.4.2.1.5-4. If the result meets the Test requirement, continue to step 8.5. Otherwise, fail the UE for this subtest.
- 8.5. Send the appropriate TPC commands for PUSCH on each component carrier to the UE to ensure that the UE transmits PUSCH on the PCC and on the SCC with powers nearest to PCC_{RefSet, n+1} and SCC_{RefSet, n+1} respectively, as defined in Table 6.3A.4.2.1.4.2-8. Measure PCC_{RefMeas, n} and SCC_{RefMeas, n} in the Reference subframe, and after the PCC and SCC allocation are decreased, measure PCC_{TargetMeas, n} and SCC_{TargetMeas, n}.in the Target subframe. Repeat steps 8.2 to 8.4.

Table 6.3A.4.2.1.4.2-8: Power settings and RB allocations for PCC and SCC power decrease, step n+1

PCC		SCC			
Parameter Value		Parameter	Value		
Reference subframe					
PCC _{RefSet, n+1} , dBm/N _{RB alloc} (Min (PCC _{TargetMeas, n} , SCC _{TargetMeas, n})) -2dB		SCC _{RefSet, n+1} , dBm/N _{RB alloc}	(Min (PCC _{TargetMeas, n} , SCC _{TargetMeas, n})) -2dB		
PCC allocation, NRB alloc	8	SCC allocation, NRB alloc	8		
Measured power, dBm/N _{RB alloc}			SCCRefMeas, n+1		
Target subframe					
PCCTargetSet, n+1, dBm/NRB alloc (SCCRefSet, n+1) -9		SCC _{TargetSet, n+1} , dBm/N _{RB} alloc	(SCC _{RefSet, n+1}) -9		
PCC allocation, N _{RB alloc}	1	SCC allocation, N _{RB alloc}	1		
Measured power, dBm/N _{RB alloc}	PCCTargetMeas, n+1	Measured power, dBm/N _{RB alloc}	SCCTargetMeas, n+1		

8.6. If the requirements specified in Table 6.3A.4.2.1.5-4 are all met, pass the UE for this subtest.

6.3A.4.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exception:

Table 6.3A.4.2.1.4.3-1: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED

6.3A.4.2.1.5 Test requirement

For intra-band contiguous carrier aggregation bandwidth class C and intra-band non-contiguous CA, the relative power control tolerance per component carrier measured in steps 5, 6, 7 and 8 of the test procedures should satisfy the applicable test requirements specified in Tables 6.3A.4.2.1.5-1 to 6.3A.4.2.1.5-5.

Parameter	Condition	Unit	Minimum	Maximum
(PCC _{TargetMeas, n} - PCC _{RefMeas, n})	Normal	dB	-0.7-TT	0.7+TT
(SCCTargetMeas, n - SCCRefMeas, n)	Normal	dB	5.5-TT	12.5+TT

Table 6.3A.4.2.1.5-1: Test requirements for SCC power increase

Table 6.3A.4.2.1.5-2: Test requirements for SCC power decrease

Parameter	Condition	Unit	Minimum	Maximum
(PCCTargetMeas, n - PCCRefMeas, n)	Normal	dB	-0.7-TT	0.7+TT
(SCCTargetMeas, n - SCCRefMeas, n)	Normal	dB	-12.5-TT	-5.5+TT

Table 6.3A.4.2.1.5-3: Test requirements for PCC and SCC power increase together

Parameter	Condition	Unit	Minimum	Maximum
(PCCTargetMeas, n - PCCRefMeas, n)	Normal	dB	5.5-TT	12.5+TT
(SCC _{TargetMeas, n} - SCC _{RefMeas, n})	Normal	dB	5.5-TT	12.5+TT

Table 6.3A.4.2.1.5-4: Test requirements for PCC and SCC power decrease together

Parameter	Condition	Unit	Minimum	Maximum
(PCC _{TargetMeas, n} - PCC _{RefMeas, n})	Normal	dB	-12.5-TT	-5.5+TT
(SCCTargetMeas, n - SCCRefMeas, n)	Normal	dB	-12.5-TT	-5.5+TT

Table 6.3A.4.2.1.5-5: Test Tolerance

	f ≤ 6.0GHz
BW ≤ 100MHz	0.7 dB

6.3A.4.3 Aggregate power tolerance for CA

6.3A.4.3.0 Minimum conformance requirements

For intra-band contiguous and non-contiguous carrier aggregation, the aggregate power tolerance per component carrier is given in Table 6.3.4.4.3-1. The average power per PRB shall be aligned across both assigned carriers before the start of the test. The requirement can be tested with the transmission gaps time aligned between component carriers.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3A.4.

6.3A.4.3.1 Aggregate power tolerance for CA (2UL CA)

Editor's Note: This test case in incomplete when signalling is absent for dualPA-Architecture IE due to lack of core requirements.

6.3A.4.3.1.1 Test purpose

To verify the ability of the UE transmitter to maintain its power during non-contiguous transmissions within 21ms in response to 0 dB commands with respect to the first UE transmission and all other power control parameters as specified in 38.213 kept constant on all active component carriers.

6.3A.4.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support intra-band contiguous 2UL CA.

6.3A.4.3.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3A.4.3.0.

t description

6.3A.4.3.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configurations specified in 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, and are shown in table 6.3A.4.3.1.4.1-2 and 6.3A.4.3.1.4.1-3. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH before measurement is specified in Annex C.2.

Table 6.3A.4.3.1.4.1-1: Void

Table 6.3A.4.3.1.4.1-2: Test Configuration Table for intra-band contiguous CA: PUSCH sub-test

	Initial Conditions						
Test Enviro	nment as specified in TS	Normal	Normal				
38.508-1 [5]] subclause 4.1						
Test Freque	encies as specified in TS	Mid range					
38.508-1 [5]] subclause 4.3.1						
Test Chann	el Bandwidths as specified in	Lowest N _{RB_agg} , Highest N	RB_agg				
TS 38.508-	1 [5] subclause 4.3.1						
Test SCS a	s specified in Table 5.3.5-1	Lowest, Highest					
	Test Parameters						
Test ID	Downlink Configuration for	U	Iplink Configuration				
	PCC & SCC						
		Modulation for all CCs	RB allocatio	n (NOTE 1)			
			PCC	SCC			
1	N/A for this test	CP-OFDM QPSK	Outer Full	Outer Full			
NOTE 1: T	NOTE 1: The specific configuration of each RB allocation is defined in 6.1A-1a for contiguous RB alloc.						
NOTE 2: T	NOTE 2: Test Channel Bandwidths and Test SCS are checked separately for each NR CA band combination, which						
a	applicable channel bandwidths and SCS are specified in Table 5.5A.1-1.						
NOTE 3: If	f the UE supports multiple CC Co	mbinations in the CA Config	juration with the same N	RB_agg, only the			
c	combination with the highest NRB_F	PCC is tested.					

					In	itial Cond	itions				
Tes	Test Environment as specified in TS Normal										
38.5	508-1 [5]	subclause	4.1								
	•	ncies as sp		TS	For test f	requencies	refer to "R	lange" o	olumns		
		subclause									
		I Bandwidt			Refer to I	РСС Мкв"а	nd "SCC N	RB " CO	umns		
		-1 [5] subc									
Tes	t SCS as	specified i	in Table 5	5.3.5-1	Lowest, H	lighest					
	-					est Param	eters				
			1	onfig	/ CBW			DL		UL config	
ID	P	CC	S	CC				con	сс	RB allocation	on (NOTE 1)
	Band	Range	Band	Rang e	PCC Nrb	\mathbf{W}_{gap}	SCC Nrb	fig	MOD	PCC	SCC
1	nX	CC1	nX	CC2	Lowest	Max	Lowest			Outer_Full	Outer_Full
					N _{RB_agg}	(NOTE	N _{RB_agg}		CP-		
						4)		N/A	OFDM		
2	nX	CC1	nX	CC2	Highest	Max	Highest		QPSK	Outer_Full	Outer_Full
					N _{RB_agg}	(NOTE	N _{RB_agg}		GION		
	4)										
	NOTE 1: RB allocation is defined in table 6.1-1 for each CC.										
NOTE 2: Test Channel Bandwidths and Test SCS are checked separately for each NR CA band combination, which											
applicable channel bandwidths and SCS are specified in Table 5.5A.2-1.											
NOTE 3: If the UE supports multiple CC Combinations in the CA Configuration with the same N_{RB_agg} , only the											
NO								combination with the highest N _{RB_PCC} is tested. NOTE 4: The Wgap is defined to be widest possible on band based on the PCC and SCC configuration			
	co	mbination	with the	highest N	I _{RB_PCC} is te						

Table 6.3A.4.3.1.4.1-3: Test Configuration Table for intra-band non-contiguous CA

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.3 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3A.3.1.4.1-1 for intra-band contiguous CA and Table 6.3A.3.1.4.1-3 for intra-band non-contiguous CA.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3A.4.3.1.4.3.

6.3A.4.3.1.4.2 Test procedure

For intra-band contiguous UL CA:

The procedure is separated in two subtests to verify PUCCH and PUSCH aggregate power control tolerance respectively. The uplink transmission patterns for each component carrier are described in figure 6.3A.4.3.1.4.2-1.

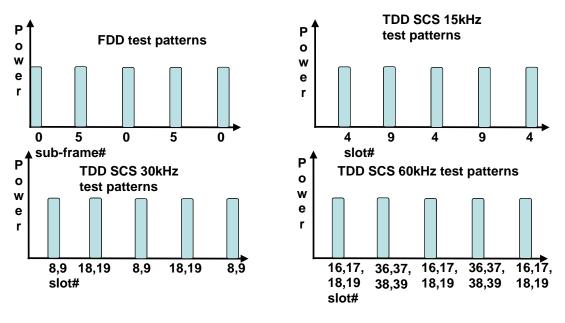


Figure 6.3A.4.3.1.4.2-1 Test uplink transmission

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause5.5.1. Message contents are defined in clause 6.3A.4.3.1.4.3. Any PDCCH DCI format 0_1 sent to the UE during the configuration should have TPC command 0dB.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133 [19], clause 9.3)
- 4. PUSCH sub test:
 - 4.1. The SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the PUSCH according to Table 6.3A.4.3.1.4.1-1 on PCC and SCC. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send uplink power control commands for PUSCH to the UE using 1dB power step size to ensure that the UE output power on PCC and SCC measured by the test system is within the Uplink power control window, defined as (Uplink power control window size / 2) dB to + (Uplink power control window size / 2) dB of the target power level + 0 dBm, where:
 - Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [2], Table 6.3.4.3-1 and is 0.7dB for PUSCH with 1dB power step size, and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.
- NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.4.
 - 4.2. Every 5 sub-frames (5ms) schedule the UE's PUSCH data transmission for 1 sub-frame(1ms), and transmit 0 dB TPC command for PUSCH via the PDCCH to make the UE transmit PUSCH. The uplink transmission patterns are described in figure 6.3A.4.3.1.4.2-1,
 - 4.3. Measure the power on both PCC and SCC of 5 consecutive PUSCH transmissions to verify the UE transmitted PUSCH power is maintained within 21ms transmissions on each component carrier.

For intra-band non-contiguous UL CA:

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause5.5.1. Message contents are defined in clause 6.3A.4.3.1.4.3. Any PDCCH DCI format 0_1 sent to the UE during the configuration should have TPC command 0dB.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133 [19], clause 9.3)
- 4. The SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the PUSCH according to Table 6.3A.4.3.1.4.1-3 on PCC and SCC. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send uplink power control commands for PUSCH to the UE using 1dB power step size to ensure that the UE output power on PCC and SCC measured by the test system is within the Uplink power control window, defined as (Uplink power control window size / 2) dB to + (Uplink power control window size / 2) dB of the target power level + 0 dBm, where:
- Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [2], Table 6.3.4.3-1 and is 0.7dB for PUSCH with 1dB power step size, and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.
- NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.4.
- 6. Every 5 sub-frames (5ms) schedule the UE's PUSCH data transmission for 1 sub-frame(1ms), and transmit 0 dB TPC command for PUSCH via the PDCCH to make the UE transmit PUSCH. The uplink transmission patterns are described in figure 6.3A.4.3.1.4.2-1.
- 7. Measure the power on both PCC and SCC of 5 consecutive PUSCH transmissions to verify the UE transmitted PUSCH power is maintained within 21ms transmissions on each component carrier.

6.3A.4.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions:

Table 6.3A.4.3.1.4.3-1: Void

6.3A.4.3.1.5 Test requirement

For intra-band contiguous CA, the aggregate power control tolerance per component carrier measured in step (4.3) and step (5.3) of the test procedure is not to exceed the values specified in Table 6.3A.4.3.1.5-1.

For intra-band non-contiguous CA, the aggregate power control tolerance per component carrier measured in step 7 of the test procedure is not to exceed the values specified in Table 6.3A.4.3.1.5-1.

TPC con	nmand	UL channel	Test requirement measured power		
0 d	В	PUSCH on PCC	Given 5 power measurements in the pattern, the 2 nd , and		
		and SCC	later measurements shall be within \pm (3.5 + TT) dB of the		
			1 st measurement.		
Note 1:	For SC	S 30kHz 1 sub-frame corresponds to 2 slots and for SCS 60kHz 1 sub-frame			
	corresp	onds to 4 slots, so 2	FPC commands will be sent for a single measurement		
	period.				
Note 2:	TT = 0.1	7dB.			

Table 6.3A.4.3.1.5-1: Aggregate power tolerance for CA

6.3B Output power dynamics for NR-DC

For inter-band NR-DC with one uplink carrier assigned per NR band, the output power dynamics for the corresponding inter-band CA configuration as specified in subclause 6.3A applies.

Note: For NR-DC testing, replace CA by NR-DC, PCC by PCell, and SCC by PSCell in clause 6.3A.

6.3B.1 Minimum output power for NR-DC

For inter-band dual connectivity, the minimum output power for the corresponding inter-band CA configuration as specified in clause 6.3A.1 applies.

Note: For NR-DC testing, replace CA by NR-DC, PCC by PCell, and SCC by PSCell in clause 6.3A.1.

6.3B.2 Transmit OFF power for NR-DC

For inter-band dual connectivity, the transmit OFF power for the corresponding inter-band CA configuration as specified in clause 6.3A.2 applies.

Note: For NR-DC testing, replace CA by NR-DC, PCC by PCell, and SCC by PSCell in clause 6.3A.2.

6.3B.3 Transmit ON/OFF time mask for NR-DC

For inter-band dual connectivity, the transmit ON/OFF time mask for the corresponding inter-band CA configuration as specified in clause 6.3A.3 applies.

Note: For NR-DC testing, replace CA by NR-DC, PCC by PCell, and SCC by PSCell in clause 6.3A.3.

6.3C Output power dynamics for SUL

6.3C.1 Minimum output power for SUL

6.3C.1.1 Test purpose

Same test purpose as in clause 6.3.1.1

6.3C.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.3C.1.3 Minimum conformance requirements

For a terminal that supports SUL for the band combination specified in Table 5.2C-1, the current version of the specification assumes the terminal is configured with active transmission either on UL carrier or SUL carrier at any time in one serving cell and the UE requirements for single carrier shall apply for the active UL or SUL carrier accordingly.

The normative reference for this requirement is TS 38.101-1 [2] clauses 4.3 and 6.3.1.

6.3C.1.4 Test description

Same test description as specified in clause 6.3.1.4 with following exceptions:

Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1.

Instead of table 6.3.1.4.1-1 \rightarrow use Table 6.3C.1.4-1

Table 6.3C.1.4-1: Test Configuration Table

		Initial Co	onditior	IS		
	Test Environment as specified in TS 38.508-1 [5]		Normal, TL/VL, TL/VH, TH/VL, TH/VH			
subclause	4.1					
Test Frequ	encies as specified in TS	38.508-1 [5]	Low, N	Mid, High range for SUL carrier		
subclause	4.3.1		Mid-ra	inge for Non-SUL carrier		
Test Chanr	nel Bandwidths as specifi	ed in TS 38.508-1 [5]	Lowes	t, Mid, Highest for SUL carrier		
subclause	4.3.1		Lowes	st for Non-SUL carrier		
Test SCS a	as specified in Table 5.3.	5-1	15kHz	for SUL carrier and Lowest su	oported SCS for	
Non-SUL carrier						
		Test Parameters for	Channe	el Bandwidths		
Test ID	Downlink	Uplink Configura	tion SUL Configuration			
	Configuration					
	N/A	N/A Modu		Modulation	RB allocation (NOTE 2)	
1		DFT-s-OFDM QPSK Outer Full				
NOTE 1:	NOTE 1: Test Channel Bandwidths are checked separately for each SUL band combination, the applicable channel					
	bandwidths are specified in Table 5.5C-1.					
NOTE 2:	The specific configuration	n of each RB allocation	is define	ed in Table 6.1-1.		
NOTE 3:	DFT-s-OFDM PI/2 BPSK	test applies only for UI	Es which	n supports half Pi BPSK in FR1.		

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.
- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause 4.4.3.
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.

Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Table 4.6.1-28 with condition SUL AND (RF OR RRM), Tables 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL, additionally the following exception shown in Table 6.3C.1.4-2 is considered.

Table 6.3C.1.4-2: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED

Table 6.3C.1.4-3: Void

6.3C.1.5 Test requirement

The minimum output power, derived in step 3 shall not exceed the values specified in Table 6.3C.1.5-1.

Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
5	-40+TT	4.515
10	-40+TT	9.375
15	-40+TT	14.235
20	-40+TT	19.095
25	-39+TT	23.955
30	-38.2+TT	28.815
40	-37+TT	38.895
NOTE 1: TT for each frequ	iency and channel bandwidth is	specified in Table 6.3C.1.5-2

Table 6.3C.1.5-1: Minimum output power

Table 6.3C.1.5-2: Test Tolerance (Minimum output power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.0 dB	1.3 dB
40MHz < BW ≤ 100MHz	1.3 dB	1.3 dB

6.3C.2 Transmit OFF power for SUL

6.3C.2.1 Test purpose

Same test purpose as in clause 6.3.2.1

6.3C.2.2 Test applicability

The requirements of this test apply in test cases 6.3C.3 Transmit ON/OFF time mask for SUL to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.3C.2.3 Minimum conformance requirements

For a terminal that supports SUL for the band combination specified in Table 5.2C-1, the current version of the specification assumes the terminal is configured with active transmission either on UL carrier or SUL carrier at any time in one serving cell and the UE requirements for single carrier shall apply for the active UL or SUL carrier accordingly.

The normative reference for this requirement is TS 38.101-1 [2] clauses 4.3 and 6.3.2.

6.3C.2.4 Test description

This test is covered by clause 6.3C.3 Transmit ON/OFF time mask for SUL.

6.3C.2.5 Test requirement

The requirement for the transmit OFF power for SUL shall not exceed the values specified in Table 6.3C.2.5-1.

Table 6.3C.2.5-1: Transmit OFF power

Channel bandwidth (MHz)	Transmit OFF power (dBm)	Measurement bandwidth (MHz)
5	-50+TT	4.515
10	-50+TT	9.375
15	-50+TT	14.235
20	-50+TT	19.095
25	-50+TT	23.955
30	-50+TT	28.815
40	-50+TT	38.895
NOTE 1: TT for each frequ	ency and channel bandwidth is	specified in Table 6.3C.2.5-2

Table 6.3C.2.5-2: Test Tolerance (Transmit OFF power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.5 dB	1.8 dB

6.3C.3 Transmit ON/OFF time mask for SUL

6.3C.3.0 Minimum conformance requirements

6.3C.3.0.1 General ON/OFF time mask for SUL

For a terminal that supports SUL for the band combination specified in Table 5.2C-1, the current version of the specification assumes the terminal is configured with active transmission either on UL carrier or SUL carrier at any time in one serving cell and the UE requirements for single carrier shall apply for the active UL or SUL carrier accordingly.

The normative reference for this requirement is TS 38.101-1 [2] clauses 4.3 and 6.3.3.2

6.3C.3.0.2 Time mask for switching between two uplink carriers

The switching time mask specified in this clause is applicable for an uplink band pair of a SUL configuration when the capability *uplinkTxSwitchingPeriod* is present, is only applicable for uplink switching mechanisms specified in clause 6.16 of TS 38.214 [10], where NR SUL carrier 1 is capable of one transmit antenna connector and NR UL carrier 2 is capable of two transmit antenna connectors, and the two uplink carriers are in different bands with different carrier frequencies. The UE shall support the switch between single layer transmission with one antenna port and two-layer transmission with two antenna ports on the two uplink carriers following the scheduling commands and rank adaptation, i.e., both single layer and two-layer transmission with 2 antenna ports, and single layer transmission with 1 antenna port shall be supported on NR UL carrier 2.

The switching periods described in Figure 6.3C.3.1-1a and Figure 6.3C.3.1-1b are located in either NR carrier 1 or carrier 2 as indicated in RRC signalling *uplinkTxSwitchingPeriodLocation* [7], and the length of uplink switching period *X* is less than the value indicated by UE capability *uplinkTxSwitchingPeriod*.

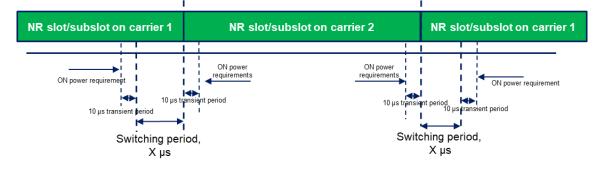
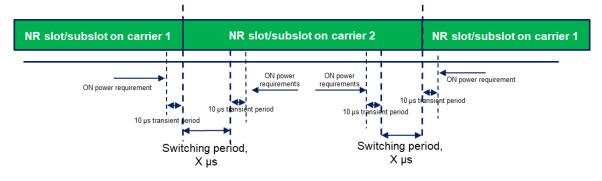



Figure 6.3C.3.0.2-1a: Time mask for switching between SUL carrier 1 and UL Carrier 2, where the switching period is located in carrier 1

Figure 6.3C.3.0.2-1b: Time mask for switching between SUL carrier 1 and UL Carrier 2, where the switching period is located in carrier 2

The requirements apply for the case of co-located and synchronized network deployment for the two uplink carriers.

The requirements apply for the case of single TAG for the two uplink carriers, i.e., the same uplink timing for the two carriers as described in clause 4.2 of TS 38.213 [8].

6.3C.3.1 General transmit ON/OFF time mask for SUL

6.3C.3.1.1 Test purpose

Same test purpose as in clause 6.3.3.2.1

6.3C.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.3C.3.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3C.3.0.1.

6.3C.3.1.4 Test description

Same test description as specified in clause 6.3.3.2.4 with following exceptions:

Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1.

Instead of table 6.3.3.2.4.1-1 \rightarrow use Table 6.3C.3.1.4-1

Table 6.3C.3.1.4-1: Test Configuration Table

		Initial Co	ondition	IS		
Test Enviro	onment as specified in TS 4.1	38.508-1 [5]	Norma	al, TL/VL, TL/VH, TH/VL, TH/VH	I	
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1			Low, Mid, High range for SUL carrier Mid-range for Non-SUL carrier			
				Lowest, Mid, Highest for SUL carrier Lowest for Non-SUL carrier		
Test SCS as specified in Table 5.3.5-1		15kHz for SUL carrier and Lowest supported SCS for Non-SUL carrier				
		Test Parameters for	Channe	el Bandwidths		
Test ID	Downlink Configuration	Uplink Configura	tion	SUL Configur	ation	
	N/A	N/A		Modulation	RB allocation (NOTE 2)	
1				DFT-s-OFDM QPSK	Inner Full	
k	Test Channel Bandwidths bandwidths are specified The specific configuratior	in Table 5.5C-1.	-	ch SUL band combination, the ed in Table 6.1-1.	applicable channel	

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.
- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause 4.4.3.
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.

Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Table 4.6.1-28 with condition SUL AND (RF OR RRM), Tables 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL.

Table 6.3C.3.1.4-2: Void

6.3C.3.1.5 Test requirement

The requirement for the power measured in steps 2, 3 and 4 of the test procedure shall not exceed the values specified in Table 6.3C.3.1.5-1.

Table 6.3C.3.1.5-1: General ON/OFF time mask
Channel bandwidth / minimum output power / measurement

	Cł	Channel bandwidth / minimum output power / measurement bandwidth					
	5	10	15	20	25	30	40
	MHz	MHz	MHz	MHz	MHz	MHz	MHz
Transmit OFF power				≤ -50+TT dBm			
Transmission OFF	4.515	9.375	14.235	19.095	23.955	28.815	38.895
Measurement							
bandwidth							
Transmitted ON Same as Table 6.2.1.5-1		•					
Power							
NOTE 1: TT for each f	requency and	channel band	width is specif	ed in Table 6.	3C.3.5-2 and ⁻	Table 6.2.1.5-3	3.

Table 6.3C.3.1.5-2: Test Tolerance for OFF power

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	1.5 dB	1.8 dB
40MHz < BW ≤ 100MHz	1.7 dB	1.8 dB

Table 6.3C.3.1.5-3: Void

6.3C.3.2 General transmit ON/OFF time mask for switching between two uplink carriers

Editor's Note: The improvement for test procedure is FFS

6.3C.3.2.1 Test purpose

To verify that the time mask for switching between two uplink carriers meets the requirements given in 6.3C.3.0.2.

The time mask for switching between two uplink carriers defines the transient period(s) allowed between two uplink carriers for an uplink band pair of an a SUL configuration when the capability uplinkTxSwitchingPeriod is present

6.3C.3.2.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support SUL configuration and dynamic UL Tx switching.

6.3C.3.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3C.3.0.2.

6.3C.3.2.4 Test description

6.3C.3.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR SUL configuration specified in 5.5C. All of these configurations shall be tested with applicable test parameters for each SUL configuration, and are shown in table 6.3C.3.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3C.3.2.4.1-1: Test Configuration Table for SUL Tx switching

			Initial Conditions				
Test Environment as specified in TS 38.508-1 [5] subclause 4.1			Normal	Normal			
			Mid range for both c	Mid range for both carrier			
Test Channel Bar	ndwidths as specified in TS	38.508-1 [5] subclause 4.3.1	Highest for SUL car	rier and Non-SUL carrier			
Test SCS as spec	cified in Table 5.3.5-1		15kHz for SUL carri	er, lowest supported SCS for Non-	SUL carrier		
		Test Paran	neters for Channel Bandwidths	5			
Test ID	Downlink	Uplink Con	figuration	SUL Configuration			
	Configuration		-				
1	N/A	Modulation	RB allocation (NOTE 2)	Modulation	RB allocation (NOTE 2)		
E E E E E E E E E E E E E E E E E E E		DFT-s-OFDM QPSK	Inner Full	DFT-s-OFDM QPSK	Inner Full		
NOTE 1: SUL ca	arrier is configured as Carrie	er 1 and Non-SUL carrier is config	gured as Carrier2.				
NOTE 2: Test C	hannel Bandwidths are che	cked separately for each SUL ba	nd combination, the applicable c	hannel bandwidths are specified ir	ו Table 5.5C-1.		
NOTE 2: The sp	DTE 2: The specific configuration of each RB allocation is defined in Table 6.1-1.						

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.
- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause 4.4.3.
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.

6.3C.3.2.4.2 Test procedure

- 1. Sub test 1: Switching period located in Carrier 1 (SUL carrier)
 - 1.1 SS send an NR RRCReconfiguration message according to 6.3C.3.2.4.3 with *uplinkTxSwitchingPeriodLocation-r16* configured TRUE on carrier1 and FALSE on carrier 2.1.2 SS send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.

1.3 SS sends uplink scheduling information via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3C.3.2.4.1-1 on carrier 1 on slot n-1, where slot n is an uplink slot for carrier 2. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.

731

- 1.4 The SS sends uplink scheduling information via DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3C.3.2.4.1-1 on carrier 2 starting on slot n and slot m, with both slot n and slot m being uplink slots for carrier 2 and m ≥ n+20 when SCS=15kHz (m ≥ n+40 when SCS=30 kHz, m ≥ n+80 when SCS=60 kHz). Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 1.5 Measure the output power of UE PUSCH transmission for carrier 1 during slot n-1 excluding a transient period of 10 µs and a Switching period X µs in the end of slot n-1. The length of uplink switching period X is indicated by UE capability *uplinkTxSwitchingPeriod*.
- 1.6 Measure the sum of output power of UE PUSCH transmission on carrier 2 over all antenna connectors during slot n and slot m excluding a transient period of 10 µs in the beginning of slot n and in the end of slot m.
- 1.7 SS sends uplink scheduling information via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3C.3.2.4.1-1 on carrier 1 on slot m+1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 1.8 Measure the output power of UE PUSCH transmission for carrier 1 during slot m+1 excluding a switching period X and a transient period of 10 µs in the beginning of slot m+1. The length of uplink switching period X is indicated by UE capability *uplinkTxSwitchingPeriod*.
- 2. Sub test 2: Switching period located in Carrier 2 (Non-SUL carrier)
 - 2.1 SS send an NR RRCReconfiguration message according to 6.3C.3.2.4.3 with *uplinkTxSwitchingPeriodLocation-r16* configured FALSE on carrier1 and TRUE on carrier 2.
 - 2.2 SS send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
 - 2.3 SS sends uplink scheduling information via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3C.3.2.4.1-1 on carrier 1 on slot n-1, where slot n is an uplink slot for carrier 2. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
 - 2.4 The SS sends uplink scheduling information via DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3C.3.2.4.1-1 on carrier 2 starting on slot n and slot m, with both slot n and slot m being uplink slots for carrier 2 and m ≥ n+20 when SCS=15kHz (m ≥ n+40 when SCS=30 kHz, m ≥ n+80 when SCS=60 kHz). Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
 - 2.5 Measure the output power of UE PUSCH transmission for carrier 1 during slot n-1 excluding a transient period of 10 µs in the end of slot n-1.

2.6 Measure the sum of output power of UE PUSCH transmission on carrier 2 over all antenna connectors during slot n and slot m excluding a transient period of 10 µs and a Switching period X µs in the beginning of slot n and in the end of slot m. The length of uplink switching period X is indicated by UE capability *uplinkTxSwitchingPeriod*.

732

- 2.7 SS sends uplink scheduling information via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3C.3.2.4.1-1 on carrier 1 on slot m+1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2.8 Measure the output power of UE PUSCH transmission for carrier 1 during slot m+1 excluding a transient period of 10 µs in the beginning of slot m+1.

6.3C.3.2.4.3 Message contents

Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Table 4.6.1-28 with condition SUL AND (RF OR RRM), Tables 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL, and following exceptions:

Derivation Path: 38.508-1[5], Table 4.6.3-167						
Information Element	Value/remark	Comment	Condition			
ServingCellConfig ::= SEQUENCE {						
uplinkConfig SEQUENCE {						
uplinkTxSwitching-r16 CHOICE {						
setup SEQUENCE {						
uplinkTxSwitchingPeriodLocation-r16	TRUE		PL			
	FALSE		noPL			
uplinkTxSwitchingCarrier-r16	carrier1		1TxCC			
	carrier2		2TxCC			
}						
}						
}						
}						

Table 6.3C.3.2.4.3-2: ServingCellConfig

Condition	Explanation		
PL	The location of UL Tx switching period is configured in this carrier		
noPL	The location of UL Tx switching period is not configured in this carrier		
1TxCC	The carrier is capable of one transmit antenna connector		
2TxCC	The carrier is capable of two transmit antenna connectors		

Table 6.3C.3.2.4.3-4: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED

Table 6.3C.3.2.4.3-5: P-Max

Derivation Path: TS 38.508-1 [5] Table 4.6.3-62 FrequencyInfoUL-SIB					
Information Element Value/remark Comment Condition					
p-Max	23				

6.3C.3.2.4.3 Test requirement

The requirement for the power of carrier 1 measured in step 1.5, 1.8, 2.5, 2.8 of the test procedure and the power of carrier 2 measured in step 1.6 and 2.6 shall not exceed the values specified in table 6.3C.3.2.4.3-1.

Table 6.3C.3.2.4.3-1: General SUL Time mask for switching between two uplink carriers (On power)

	Measured output power					
Transmit ON power	Same as table 6.2.1.5-1 for NUL carrier and table 6.2C.3.5-1 for SUL carrier					
	NOTE 1: TT or each frequency and channel bandwidth of Transmit ON power is specified in Table 6.2.1.5-3					

6.3C.4 Power control for SUL

- 6.3C.4.1 Absolute power tolerance for SUL
- 6.3C.4.1.1 Test purpose

Same test purpose as in clause 6.3.4.2.1

6.3C.4.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.3C.4.1.3 Minimum conformance requirements

For a terminal that supports SUL for the band combination specified in Table 5.2C-1, the current version of the specification assumes the terminal is configured with active transmission either on UL carrier or SUL carrier at any time in one serving cell and the UE requirements for single carrier shall apply for the active UL or SUL carrier accordingly.

The normative reference for this requirement is TS 38.101-1 [2] clauses 4.3 and 6.3.4.2.

6.3C.4.1.4 Test description

Same test description as specified in clause 6.3.4.2.4 with following exceptions:

Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1.

Instead of table 6.3.4.2.4.1-1 \rightarrow use Table 6.3C.4.1.4-1

Table 6.3C.4.1.4-1: Test Configuration Table

		Initial	Conditions	
Test Environment	t as specified in TS 38.508-1 [5] sub	clause 4.1	Normal	
Test Frequencies	as specified in TS 38.508-1 [5] sub	clause 4.3.1	Mid-range for SUL and Non-SUL ca	rrier
Test Channel Bar	ndwidths as specified in TS 38.508-1	[5] subclause 4.3.1	Lowest, Mid, Highest for SUL carrier	r
			Lowest for Non-SUL carrier	
Test SCS as spec	cified in Table 5.3.5-1		15kHz for SUL carrier and Lowest s	upported SCS for Non-SUL carrier
		Test F	Parameters	
Test ID	Downlink Configuration	Uplink Configuration	SUL Configuration	
			Modulation	RB allocation (NOTE 2)
1	N/A	N/A	CP-OFDM QPSK	Outer_Full
NOTE 1: Test C			nbination, the applicable channel bandw each RF allocation is defined in Table 6.	

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.

- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause 4.4.3.

- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.

Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Table 4.6.1-28 with condition SUL AND (RF OR RRM), Tables 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL.

Table 6.3C.4.1.4-2: Void

6.3C.4.1.5 Test requirement

The requirement for the power measured in step (2) of the test procedure is not to exceed the values specified in Table 6.3C.4.1.5-1 and 6.3C.4.1.5-2.

Table 6.3C.4.1.5-1: Absolute power tolerance: test point 1

			Channel bandwidth / expected output power (dBm)					
					20 MHz	25 MHz	30 MHz	40 MHz
	Expected -17.6 -14.4 -12.6 -11.3 -10.4 -9.6 -8.3							
Power	er tolerance ± (9+TT)dB							
Note 1: The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3C.1.3								
Note 2:	2: TT for each duplex, Sub-Carrier Spacing, frequency and channel bandwidth is specified in Table 6.3C.4.1.5-3.							

Table 6.3C.4.1.5-2: Absolute power tolerance: test point 2

			Channel bandwidth / expected output power (dBm)						
5 10 15 20 25 30 MHz MHz MHz MHz MHz MHz					40 MHz				
Expected -3.6 0.4 1.4 2.7 3.6 4.4 5.7									
Power	er tolerance ± (9+TT)dB								
Note 1: The higher power limit shall not exceed the maximum output power requirements defined in sub-clause 6.2C.3.3									
Note 2:	TT for each duplex, Sub-Carrier Spacing, frequency and channel bandwidth is specified in Table 6.3C.4.1.5-3.								

Table 6.3C.4.1.5-3: Test Tolerance

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.0 dB	1.4 dB	1.4 dB

6.3C.4.2 Relative power tolerance for SUL

6.3C.4.2.1 Test purpose

Same test purpose as in clause 6.3.4.3.1

6.3C.4.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.3C.4.2.3 Minimum conformance requirements

For a terminal that supports SUL for the band combination specified in Table 5.2C-1, the current version of the specification assumes the terminal is configured with active transmission either on UL carrier or SUL carrier at any time in one serving cell and the UE requirements for single carrier shall apply for the active UL or SUL carrier accordingly.

The normative reference for this requirement is TS 38.101-1 [2] clauses 4.3 and 6.3.4.3.

Release 17

737

6.3C.4.2.4 Test description

Same test description as specified in clause 6.3.4.3.4 with following exceptions:

Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1.

Instead of table 6.3.4.3.4.1-1 \rightarrow use Table 6.3C.4.2.4-1

Table 6.3C.4.2.4-1: Test Configuration Table

			Conditions	
	as specified in TS 38.508-1 [5] sub		Normal, TL/VL, TL/VH, TH/VL, TH/V	Н
st Frequencies	as specified in TS 38.508-1 [5] sub	clause 4.3.1	Low range for SUL carrier	
			Mid-range for Non-SUL carrier	
est Channel Ban	ndwidths as specified in TS 38.508-1	[5] subclause 4.3.1	Lowest, Mid, Highest for SUL carrier	
			Lowest for Non-SUL carrier	
est SCS as spec	cified in table 5.3.5-1		15kHz for SUL carrier and Lowest su	pported SCS for Non-SUL carrier
		Test F	Parameters	
Ch BW	Downlink Configuration	Uplink Configuration	SUI	L Configuration
			Modulation	RB allocation (NOTE 1)
5MHz	N//	4	DFT-s-OFDM QPSK	See Table 6.3C.4.2.5-1
				See Table 6.3C.4.2.5-2
				See Table 6.3C.4.2.5-5
10MHz	-		DFT-s-OFDM QPSK	See Table 6.3C.4.2.5-3
				See Table 6.3C.4.2.5-4
				See Table 6.3C.4.2.5-5
15MHz			DFT-s-OFDM QPSK	See Table 6.3C.4.2.5-3
				See Table 6.3C.4.2.5-4
				See Table 6.3C.4.2.5-5
20MHz			DFT-s-OFDM QPSK	See Table 6.3C.4.2.5-3
				See Table 6.3C.4.2.5-4
				See Table 6.3C.4.2.5-5
25MHz			DFT-s-OFDM QPSK	See Table 6.3C.4.2.5-3
				See Table 6.3C.4.2.5-4
				See Table 6.3C.4.2.5-5
30MHz			DFT-s-OFDM QPSK	See Table 6.3C.4.2.5-3
				See Table 6.3C.4.2.5-4
				See Table 6.3C.4.2.5-5
40MHz			DFT-s-OFDM QPSK	See Table 6.3C.4.2.5-3
				See Table 6.3C.4.2.5-4
				See Table 6.3C.4.2.5-5

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.

-

- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause 4.4.3.
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.

Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Table 4.6.1-28 with condition SUL AND (RF OR RRM), Tables 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL.

Table 6.3C.4.2.4-2: Void

6.3C.4.2.5 Test requirement

Each UE power step measured in the test procedure 6.3.4.3.4.2 should satisfy the test requirements specified in Table 6.3C.4.2.5-1 thru 6.3C.4.2.5-5.

To account for RF Power amplifier mode changes 2 exceptions are allowed for each of ramping up and ramping down test patterns. For these exceptions the power tolerance limit is a maximum of $\pm (6.0 + TT)$ dB. If there is an exception in the power step caused by the RB change for all test patterns (A, B, C) then fail the UE.

Table 6.3C.4.2.5-1: Test Requirements Relative Power Tolerance for Transmission, channel BW 5MHz, ramp up sub-test

Test SCS [kHz]	Sub- test ID	test sub-frames allocation command power Power step size ID (Up) (Up)									
		ΔP [dB] ΔP [dB] [dB]									
		Sub-frames before RB changeFixed = 1TPC=+1dB 1 $\Delta P \le 1 dB$ $1 +/-(0.7 + TT)$									
15	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	$4dB \le \Delta P < 10dB$	7.99 +/- (3.5 + TT)				
		Sub-frames after RB changeFixed = 5TPC=+1dB1 $\Delta P \le 1 dB$ 1 +/- (0.7 + TT)									
	Sub-frames before RB changeFixed = 1TPC=+1dB 1 $\Delta P \le 1 dB$ $1 +/- (0.7 + TT)$										
	2										
	Sub-frames after RB changeFixed = 15TPC=+1dB1 $\Delta P \le 1 dB$ 1 +/- (0.7 + TT)										
Note 1:	Position of RB change:										
	Pattern A the position of RB uplink allocation change is after 10 active uplink Sub-frames										
		Pattern B the position of RB uplink allocation change is after 20 active uplink Sub-frames Pattern C the position of RB uplink allocation change is after 30 active uplink Sub-frames									
Note 2:		arting resource blo		•		apinin oub-indifies					
Note 3:	TT=0.7	•									
Note 4:	Applica	able if $P_{UMAX} \ge P \ge$	Pmin. Pmin as define	ed in sub-clau	se 6.3C.1.						

Test SCS [kHz]	Sub- test IDApplicable sub-framesUplink RB allocationTPC commandExpected power 									
		ΔP [dB] ΔP [dB] [dB]								
		Sub-frames before RB changeFixed = 5TPC=-1dB 1 $\Delta P \le 1 dB$ $1 +/-(0.7 + TT)$								
	1									
	Sub-frames after RB changeFixed = 1TPC=-1dB $P \le 1 dB$ TPC=-1dB1 $\Delta P \le 1 dB$ $1 +/- (0.7 + TT)$									
15	Sub-frames before RB changeFixed = 15TPC=-1dB1 $\Delta P \le 1 dB$ 1 +/- (0.7 + TT)									
	2	ů – Elektrik Alektrik – Elektrik								
	Sub-frames after RB changeFixed = 1TPC=-1dB1 $\Delta P \le 1 dB$ 1 +/- (0.7 + TT)									
Note 1:	Position of RB change:									
		•		•		e uplink Sub-frames				
						e uplink Sub-frames				
		-		-	after 30 active	e uplink Sub-frames				
Note 2:		•	lock shall be RB#	0.						
Note 3:	TT=0.7									
Note 4:	Applica	able if Pumax ≥ P	≥ P _{min} . P _{min} as defi	ned in sub-cla	use 6.3C.1.					

Table 6.3C.4.2.5-2: Test Requirements Relative Power Tolerance for Transmission, channel BW 5MHz, ramp down sub-test

Table 6.3C.4.2.5-3: Test Requirements Relative Power Tolerance for Transmission, channel BW	
10MHz, 15MHz, 20MHz, 25MHz, 30MHz, 40MHz ramp up sub-test	

$15 2 \begin{array}{ c c c c c c } \hline Subframes & 1RB & TPC=+1dB & 1 & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT & \Delta P \leq 1 \ dB & 1 \ +/- \ (0.7 + TT \ \Delta P \leq 1 \ dB & 1 \ +/-$	Test SCS [kHz]	ID frames step size range (Up) (Up)					PUSCH [dB]				
$15 2 \begin{array}{ c c c c c } \hline Change & IRB to 5 RBs & TPC=+1dB & 7.99 & 4dB \le \Delta P < 10dB & 7.99 +/- (3.5 + T) \\ \hline Subframes & Fixed = 5 & TPC=+1dB & 1 & \Delta P \le 1 dB & 1 +/- (0.7 + TT) \\ \hline Subframes & 1RB & TPC=+1dB & 1 & \Delta P \le 1 dB & 1 +/- (0.7 + TT) \\ \hline Change & 1RB to 20 RBs & TPC=+1dB & 1 & \Delta P \le 1 dB & 1 +/- (0.7 + TT) \\ \hline Change & 1RB to 20 RBs & TPC=+1dB & 14.01 & 10dB \le \Delta P < 15dB & 14.01 +/- (4 + T) \\ \hline Subframes & Fixed = 20 & TPC=+1dB & 1 & \Delta P \le 1 dB & 1 +/- (0.7 + TT) \\ \hline Change & IRB to 20 RBs & TPC=+1dB & 1 & \Delta P \le 1 dB & 1 +/- (0.7 + TT) \\ \hline Subframes & after RB & 1 & AP \le 1 dB & 1 +/- (0.7 + TT) \\ \hline Change & IRB & TPC=+1dB & 1 & \Delta P \le 1 dB & 1 +/- (0.7 + TT) \\ \hline Subframes & 1RB & TPC=+1dB & 1 & \Delta P \le 1 dB & 1 +/- (0.7 + TT) \\ \hline Subframes & 1RB & TPC=+1dB & 1 & \Delta P \le 1 dB & 1 +/- (0.7 + TT) \\ \hline Subframes & 1RB & TPC=+1dB & 1 & \Delta P \le 1 dB & 1 +/- (0.7 + TT) \\ \hline Subframes & 1RB & TPC=+1dB & 1 & \Delta P \le 1 dB & 1 +/- (0.7 + TT) \\ \hline Subframes & 1RB & TPC=+1dB & 1 & \Delta P \le 1 dB & 1 +/- (0.7 + TT) \\ \hline Subframes & 1RB & TPC=+1dB & 1 & \Delta P \le 1 dB & 1 +/- (0.7 + TT) \\ \hline Subframes & 1RB & TPC=+1dB & 1 & \Delta P \le 1 dB & 1 +/- (0.7 + TT) \\ \hline Subframes & 1RB & TPC=+1dB & 1 & \Delta P \le 1 dB & 1 +/- (0.7 + TT) \\ \hline Subframes & 1RB & TPC=+1dB & 1 & \Delta P \le 1 dB & 1 +/- (0.7 + TT) \\ \hline Subframes & RB & R$			Subframes 1RB TPC=+1dB								
$15 2 \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &$			change				$\Delta F \ge 1 \text{GB}$, , , , , , , , , , , , , , , , , , ,			
$15 2 \begin{bmatrix} after RB \\ change \\ Subframes \\ harden de $		1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ∆P < 10dB	7.99 +/- (3.5 + TT)			
$15 2 \begin{bmatrix} before RB \\ change \\ 15 \end{bmatrix} \begin{bmatrix} before RB \\ change \\ 16 \end{bmatrix} \begin{bmatrix} RB change \\ 1RB to 20 RBs \\ 1RB to 20 RBs \\ 1RB to 20 RBs \\ 1000 RBs \\ 1000 RB \\ 10$			after RB	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)			
Subframes after RB changeFixed = 20TPC=+1dB L1 $\Delta P \le 1 dB$ 1 +/-0.7 + TTSubframes before RB change1RBTPC=+1dB L1 $\Delta P \le 1 dB$ 1 +/- (0.7 + TT3RB change1RB to 50 RBsTPC=+1dB1 $\Delta P \le 1 dB$ 1 +/- (0.7 + TT		Subframes1RBTPC=+1dBbefore RB1 $\Delta P \le 1 dB$ 1 +/- (0.7 + TT									
$ \begin{array}{ c c c c c } \hline & after RB \\ change \\ \hline & \\ \hline & \\ Subframes \\ before RB \\ change \\ \hline & \\ \hline \hline & \\ \hline & \\ \hline \\ \hline$	15 2	2	RB change	1RB to 20 RBs	TPC=+1dB	14.01	10dB ≤ ∆P < 15dB	14.01 +/- (4 + TT)			
$\begin{array}{ c c c c c c }\hline Subframes & 1RB & TPC=+1dB & & & & & & & & & & & & & & & & & & &$		Subframes after RBFixed = 20TPC=+1dB $\Delta P \le 1 dB$ $1 +/-0.7 + TT$									
			Subframes before RB1RBTPC=+1dB1 $\Delta P \le 1 dB$ 1 +/- (0.7 + TT)								
Out frames Fixed 50 TDO 14 ID		3	RB change	1RB to 50 RBs	TPC=+1dB	17.99	15dB ≤ ΔP	17.99 +/- (5 + TT)			
after RB 1 ΔP ≤ 1 dB 1 +/- (0.7 + TT change 1 ΔP ≤ 1 dB 1 +/- (0.7 + TT											
Note 1: Position of RB change:	Note 1:		•								
Pattern A the position of RB uplink allocation change is after 10 active uplink Subframes.											
Pattern B the position of RB uplink allocation change is after 20 active uplink Subframes											
Pattern C the position of RB uplink allocation change is after 30 active uplink Subframes. Note 2: The starting resource block shall be RB# 0.	Note 2:			•	•	s after 30 act	ive uplink Subframes.				
Note 3: TT=0.7dB			•	DIOCK SHAIL DE KD	<i>+</i> 0.						
Note 4: Applicable if $P_{UMAX} \ge P \ge P_{min}$. P_{min} as defined in sub-clause 6.3C.1.			•	P ≥ P _{min} . P _{min} as de	efined in sub-c	lause 6.3C.1					

Table 6.3C.4.2.5-4: Test Requirements Relative Power Tolerance for Transmission, channel BW
10MHz, 15MHz, 20MHz, 25MHz, 30MHz, 40MHz ramp down sub-test

Test SCS [kHz]	ID trames step size range (Down) (Down)						PUSCH			
					ΔP [dB]	ΔΡ [dB]	[dB]			
		Subframes before RB changeFixed = 5TPC=-1dB1 $\Delta P \le 1 dB$ 1 +/- (0.7 + TT)								
	1	RB change	5 RBs to 1RBs	TPC=-1dB	7.99	4dB ≤ ∆P < 10dB	7.99 +/- (3.5 + TT)			
		Subframes after RB changeFixed = 1TPC=-1dB 1 $\Delta P \le 1 dB$ $1 +/- (0.7 + TT)$								
	Subframes before RB changeFixed = 20TPC=-1dB1 $\Delta P \le 1 dB$ 1 +/- (0.7 + TT)									
15	2	RB change 20 RBs to 1 RB TPC=-1dB 14.01 10dB ≤ ΔP < 15dB 14.01 +/- (4 + 7)								
	Subframes after RB changeFixed = 1TPC=-1dB1 $\Delta P \le 1 dB$ 1 +/- (0.7 + TT)									
	SubframesFixed = 50TPC=-1dBbefore RB1 $\Delta P \le 1 dB$ 1 +/- (0.7 + TT)change1 $\Delta P \le 1 dB$ 1 +/- (0.7 + TT)									
	3	RB change	50 RBs to 1 RB	TPC=-1dB	17.99	15dB ≤ ΔP	17.99 +/- (5 + TT)			
	SubframesFixed = 1TPC=-1dB $\Delta P \le 1 dB$ $1 +/- (0.7 + TT)$ after RB change1 $\Delta P \le 1 dB$ $1 +/- (0.7 + TT)$									
Note 1:	: Position of RB change:									
						ive uplink Subframes.				
						ive uplink Subframes				
Note 2:			block shall be RB#		s aller SU act	ive uplink Subframes.				
Note 3:	TT=0.7	•	SIGON SHAILDE IND	r v.						
Note 4:			P ≥ P _{min} . P _{min} as de	fined in sub-c	lause 6.3C.1					

BW	Test SCS [kHz]	Sub- test ID	Uplink RB allocation	TPC command	Expected power step size (Up or Down) ΔP [dB]	Power step size range (Up or Down) ΔΡ [dB]	PUSCH [dB]		
		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ΔP < 4dB	3.01 +/- (3 + TT)		
5	15	2	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)		
		3	Alternating 1 and 15	TPC=0dB	11.76	10dB ≤ ∆P < 15dB	11.76 +/- (4 + TT)		
	1Alternating 1 and 2TPC=0dB 3.01 3.01 $3dB \le \Delta P < 4dB$ $3.01 +/-(3 + TT)$								
10,15,20, 25,30,40	h yy								
	15	3	Alternating 1 and 20	TPC=0dB	13.01	10dB ≤ ∆P < 15dB	13.01 +/- (4 + TT)		
		4	Alternating 1 and 50	TPC=0dB	16.99	15dB ≤ ΔP	16.99 +/- (5 + TT)		
Note 1: The	Note 1: The starting resource block shall be RB# 0. Note 2: TT=0.7dB								
	Note	3: Appl	ICADIE IT PUMAX \geq P	′≥ P _{min} . P _{min} a	s defined in s	ub-clause 6.3C.1.			

Table 6.3C.4.2.5-5: Test Requirements Relative Power Tolerance for Transmission, alternating subtest

744

6.3C.4.3 Aggregate power tolerance for SUL

6.3C.4.3.1 Test purpose

Same test purpose as in clause 6.3.4.3.1

6.3C.4.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.3C.4.3.3 Minimum conformance requirements

For a terminal that supports SUL for the band combination specified in Table 5.2C-1, the current version of the specification assumes the terminal is configured with active transmission either on UL carrier or SUL carrier at any time in one serving cell and the UE requirements for single carrier shall apply for the active UL or SUL carrier accordingly.

The normative reference for this requirement is TS 38.101-1 [2] clauses 4.3 and 6.3.4.4.

Release 17

745

6.3C.4.3.4 Test description

Same test description as specified in clause 6.3.4.4.4 with following exceptions:

Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1.

Instead of table 6.3.4.4.1-1 \rightarrow use Table 6.3C.4.3.4-1

Instead of table 6.3.4.4.1-2 \rightarrow use Table 6.3C.4.3.4-2

Table 6.3C.4.3.4-1: Test Configuration Table: PUCCH sub-test

		Initial C	onditions		
Test Environment as specified in TS 38.508-1 [5] subclause 4.1			Normal		
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1			Mid range for SUL and Non-SUL carrier		
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1] subclause 4.3.1	Lowest, Mid, Highest for SUL carrier		
			Lowest for Non-SUL carrier		
Test SCS as specified in Table 5.3.5-1			15kHz for SUL carrier and Lowest supported SCS for Non-SUL carrier		
Test Parameters for		Test Parameters for	Channel Bandwidths		
Test ID	Test ID Downlink Configuration Uplink Configuration		SUL Configuration		
			PUCCH format = Format 1		
1	N/A	N/A	Length in OFDM symbols = 14		

Table 6.3C.4.3.4-2: Test Configuration Table: PUSCH sub-test

			Initial Conditions	
Test Environment as specified in TS 38.508-1 [5] subclause 4.1		Normal		
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1		Mid range for SUL and Non-SUL carrier		
Test Channel Bandwi	dths as specified in TS 38	508-1 [5] subclause	Lowest, Mid, Highest for SUL carrier	
4.3.1		Lowest for Non-SUL carrier		
Test SCS as specified in Table 5.3.5-1		15kHz for SUL carrier and Lowest supported SCS for Non-SUL carrier		
		Test P	arameters for Channel Bandwidths	
Test ID	Downlink Configuration	Uplink Configuration	SUL Configuration	
			Modulation	RB allocation (NOTE 1)
1 N/A N/A CP-OFDM QPSK Outer_Full				
NOTE 1: The specif	ic configuration of each RF	allocation is defined in T	able 6.1-1.	·
NOTE 2: Test Channel Bandwidths are checked separately for each SUL band combination, the applicable channel bandwidths are specified in Table 5.5C-1.				

-

- 746
- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.
- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause 4.4.3.
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.

Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Table 4.6.1-28 with condition SUL AND (RF OR RRM), Tables 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL.

Table 6.3C.4.3.4-2: Void

6.3C.4.3.5 Test requirement

The requirement for the power measurements made in step (1.3) and (2.3) of the test procedure shall not exceed the values specified in Table 6.3C.4.3.5-1. The power measurement period shall be 1 sub-frame(1ms).

Table 6.3C.4.3.5-1: Power	control tolerance
---------------------------	-------------------

TPC command	UL channel	Test requirement measured power	
0 dB	PUCCH	Given 5 power measurements in the pattern, the 2^{nd} , and later measurements shall be within \pm (2.5 + TT) dB of the 1^{st} measurement.	
0 dB	PUSCH	Given 5 power measurements in the pattern, the 2^{nd} , and later measurements shall be within \pm (3.5 + TT) dB of the 1^{st} measurement.	
Note 1: TT=0.7dB.			

6.3D Output power dynamics for UL MIMO

6.3D.1 Minimum output power for UL MIMO

6.3D.1.1 Test purpose

To verify the UE's ability to transmit with a UL MIMO broadband output power below the value specified in the test requirement when the power is set to a minimum value.

6.3D.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL MIMO.

6.3D.1.3 Minimum conformance requirements

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the minimum output power is defined as the sum of the mean power at each UE antenna connector in one sub-frame (1ms). The minimum output power shall not exceed the values specified in Table 6.3D.1.3-1.

Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
5	-40	4.515
10	-40	9.375
15	-40	14.235
20	-40	19.095
25	-39	23.955
30	-38.2	28.815
40	-37	38.895
45	-36.5	43.575
50	-36	48.615
60	-35.2	58.35
70	-34.6	68.07
80	-34	78.15
90	-33.5	88.23
100	-33	98.31

Table 6.3D.1.3-1: Minimum output power

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3D.1.

Outer Full

748

6.3D.1.4 Test description

6.3D.1.4.1 Initial condition

1

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, and channel bandwidths and sub-carrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3D.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

		-	
		Initial Conditions	
Test Environment as specified in TS 38.508-1 [5] subclause 4.1		Normal, TL/VL, TL/VH, TH/VL, TH/VH	
Test Frequencies as s	pecified in TS 38.508-1 [5] subclause 4.3.1	Low range, Mid range, High range	
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause		Lowest, Mid, Highest	
4.3.1			
Test SCS as specified	in Table 5.3.5-1	Lowest, Highest	
	Test F	Parameters for Channel Bandwidths	
Test ID Downlink Configuration		Uplink Confi	guration
	N/A for minimum output power	Modulation	RB allocation (NOTE 1)

Table 6.3D.1.4.1-1: Test Configuration Table

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.

2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.

test case

NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.

- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3D.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3D.1.4.3.

CP-OFDM QPSK

6.3D.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3D.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send continuously uplink power control "down" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step to ensure that the UE transmits at its minimum output power.
- 3. Measure the sum of mean power of the UE at each UE antenna connector in the associated measurement channel bandwidth specified in Table 6.3D.1.5-1 for the specific channel bandwidth under test. The period of measurement shall be at least the continuous duration of 1ms over all active uplink slots and in the uplink symbols. For TDD, only slots consisting of only UL symbols are under test.

6.3D.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO.

6.3D.1.5 Test requirement

The minimum output power, derived in step 3 shall not exceed the values specified in Table 6.3D.1.5-1.

Minimum output power (dBm)	Measurement bandwidth (MHz)
. ,	4.515
-	9.375
	14.235
	19.095
	23.955
-38.2+TT	28.815
-37+TT	38.895
-36.5+TT	43.575
-36+TT	48.615
-35.2+TT	58.35
-34.6+TT	68.07+TT
-34+TT	78.15
-33.5+TT	88.23
-33+TT	98.31
	-36.5+TT -36+TT -35.2+TT -34.6+TT -34+TT -33.5+TT

Table 6.3D.1.5-1: Minimum output power

Table 6.3D.1.5-2: Test Tolerance (Minimum output power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.0 dB	1.3 dB
40MHz < BW ≤ 100MHz	1.3 dB	1.3 dB

6.3D.2 Transmit OFF power for UL MIMO

6.3D.2.1 Test purpose

To verify that the UE transmit OFF power for UL MIMO is lower than the value specified in the test requirement.

An excess Transmit OFF power potentially increases the Rise Over Thermal (RoT) and therefore reduces the cell coverage area for other UEs.

6.3D.2.2 Test applicability

The requirements of this test apply in test cases 6.3D.3 Transmit ON/OFF time mask for UL MIMO to all types of NR UE release 15 and forward that support UL MIMO.

6.3D.2.3 Minimum conformance requirements

The transmit OFF power is defined as the mean power at each transmit connector in a duration of at least one sub-frame (1ms) excluding any transient periods.

The transmit OFF power at each transmit connector shall not exceed the values specified in Table 6.3D.2.3-1.

Channel bandwidth	(MHz)	5,10,15,20,25,30,35,40,45,50	60,70,80,90,100
REF_SCS	(kHz)	15	30
Transmit OFF power	(dBm)	-50	
Measurement bandwidth	(MHz)	MBW=REF_SCS*(12*N _{RB} +1)/1000	

Table 6.3D.2.3-1: Transmit OFF power

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3D.2.

6.3D.2.4 Test description

This test is covered by clause 6.3D.3 Transmit ON/OFF time mask for UL MIMO.

6.3D.2.5 Test requirement

The requirement for the transmit OFF power at each transmit antenna connector shall not exceed the values specified in Table 6.3D.2.5-1.

Channel bandwidth (MHz)	Transmit OFF power (dBm)	Measurement bandwidth (MHz)	
5	-50+TT	4.515	
10	-50+TT	9.375	
15	-50+TT	14.235	
20	-50+TT	19.095	
25	-50+TT	23.955	
30	-50+TT	28.815	
40	-50+TT	38.895	
45	-50+TT	43.575	
50	-50+TT	48.615	
60	-50+TT	58.35	
70	-50+TT	68.07	
80	-50+TT	78.15	
90	-50+TT	88.23	
100	-50+TT	98.31	
NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.3D.2.5-2			

Table 6.3D.2.5-1: Transmit OFF power

Table 6.3D.2.5-2: Test Tolerance (Transmit OFF power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	1.5 dB	1.8 dB
40MHz < BW ≤ 100MHz	1.7 dB	1.8 dB

6.3D.3 Transmit ON/OFF time mask for UL MIMO

6.3D.3.1 Test purpose

To verify that the general ON/OFF time mask for UL MIMO meets the requirements given in 6.3D.3.5

The transmit power time mask for transmit ON/OFF defines the transient period(s) allowed between transmit OFF power as defined in sub-clause 6.3D.2 and transmit ON power symbols (transmit ON/OFF)

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3D.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL MIMO.

6.3D.3.3 Minimum conformance requirements

For UE supporting UL MIMO, the ON/OFF time mask requirements in subclause 6.3.3.2.3 apply to each transmit antenna connector.

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the general ON/OFF time mask requirements specified in subclause 6.3.3.2.3 apply to each transmit antenna connector with the UL MIMO configurations specified in Table 6.3D.3.3-1.

Table 6.3D.3.3-1: UL MIMO configuration in closed-loop spatial multiplexing scheme

Transmission scheme	DCI format	Codebook Index
Codebook based uplink	DCI format 0_1	Codebook index 0

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3D.3

6.3D.3.4 Test description

6.3D.3.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 6.3D.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3D.3.4.1-1: Test Configuration Table

		Initial Conditions	
Test Environment as specified in TS 38.508-1 [5] subclause 4.1		Normal, TL/VL, TL/VH, TH/VL, TH/VH	
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1		Low range, Mid range, High range	
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause		Lowest, Mid, Highest	
4.3.1			
Test SCS as specified in Table 5.3.5-1		Lowest, Highest	
	Test	Parameters for Channel Bandwidths	
Test ID	Downlink Configuration	Uplink Configuration	
N/A for minimum output power		Modulation	RB allocation (NOTE 1)
1 test case		CP-OFDM QPSK	Inner Full
NOTE 1: The specific	configuration of each RB allocation is defined in	Table 6.1-1.	

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.

- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3D.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3D.3.4.3.

6.3D.3.4.2 Test procedure

- 1. SS sends uplink scheduling information via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3D.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The UL assignment is such that the UE transmits on slots 8 for15kHz SCS, on slots 8 and 18 for 30kHz SCS and on slots 17 and 37 for 60kHz SCS. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. On power sub test:
 - 3.1. Measure the sum output power at two transmit antenna connectors of the UE PUSCH transmission during one slot.
- 4. OFF power sub test:
 - 4.1. Measure the UE transmission OFF power at each antenna connectors during the slot prior to the PUSCH transmission, excluding a transient period of 10 µs at the end of the slot.
 - 4.2. Measure the UE transmission OFF power at each antenna connectors during the slot following the PUSCH transmission, excluding a transient period of 10 µs at the beginning of the slot.

6.3D.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO and following exceptions.

Table 6.3D.3.4.3-1: PUSCH-ConfigCommon

Derivation Path: TS 38.508-1[5], Table 4.6.3-119			
Information Element	Value/remark	Comment	Condition
PUSCH-ConfigCommon ::= SEQUENCE {			
p0-NominalWithGrant	-100		
}			

Information Element	Value/remark	Comment	Condition	
TDD-UL-DL-ConfigCommon ::= SEQUENCE {				
referenceSubcarrierSpacing	SubcarrierSpacing			
pattern1 SEQUENCE {				
dl-UL-TransmissionPeriodicity	ms5		FR1	
	ms10		FR1_15kHz	
nrofDownlinkSlots	6		FR1_15kHz	
	6		FR1_30kHz	
	14		FR1_60kHz	
nrofDownlinkSymbols	10		FR1_15kHz	
	6		FR1_30kHz	
	12		FR1_60kHz	
nrofUplinkSlots	3		FR1_15kHz	
			FR1_30kHz	
	4		FR1_60kHz	
nrofUplinkSymbols	4		FR1_30kHz	
	2		FR1_15kHz	
	8		FR1_60kHz	
}				
pattern2	Not present			

Table 6.3D.3.4.3-2: TDD-UL-DL-Config

Table 6.3D.3.4.3-3: PUSCH-TimeDomainResourceAllocationList

Derivation Path: TS 38.508-1[5], Table 4.6.3-122			
Information Element	Value/remark	Comment	Condition
PUSCH-TimeDomainResourceAllocationList ::= SEQUENCE (SIZE(1maxNrofUL-Allocations)) OF {	2 entries		
PUSCH-TimeDomainResourceAllocation[1] SEQUENCE {			
k2	4		FR1_15kHz, FR1_30kHz
	6		FR1_60kHz
mappingType	typeA		
startSymbolAndLength	27	Start symbol(S)=0, Length(L)=14	
}			
PUSCH-TimeDomainResourceAllocation[2] SEQUENCE {		addressed by Msg3 PUSCH time resource allocation field of the Random Access Response acc. to TS 38.213 [22] Table 8.2-1.	
k2	2	K_2 + Δ=4 acc. to TS 38.214 [21] Table 6.1.2.1.1-5 (NOTE 1)	FR1_15kHz
	6	K ₂ + Δ=9 acc. to TS 38.214 [21] Table 6.1.2.1.1-5 (NOTE 1)	FR1_30kHz

mappingType	typeA				
startSymbolAndLength	27	Start symbol(S)=0, Length(L)=14			
}					
}					
NOTE 1: Values are chosen so that first slot of a TDD-UL-DL slot configuration period can be used for the Random Access Response and the last slot (of the same or another period) for the corresponding Msg3.					

Condition	Explanation
FR1_15kHz	FR1 is used under the test. SCS is set to 15kHz.
FR1_30kHz	FR1 is used under the test. SCS is set to 30kHz.
FR1_60kHz	FR1 is used under the test. SCS is set to 60kHz.

Table 6.3D.3.4.3-4: ServingCellConfigCommon

Derivation Path: 38.508-1[5], Table 4.6.3-168			
Information Element	Value/remark	Comment	Condition
ServingCellConfigCommon ::= SEQUENCE {			
ss-PBCH-BlockPower	18		SCS_15kHz
	21		SCS_30kHz
}			

Condition Explanation	
SCS_15kHz	SCS=15kHz for SS/PBCH block
SCS_30kHz	SCS=30kHz for SS/PBCH block

Table 6.3D.3.4.3-5: *P-Max*

Derivation Path: TS 38.508-1 [5], Table 4.6.3-89						
Information Element	Value/remark	Comment	Condition			
P-Max	23		Power class 2			
			or power			
			class 1.5			

6.3D.3.5 Test requirement

The requirement for the power measured in steps 2, 3 and 4 of the test procedure shall not exceed the values specified in Table 6.3D.3.5-1.

		Channel bandwidth / minimum output power / measurement bandwidth												
	5	10	15	20	25	30	40	45	50	60	70	80	90	100
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
Transmit OFF							≤ -50+TT	dBm						
power														
Transmission	4.515	9.375	14.235	19.095	23.955	28.815	38.895	43.575	48.615	58.35	68.07	78.15	88.23	98.31
OFF														
Measurement														
bandwidth														
Transmit ON	Same as test ID 1 in Table 6.2D.2.5-1													
power	power													
NOTE 1: TT for	each frequ	uency and	channel ba	ndwidth is	specified in	n Table 6.3	D.3.2.5-2							

Table 6.3D.3.5-2: Test Tolerance for OFF power

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	1.5 dB	1.8 dB
40MHz < BW ≤ 100MHz	1.7 dB	1.8 dB

Table 6.3D.3.5-3: Void

6.3D.4 Power control for UL MIMO

6.3D.4.1 Absolute power tolerance for UL MIMO

6.3D.4.1.1 Test purpose

To verify the ability of the UE transmitter for UL MIMO to set its initial output power to a specific value at the start of a contiguous transmission or non-contiguous transmission with a long transmission gap, i.e. transmission gap is larger than 20ms.

6.3D.4.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL MIMO.

6.3D.4.1.3 Minimum conformance requirements

For UE supporting UL MIMO, the power control tolerance applies to the sum of output power at each transmit antenna connector.

The power control requirements specified in subclause 6.3.4.2 apply to UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme. The requirements shall be met with UL MIMO configurations described in Table 6.3D.4.1.3-1

Table 6.3D.4.1.3-1: UL MIMO configuration in closed-loop spatial multiplexing scheme

Transmission scheme	DCI format	Codebook Index
Codebook based uplink	DCI format 0_1	Codebook index 0

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3D.4.

- 6.3D.4.1.4 Test description
- 6.3D.4.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3D.4.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3D.4.1.4.1-1: Test Configuration Table

		Initial C	onditions				
	nment as specified in TS	38.508-1 [5]	Normal				
subclause 4	.1						
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1			Mid range				
		ad in TO 20 500 4	Lowest Mid Lighest				
	el Bandwidths as specifi	ed in 15 38.508-1	Lowest, Mid, Highest				
[5] subclaus	e 4.3.1						
Test SCS as	s specified in Table 5.3.	5-1	Lowest, Highest				
		Test Pa	irameters				
Test ID	Downlink Co	onfiguration	Uplin	k Configuration			
	Modulation	RB Allocation	Modulation	RB allocation (NOTE 1)			
1	N/A for Absolute po	wer tolerance test	CP-OFDM QPSK	Outer_Full			
	cas	e					
NOTE 1: T	he specific configuration	n of each RF allocatio	n is defined in Table 6.1-	1.			

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3D.4.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3D.4.1.4.3. Note that PDCCH DCI format 0_1 sent after resetting uplink power with RRC Connection Reconfiguration, should have TPC command 0dB.

6.3D.4.1.4.2 Test procedure

Same test procedure as clause 6.3.4.2.4.2 with following exceptions.

The power of UE PUSCH first transmissions should be measured as the sum power at each antenna connector.

6.3D.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO and following exceptions.

Table 6.3D.4.1.4.3-1: UplinkPowerControlCommon: Test point 1

Derivation Path: TS 38.508-1 [5] subclause 4.6.3 Table 4.6.3-119 PUSCH-ConfigCommon								
Information Element	Value/remark	Comment	Condition					
PUSCH-ConfigCommon::= SEQUENCE {								
p0-NominalWithGrant	-114	Test point 1 to verify a UE relative low initial power transmission						
}								

Table 6.3D.4.1.4.3-2: UplinkPowerControlCommon: Test point 2

Derivation Path: TS 38.508-1 [5] subclause 4.6.3 Table 4.6.3-119 PUSCH-ConfigCommon								
Information Element	Value/remark	Comment	Condition					
PUSCH-ConfigCommon::= SEQUENCE {								
p0-NominalWithGrant	-100	Test point 2 to verify a UE relative high initial power transmission						
}								

Table 6.3D.4.1.4.3-3: ServingCellConfigCommon

Derivation Path: 38.508-1[5], Table 4.6.3-168										
Information Element Value/remark Comment Condition										
ServingCellConfigCommon ::= SEQUENCE {										
ss-PBCH-BlockPower	18		SCS_15kHz							
	21		SCS_30kHz							
}										

Condition	Explanation
SCS_15kHz	SCS=15kHz for SS/PBCH block
SCS_30kHz	SCS=30kHz for SS/PBCH block

6.3D.4.1.5 Test requirement

The requirement for the power measured in step (2) of the test procedure is not to exceed the values specified in Table 6.3D.4.1.5-1 and 6.3D.4.1.5-2.

			Channel bandwidth / expected output power (dBm)												
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	45 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
Expected	SCS15	-17.6	-14.4	- 12.6	-11.3	- 10.4	-9.6	-8.3	-7.8	-7.3	N/A	N/A	N/A	N/A	N/A
Measured	SCS30	-18.2	-14.8	- 12.8	-11.5	- 10.5	-9.7	-8.3	-7.9	-7.4	-6.5	-5.8	-5.2	-4.7	-4.2
power	SCS60		-15.2	-13	-11.8	- 10.7	-9.8	-8.5	-8	-7.5	-6.6	-5.9	-5.3	-4.8	-4.3
Power tol	erance						=	± (9+TT)o	зB						
Note 1: The lower power limit shall not exceed the minimum output power requirements defined in sub-clause 6.3.2.3 Note 2: TT for each duplex, Sub-Carrier Spacing, frequency and channel bandwidth is specified in Table 6.3.4.2.5-3.															

Table 6.3D.4.1.5-1: Absolute power tolerance: test point 1

Table 6.3D.4.1.5-2: Absolute power tolerance: test point 2

			Channel bandwidth / expected output power (dBm)												
		5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	45 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
Expected	SCS15	-3.6	0.4	1.4	2.7	3.6	4.4	5.7	6.2	6.7	N/A	N/A	N/A	N/A	N/A
Measured	SCS30	-4.2	-0.8	1.2	2.5	3.5	4.3	5.7	6.2	6.6	7.5	8.2	8.8	9.3	9.8
power	SCS60	N/A	-1.2	1	2.2	3.3	4.2	5.5	6	6.5	7.4	8.1	8.7	9.2	9.7
Power tol	erance							± (9+T1	T)dB						
Note 1: The higher power limit shall not exceed the maximum output power requirements defined in sub-clause 6.2.1.3															
Note 2:	TT for eacl	h duplex	, Sub-Ca	rrier Spac	ing, frequ	iency an	d channe	el bandw	vidth is s	pecified	in Table	6.3.4.2.5	i-3.		

Table 6.3D.4.1.5-3: Test Tolerance

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.0 dB	1.4 dB
$40MHz < BW \le 100MHz$	1.4 dB	1.4 dB

6.3D.4.2 Relative power tolerance for UL MIMO

6.3D.4.2.1 Test purpose

To verify the ability of the UE transmitter to set its output power in a target sub-frame relatively to the power of the most recently transmitted reference sub-frame if the transmission gap between these sub-frames is ≤ 20 ms.

6.3D.4.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL MIMO.

6.3D.4.2.3 Minimum conformance requirements

For UE supporting UL MIMO, the power control tolerance applies to the sum of output power at each transmit antenna connector.

The power control requirements specified in subclause 6.3.4.3 apply to UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme. The requirements shall be met with UL MIMO configurations described in Table 6.3D.4.2.3-1

Table 6.3D.4.2.3-1: UL MIMO configuration in closed-loop spatial multiplexing scheme

Transmission scheme	DCI format	Codebook Index
Codebook based uplink	DCI format 0_1	Codebook index 0

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3D.4

6.3D.4.2.4 Test description

6.3D.4.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3D.4.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3D.4.2.4.1-1: Test Configuration Table

		Initial Co	onditions				
subclause 4			Normal				
Test Freque subclause 4	encies as specified in TS I.3.1	38.508-1 [5]	Low range				
	el Bandwidths as specif	ied in TS 38.508-1	Lowest, Mid, Highest				
	s specified in TS 38.508	-1 [5] subclause	Lowest, Highest				
1.0.1		Test Pa	rameters				
Ch BW	Downlink Co			k Configuration			
	Modulation	RB Allocation	Modulation	RB allocation (NOTE 1)			
5MHz	N/A for Relative powe	r tolerance test case	CP-OFDM QPSK	See Table 6.3D.4.2.5-1			
-				See Table 6.3D.4.2.5-2			
				See Table 6.3D.4.2.5-7			
10MHz			CP-OFDM QPSK	See Table 6.3D.4.2.5-3			
				See Table 6.3D.4.2.5-4			
				See Table 6.3D.4.2.5-7			
15MHz]		CP-OFDM QPSK	See Table 6.3D.4.2.5-3			
				See Table 6.3D.4.2.5-4			
				See Table 6.3D.4.2.5-7			
20MHz			CP-OFDM QPSK	See Table 6.3D.4.2.5-3			
				See Table 6.3D.4.2.5-4			
				See Table 6.3D.4.2.5-7			
25MHz			CP-OFDM QPSK	See Table 6.3D.4.2.5-3			
				See Table 6.3D.4.2.5-4			
				See Table 6.3D.4.2.5-7			
30MHz			CP-OFDM QPSK	See Table 6.3D.4.2.5-3			
				See Table 6.3D.4.2.5-4			
				See Table 6.3D.4.2.5-7			
40MHz			CP-OFDM QPSK	See Table 6.3D.4.2.5-3			
				See Table 6.3D.4.2.5-4			
				See Table 6.3D.4.2.5-7			
45MHz			CP-OFDM QPSK	See Table 6.3D.4.2.5-3			
				See Table 6.3D.4.2.5-4			
	_			See Table 6.3D.4.2.5-7			
50MHz			CP-OFDM QPSK	See Table 6.3D.4.2.5-3			
				See Table 6.3D.4.2.5-4			
001411	4			See Table 6.3D.4.2.5-7			
60MHz			CP-OFDM QPSK	See Table 6.3D.4.2.5-5			
				See Table 6.3D.4.2.5-6			
70141-	4			See Table 6.3D.4.2.5-7			
70MHz			CP-OFDM QPSK	See Table 6.3.4.3.5-5			
				See Table 6.3.4.3.5-6			
80MHz	4		CP-OFDM QPSK	See Table 6.3.4.3.5-7 See Table 6.3D.4.2.5-5			
				See Table 6.3D.4.2.5-5 See Table 6.3D.4.2.5-6			
				See Table 6.3D.4.2.5-6 See Table 6.3D.4.2.5-7			
90MHz	-		CP-OFDM QPSK	See Table 6.3D.4.2.5-7			
				See Table 6.3D.4.2.5-6			
				See Table 6.3D.4.2.5-7			
100MHz	1		CP-OFDM QPSK	See Table 6.3D.4.2.5-5			
				See Table 6.3D.4.2.5-6			
				See Table 6.3D.4.2.5-7			
Note 1: T	he starting resource blo	ck shall he PR# 0					

^{1.} Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.

- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3D.4.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3D.4.2.4.3.
- 6.3D.4.2.4.2 Test procedure

Same test procedure as clause 6.3.4.3.4.2 with following exceptions.

The power of PUSCH transmissions should be measured as the sum power at each antenna connector.

- Step 1.1 in ramping up pattern sub test should be changed into following description:
 - 1.1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3.4.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. Send the appropriate TPC commands for PUSCH to the UE to ensure that the UE transmits PUSCH at -31.8 dBm +/- 2.7 dB.

6.3D.4.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO.

6.3D.4.2.5 Test requirement

Each UE power step measured in the test procedure 6.3D.4.2.4.2 should satisfy the test requirements specified in Table 6.3D.4.2.5-1 thru 6.3D.4.2.5-7.

Table 6.3D.4.2.5-1: Test Requirements Relative Power Tolerance for Transmission, channel BW5MHz, ramp up sub-test

Test	Cul	Annlinghia		TDC	Evenented		
Test SCS [kHz]	Sub- test ID	Applicable sub-frames	Uplink RB allocation	TPC command	Expected power step size (Up)	Power step size range (Up)	PUSCH
					ΔΡ [dB]	ΔΡ [dB]	[dB]
		Sub-frames before RB change	Fixed = 1	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
15	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	$4dB \le \Delta P < 10dB$	7.99 +/- (3.5 + TT)
		Sub-frames after RB change	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Sub-frames before RB change	Fixed = 1	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	2	RB change	1RB to 15 RBs	TPC=+1dB	12.76	10dB ≤ ΔP < 15dB	12.76 +/- (4 + TT)
		Sub-frames after RB change	Fixed = 15	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Sub-frames before RB change	Fixed = 1	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	$4dB \le \Delta P < 10dB$	7.99 +/- (3.5 + TT)
		Sub-frames after RB change	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
30		Sub-frames before RB change	Fixed = 1	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	2	RB change	1RB to 10 RBs	TPC=+1dB	11.00	10dB ≤ ΔP < 15dB	11.00 +/- (4 + TT)
		Sub-frames after RB change	Fixed = 10	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
Note 1: Note 2: Note 3: Note 4:	Patterr Patterr Patterr The sta TT=0.7	n B the position of n C the position of arting resource blo	RB uplink allocatic RB uplink allocatic ck shall be RB# 0.	on change is al on change is a	fter 20 active fter 30 active	uplink Sub-frames uplink Sub-frames uplink Sub-frames	

Table 6.3D.4.2.5-2: Test Requirements Relative Power Tolerance for Transmission, channel BW5MHz, ramp down sub-test

Test	Sub-	Applicable	Uplink RB	TPC	Exposted		
Test SCS [kHz]	test ID	sub-frames	allocation	command	Expected power step size (Down)	Power step size range (Down)	PUSCH
					ΔP [dB]	ΔΡ [dB]	[dB]
		Sub-frames before RB change	Fixed = 5	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	5 RBs to 1 RB	TPC=-1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Sub-frames after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
15		Sub-frames before RB change	Fixed = 15	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	2	RB change	15 RBs to 1 RB	TPC=-1dB	12.76	10dB ≤ ΔP < 15dB	12.76 +/- (3.5 + TT)
		Sub-frames after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Sub-frames before RB change	Fixed = 5	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	5 RBs to 1 RB	TPC=-1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Sub-frames after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
30		Sub-frames before RB change	Fixed = 10	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	2	RB change	10 RBs to 1 RB	TPC=-1dB	11.00	10dB ≤ ΔP < 15dB	11.00 +/- (4 + TT)
		Sub-frames after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
Note 1: Note 2: Note 3:	Patterr Patterr Patterr	n B the position n C the position arting resource b	of RB uplink allocat of RB uplink allocat	tion change is a tion change is	after 20 active	e uplink Sub-frames e uplink Sub-frames e uplink Sub-frames	·
Note 4:	Applica	able if PUMAX ≥	: P ≥ Pmin. Pmin as	s defined in sul	b-clause 6.3.1	l.	

Table 6.3D.4.2.5-3: Test Requirements Relative Power Tolerance for Transmission, channel BW10MHz, 15MHz, 20MHz, 25MHz, 30MHz, 40MHz, 45MHz, 50MHz ramp up sub-test

	Expected	

Test	Sub-	Applicable	Uplink RB	TPC	Expected		
SCS [kHz]	test ID	sub- frames	allocation	command	power step size	Power step size range (Up)	PUSCH
					(Up) ΔΡ [dB]	ΔΡ [dB]	[dB]
		Subframes before RB	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	change RB change	1RB to 5 RBs	TPC=+1dB			7.99 +/- (3.5 +
	1	_			7.99	4dB ≤ ∆P < 10dB	T.99 +/- (3.5 + TT)
		Subframes after RB change	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
15	2	RB change	1RB to 20 RBs	TPC=+1dB	14.01	10dB ≤ ΔP < 15dB	14.01 +/- (4 + TT)
		Subframes after RB change	Fixed = 20	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	3	RB change	1RB to 50 RBs	TPC=+1dB	17.99	15dB ≤ ΔP	17.99 +/- (5 + TT)
		Subframes after RB change	Fixed = 50	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB change	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
30		Subframes before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	2	RB change	1RB to 24 RBs	TPC=+1dB	14.80	10dB ≤ ∆P < 15dB	14.80+/- (4 + TT)
		Subframes after RB change	Fixed = 24	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB change	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
60		Subframes before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	2	RB change	1RB to 10 RBs	TPC=+1dB	11.00	10dB ≤ ∆P < 15dB	11.00 +/- (4 + TT)
		Subframes after RB change	Fixed = 10	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)

3GPP TS 38.521-1 V17.6.1 (2022-10)

Note 1:	Position of RB change:
	Pattern A the position of RB uplink allocation change is after 10 active uplink Subframes.
	Pattern B the position of RB uplink allocation change is after 20 active uplink Subframes
	Pattern C the position of RB uplink allocation change is after 30 active uplink Subframes.
Note 2:	The starting resource block shall be RB# 0.
Note 3:	TT=0.7dB
Note 4:	Applicable if PUMAX \ge P \ge Pmin. Pmin as defined in sub-clause 6.3.1.

Table 6.3D.4.2.5-4: Test Requirements Relative Power Tolerance for Transmission, channel BW10MHz, 15MHz, 20MHz, 25MHz, 30MHz, 40MHz, 45MHz, 50MHz ramp down sub-test

Test	Sub-	Applicable	Uplink RB	TPC	Expected		
SCS [kHz]	test ID	sub- frames	allocation	command	power step size	Power step size range (Down)	PUSCH
[]		inalitee			(Down)		
					ΔΡ [dB]	ΔΡ [dB]	[dB]
		Subframes before RB	Fixed = 5	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change			I		117 (0.7 1 11)
	1	RB change	5 RBs to 1RBs	TPC=-1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	Fixed = 20	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
15	2	RB change	20 RBs to 1 RB	TPC=-1dB	14.01	10dB ≤ ∆P < 15dB	14.01 +/- (4 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	Fixed = 50	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	3	RB change	50 RBs to 1 RB	TPC=-1dB	17.99	15dB ≤ ΔP	17.99 +/- (5 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
30		Subframes before RB change	Fixed = 5	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	5 RBs to 1 RB	TPC=-1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	Fixed = 24	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	2	RB change	24 RBs to 1 RB	TPC=-1dB	14.80	10dB ≤ ΔP < 15dB	14.80 +/- (4 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	Fixed = 5	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	5 RBs to 1 RB	TPC=-1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
60		Subframes before RB change	Fixed = 10	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	2	RB change	10 RBs to 1 RB	TPC=-1dB	11.00	10dB ≤ ∆P < 15dB	11.00 +/- (4 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)

Note 1:	Position of RB change:
	Pattern A the position of RB uplink allocation change is after 10 active uplink Subframes.
	Pattern B the position of RB uplink allocation change is after 20 active uplink Subframes
	Pattern C the position of RB uplink allocation change is after 30 active uplink Subframes.
Note 2:	The starting resource block shall be RB# 0.
Note 3:	TT=0.7dB
Note 4:	Applicable if PUMAX \ge P \ge Pmin. Pmin as defined in sub-clause 6.3.1.

Table 6.3D.4.2.5-5: Test Requirements Relative Power Tolerance for Transmission, channel BW60MHz, 70MHz, 80MHz, 90MHz, 100MHz ramp up sub-test

Test SCS	Sub- test	Applicable sub-	Uplink RB allocation	TPC command	Expected power	Power step size	
[kHz]	ID	frames	anocation	command	step size (Up)	range (Up)	PUSCH
					ΔP [dB]	ΔP [dB]	[dB]
		Subframes before RB	1RB	TPC=+1dB	4		4 · / (0 7 · TT)
		change			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB change	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
30	2	RB change	1RB to 24 RBs	TPC=+1dB	14.80	10dB ≤ ∆P < 15dB	14.80 +/- (4 + TT)
		Subframes after RB change	Fixed = 24	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	3	Subframes before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		RB change	1RB to 81 RBs	TPC=+1dB	20.08	15dB < ΔP	20.08 +/- (5 + TT)
		Subframes after RB change	Fixed = 81	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB change	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
60		Subframes before RB change	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	2	RB change	1RB to 75 RBs	TPC=+1dB	19.75	15dB < ΔP	19.75 +/- (5 + TT)
		Subframes after RB change	Fixed = 75	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
Note 1: Note 2: Note 3:	Position of RB change: Pattern A the position of RB uplink allocation change is after 10 active uplink Subframes. Pattern B the position of RB uplink allocation change is after 20 active uplink Subframes Pattern C the position of RB uplink allocation change is after 30 active uplink Subframes. The starting resource block shall be RB# 0. TT=0.7dB Applicable if RLIMAX > R > Rmin an defined in sub clause 6.2.1						

Note 4: Applicable if $PUMAX \ge P \ge Pmin$. Pmin as defined in sub-clause 6.3.1.

Table 6.3D.4.2.5-6: Test Requirements Relative Power Tolerance for Transmission, channel BW60MHz, 70MHz, 80MHz, 90MHz, 100MHz ramp down sub-test

Test SCS	Sub- test	Applicable sub-	Uplink RB allocation	TPC command	Expected power	Power step size	
[kHz]	ID	frames	anocation	command	step size	range (Down)	PUSCH
					(Down) ΔP [dB]	ΔΡ [dB]	[dB]
		Subframes before RB	Fixed = 5	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change					
	1	RB change	5 RBs to 1 RB	TPC=-1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	Fixed = 24	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
30	2	RB change	24 RBs to 1 RB	TPC=-1dB	14.80	10dB ≤ ∆P < 15dB	14.80 +/- (4 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	3	Subframes before RB change	Fixed = 81	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		RB change	81 RBs to 1 RB	TPC=-1dB	20.08	15dB < ΔP	20.08 +/- (5 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	Fixed = 5	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	5 RBs to 1 RB	TPC=-1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
60		Subframes before RB change	Fixed = 75	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	2	RB change	75 RBs to 1 RB	TPC=-1dB	19.75	15dB < ΔP	19.75 +/- (5 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
Note 1: Note 2: Note 3:	Pattern Pattern Pattern The sta	change Position of RB change: Pattern A the position of RB uplink allocation change is after 10 active uplink Subframes. Pattern B the position of RB uplink allocation change is after 20 active uplink Subframes Pattern C the position of RB uplink allocation change is after 30 active uplink Subframes. The starting resource block shall be RB# 0. TT=0.7dB					

Note 4: Applicable if $PUMAX \ge P \ge Pmin$. Pmin as defined in sub-clause 6.3.1.

Table 6.3D.4.2.5-7: Test Requirements Relative Power Tolerance for Transmission, alternating subtest

BW	Test SCS [kHz]	Sub- test ID	Uplink RB allocation	TPC command	Expected power step size (Up or Down)	Power step size range (Up or Down)	PUSCH	
					ΔP [dB]	ΔΡ [dB]	[dB]	
		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ΔP < 4dB	3.01 +/- (3 + TT)	
	15	2	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)	
5		3	Alternating 1 and 15	TPC=0dB	11.76	10dB ≤ ΔP < 15dB	11.76 +/- (4 + TT)	
		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ΔP < 4dB	3.01 +/- (3 + TT)	
	30	2	Alternating 1 and 10	TPC=0dB	10.00	10dB ≤ ΔP < 15dB	10.00 +/- (4 + TT)	
		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ΔP < 4dB	3.01 +/- (3 + TT)	
		2	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)	
	15	3	Alternating 1 and 20	TPC=0dB	13.01	10dB ≤ ΔP < 15dB	13.01 +/- (4 + TT)	
		4	Alternating 1 and 50	TPC=0dB	16.99	15dB ≤ ΔP	16.99 +/- (5 + TT)	
		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ΔP < 4dB	3.01 +/- (3 + TT)	
10,15,20, 25,30,40,45,50	30	2	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)	
		3	Alternating 1 and 24	TPC=0dB	13.80	10dB ≤ ΔP < 15dB	13.80 +/- (4 + TT)	
		1	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)	
	60	2	Alternating 1 and 10	TPC=0dB	10.00	10dB ≤ ΔP < 15dB	10.00 +/- (4 + TT)	
		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ΔP < 4dB	3.01 +/- (3 + TT)	
	30	2	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)	
		3	Alternating 1 and 81	TPC=0dB	19.08	15dB < ΔP	19.08 +/- (5 + TT)	
60,70,80,90,100		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ΔP < 4dB	3.01 +/- (3 + TT)	
	60	2	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)	
		3	Alternating 1 and 75	TPC=0dB	18.75	15dB < ΔP	18.75 +/- (5 + TT)	
Note 1: The sta	arting reso	ource blo	ck shall be RB#					
	Note 3:	Applicab		Note 2: TT=0.7dB Note 3: Applicable if PUMAX ≥ P ≥ Pmin. Pmin as defined in sub-clause 6.3.1.				

6.3D.4.3 Aggregate power tolerance for UL MIMO

6.3D.4.3.1 Test purpose

To verify the ability of the UE with UL MIMO to maintain its power during non-contiguous transmissions within 21ms in response to 0 dB commands with respect to the first UE transmission and all other power control parameters as specified in 38.213 kept constant.

6.3D.4.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL MIMO.

6.3D.4.3.3 Minimum conformance requirements

For UE supporting UL MIMO, the power control tolerance applies to the sum of output power at each transmit antenna connector.

775

The power control requirements specified in subclause 6.3.4.4 apply to UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme. The requirements shall be met with UL MIMO configurations described in Table 6.3D.4.3.3-1

Table 6.3D.4.3.3-1: UL MIMO configuration in closed-loop spatial multiplexing scheme

Transmission scheme	DCI format	Codebook Index
Codebook based uplink	DCI format 0_1	Codebook index 0

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3D.4

6.3D.4.3.4	Test description

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3D.4.3.4.1-1 and table 6.3D.4.3.4.1-2. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3D.4.3.4.1-1: Test Configuration Table: PUCCH sub-test

	Initial Conditions				
	ent as specified in TS 38.508-1 [5]	Normal			
subclause 4.1					
Test Frequenci	es as specified in TS 38.508-1 [5]	Mid range			
subclause 4.3.1	1				
Test Channel B	andwidths as specified in TS 38.508-1 [5]	Lowest, Mid, Highest			
subclause 4.3.1	l				
Test SCS as sp	pecified in Table 5.3.5-1	Lowest, Highest			
	Test Parameters for	Channel Bandwidths			
Test ID	Downlink Configuration	Uplink Configuration			
	N/A for aggregate power tolerance	PUCCH format = Format 1			
1	testcase	Length in OFDM symbols = 14			

Table 6.3D.4.3.4.1-2: Test Configuration Table: PUSCH sub-test

		Initial Conditions	
Test Environme	ent as specified in TS 38.508-1	Normal	
[5] subclause 4	.1		
Test Frequencie	es as specified in TS 38.508-1	Mid range	
[5] subclause 4	.3.1		
Test Channel B	andwidths as specified in TS	Lowest, Mid, Highest	
38.508-1 [5] sul	oclause 4.3.1		
Test SCS as sp	ecified in Table 5.3.5-1	Lowest, Highest	
	Test Param	neters for Channel Bandwidths	
Test ID Downlink Configuration		Uplink Configuration	
N/A for aggregate power		Modulation	RB allocation (NOTE 1)
1 tolerance testcase		CP-OFDM QPSK	Outer_Full
NOTE 1: The	specific configuration of each RF	allocation is defined in Table 6.1-1.	

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL and DL Reference Measurement channels are set according to Table 6.3D.4.3.4.1-1 (PUCCH sub-test) and Table 6.3D.4.3.4.1-2 (PUSCH sub-test)
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3D.4.3.4.3.
- 6.3D.4.3.4.2 Test procedure

Same test procedure as clause 6.3.4.4.2 with following exceptions.

The power of PDCCH /PUSCH transmissions should be measured as the sum power at each antenna connector.

6.3D.4.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO.

6.3D.4.3.5 Test requirement

The requirement for the power measurements made in step (1.3) and (2.3) of the test procedure shall not exceed the values specified in Table 6.3D.4.3.5-1. The power measurement period shall be 1 sub-frame.

Table 6.3D.4.3.5-1: Power control tolerance

TPC commands	UL channel	Test requirement measured power	
0 dB	PUCCH	Given 5 power measurements in the pattern, the 2^{nd} , and later measurements shall be within ± (2.5dB + TT) of the 1^{st} measurement.	
0 dB	PUSCH	Given 5 power measurements in the pattern, the 2 nd , and later measurements shall be within ± (3.5dB + TT) of the 1 st measurement.	
Note 1: For SCS 30kHz 1 sub-frame corresponds to 2 slots, so 2 TPC commands will be sent for a single measurement period. For SCS 60kHz 1 sub-frame corresponds to 4 slot, so 4 TPC commands will be sent for a single measurement period.			

6.3E Output power dynamics for V2X

6.3E.1 Minimum output power for V2X

6.3E.1.0 Minimum conformance requirements

6.3E.1.0.1 General

When UE is configured for NR V2X sidelink transmissions non-concurrent with NR uplink transmissions for NR V2X operating bands in Table 5.2E-1, the minimum output power is specified in Table 6.3E.1.0.1-1. The minimum output power is defined as the mean power in at least one sub-frame 1 ms.

Table 6.3E.1.0.1-1: Minimum output power

Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
10	-30	9.375
20	-30	19.095
30	-28.2	28.815
40	-27	38.895

For NR V2X UE with two transmit antenna connectors, the minimum output power is defined as the sum of the mean power at each transmit connector in one sub-frame (1 ms). The minimum output power shall not exceed the values specified for single carrier.

If the UE transmits on one antenna connector at a time, the requirements specified for single carrier shall apply to the active antenna connector.

6.3E.1.0.2 Minimum output power for V2X con-current operation

For the inter-band con-current NR V2X operation, the requirements specified in subclause 6.3.1.3 shall apply for the uplink in licensed band and the requirements specified in subclause 6.3E.1.0 shall apply for the sidelink in licensed band or Band n47.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3E.1

- 6.3E.1.1 Minimum output power for V2X / non-concurrent operation
- 6.3E.1.1.1 Test purpose

Same test purpose as in 6.3.1.1.

6.3E.1.1.2 Test applicability

This test case applies to all types of UE release 16 and forward that support NR V2X sidelink communication.

6.3E.1.1.3	Minimum	conformance	requirements
0.00.1.1.0	with the training of the	oomonnunoo	requiremento

The minimum conformance requirements are defined in clause 6.3E.1.0.

Test description

6.3E.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.2E.1-1 and table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3E.1.1.4.1-1. The details of the V2X reference measurement channels (RMCs) are specified in Annex A.7.5 and the GNSS configuration in TS 38.508-1 [5] subclause 4.11.

Table 6.3E.1.1.4.1-1: Test Configuration Table for minimum output power

		In	itial Conditi	ons	
Test Environment as specified in TS		Normal, TL	/VL, TL/VH, TH/VL, TH/VH		
	subclause 4.1				
	ncies as specified in T	S	Low range,	High range	
38.508-1 [5]	subclause 4.3.1.8				
	I Bandwidths as spec	ified	Lowest, Hig	ghest	
	[5] subclause 4.3.1				
Test SCS as specified in Table 5.3.5-1		Lowest, Hig	ghest		
	Test Parameters for Channel Bandwidths				
Test ID	Freq		V2X	Configuration to Transmit	
		Мо	dulation	PSCCH and PSSCH RB allocation	
(Note 1)				(Note 1)	
1	Default	0	QPSK	Outer_Full	
3	Default	16QAM		Outer_Full	
5	Default	6	4QAM	Outer_Full	
6	Default	25	6QAM	Outer_Full	
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1E-1.					

- 1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.9.1 for TE diagram and section A.3.2.7 for UE diagram.
- The parameter settings for the NR sidelink transmission over PC5 are pre-configured according to TS 38.508-1
 [5] subclause 4.10. Message content exceptions are defined in clause 6.3E.1.1.4.3.
- 3. The V2X Reference Measurement Channel is set according to Table 6.3E.1.1.4.1-1.
- 4. The GNSS simulator is configured for Scenario #1: static in Ge ographical area #1, as defined in TS38.508-1 [5] Table 4.11.2-2. Geographical area #1 is also pre-configured in the UE.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state Out_of_Coverage with generic procedure parameters Sidelink *On*, Test Loop Function *On* with UE test loop mode E closed for *Transmit Mode* according to TS 38.508-1 [5] clause 4.5.

6.3E.1.1.4.2 Test procedure

- 1. The UE starts to perform the NR sidelink communication according to *SL-PreconfigurationNR*. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the NR sidelink RMC.
- 2. Measure the mean power of the UE in the channel bandwidth according to the test configuration from Table 6.3E.1.1.4.1-1. The period of measurement shall be at least continuous duration of one active sub-frame (1ms) excluding guard symbols.

6.3E.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.10 with the following exceptions.

Table 6.3E.1.1.4.3-1: SL-ResourcePool

Derivation Path: TS 38.508-1 [5], Table 4.6.6-25			
Information Element	Value/remark	Comment	Condition
SL-ResourcePool-r16 ::= SEQUENCE {			
sI-PSCCH-Config-r16 CHOICE {			
setup SEQUENCE {			
sl-TimeResourcePSCCH-r16	As defined in Table 6.1E- 2		
sl-FreqResourcePSCCH-r16	As defined in Table 6.1E- 2		
}			
}			
sl-SubchannelSize-r16	As defined in Table 6.1E- 2		
sl-StartRB-Subchannel-r16	As defined in Table 6.1E- 2		
sl-NumSubchannel-r16	As defined in Table 6.1E- 2		
}			

Table 6.3E.1.1.4.3-2: SL-TxPower

Derivation Path: TS 38.508-1 [5], Table 4.6.6-33			
Information Element	Value/remark	Comment	Condition
SL-TxPower-r16 ::= CHOICE {			
txPower	-30		
}			

6.3E.1.1.5 Test requirement

The minimum output power, derived in step 2 shall not exceed the values specified in Table 6.3E.1.1.5-1.

Table 6.3E.1.1.5-1: Minimum output power

Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)		
10	-30+TT	9.375		
20	-30+TT	19.095		
30	-28.2+TT	28.815		
40	-27+TT	38.895		
NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.3.1.5-2				

Table 6.3E.1.1.5-2: Test Tolerance (Minimum output power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.0 dB	1.3 dB

6.3E.1.1D Minimum output power for V2X / non-concurrent operation / SL-MIMO

Editor's Note: The test case is not completed due to the following aspects are not yet determined:

- Uplink RMC is TBD in RAN4

- Preconfiguration is not complete in 38.508-1

- Test state and generic procedure are TBD in 38.508-1
- Measurement period of PSFCH and PSBCH is FFS.
- Connection diagram for SL-MIMO is TBD
- 6.3E.1.1D.1 Test purpose

Same test purpose as in 6.3E.1.1.

6.3E.1.1D.2 Test applicability

This test case applies to all types of UE release 16 and forward that support NR V2X sidelink communication and SL-MIMO.

780

6.3E.1.1D.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3E.1.0.

6.3E.1.1D.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.2E.1-1 and table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3E.1.1D.4.1-1. The details of the V2X reference measurement channels (RMCs) are specified in Annexes TBD and the GNSS configuration in TS 38.508-1 [5] subclause 4.11.

Table 6.3E.1.1D.4.1-1: Test Configuration Table for minimum output power for SL-MIMO

		In	itial Conditi	ons	
Test Environment as specified in TS		Normal, TL	/VL, TL/VH, TH/VL, TH/VH		
38.508-1 [5] subclause 4.1					
Test Frequer	cies as specified in T	S	Low range,	High range	
38.508-1 [5]	subclause 4.3.1.8				
Test Channe	I Bandwidths as spec	ified	Lowest, Hig	ghest	
TS 38.508-1	[5] subclause 4.3.1				
Test SCS as specified in Table 5.3.5-1		Lowest, Hig	ghest		
	Test Parameters for Channel Bandwidths				
Test ID	Test ID Freq V2X Configuration to Transmit				
		Мос	dulation	PSCCH and PSSCH RB allocation	
				(Note 1)	
1	Default	C	QPSK	Outer_Full	
2	Default	16QAM		Outer_Full	
3	Default	64	4QAM	Outer_Full	
4	Default	25	6QAM	Outer_Full	
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1E-1.					

- 1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure TBD for TE diagram and section TBD for UE diagram.
- The parameter settings for the NR sidelink transmission over PC5 are pre-configured according to TS 38.508-1
 [5] subclause 4.10. Message content exceptions are defined in clause 6.3E.1.1D.4.3.
- 3. The V2X Reference Measurement Channel is set according to Table 6.3E.1.1D.4.1-1.
- 4. The GNSS simulator is configured for Scenario #1: static in Geographical area #1, as defined in TS38.508-1 [5] Table 4.11.2-2. Geographical area #1 is also pre-configured in the UE.

- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state 4-A as defined in TS 38.508-1 [4], subclause 4.4A using generic procedure parameter Sidelink (*On*), Cast Type (*Unicast*), GNSS Sync (*On*) and *Transmit Mode with SL-MIMO*.

6.3E.1.1D.4.2 Test procedure

- 1. The UE starts to perform the NR sidelink communication according to *SL-PreconfigurationNR* with 2-layer MIMO codebook TPMI 0. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the NR sidelink RMC.
- 2. Measure the sum of mean power of the UE at each transmit antenna connector in the channel bandwidth according to the test configuration from Table 6.3E.1.1D.4.1-1. The period of measurement shall be at least continuous duration of one active sub-frame (1ms) excluding guard symbols.

6.3E.1.1D.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.10 with the following exceptions.

Table 6.3E.1.1D.4.3-1: SL-ResourcePool

Derivation Path: TS 38.508-1 [5], Table 4.6.6-25			
Information Element	Value/remark	Comment	Condition
SL-ResourcePool-r16 ::= SEQUENCE {			
sI-PSCCH-Config-r16 CHOICE {			
setup SEQUENCE {			
sl-TimeResourcePSCCH-r16	As defined in Table 6.1E- 2		
sl-FreqResourcePSCCH-r16	As defined in Table 6.1E- 2		
}			
}			
sl-SubchannelSize-r16	As defined in Table 6.1E- 2		
sl-StartRB-Subchannel-r16	As defined in Table 6.1E- 2		
sl-NumSubchannel-r16	As defined in Table 6.1E- 2		
}			

Table 6.3E.1.1D.4.3-2: SL-TxPower

Derivation Path: TS 38.508-1 [5], Table 4.6.6-33			
Information Element	Value/remark	Comment	Condition
SL-TxPower-r16 ::= CHOICE {			
txPower	-30		
}			

6.3E.1.1D.5 Test requirement

The minimum output power, derived in step 2 shall not exceed the values specified in Table 6.3E.1.1D.5-1.

Table 6.3E.1.1D.5-1: Minimum output power

Channel bandwidth	Minimum output power	Measurement bandwidth			
(MHz)	(dBm)	(MHz)			
10	-30+TT	9.375			
20	-30+TT	19.095			
30	-28.2+TT	28.815			
40	-27+TT	38.895			
NOTE 1: TT for each frequency and channel bandwidth is specified in Table					
6.3E.1.1D.5-2					

Table 6.3E.1.1D.5-2: Test Tolerance (UE maximum output power)

	f ≤ 3.0GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 40MHz	FFS	FFS

6.3E.2 Transmit OFF power for V2X

- 6.3E.2.0 Minimum conformance requirements
- 6.3E.2.0.1 General

When UE is configured for NR V2X sidelink transmissions non-concurrent with NR uplink transmissions for NR V2X operating bands in Table 5.2E.1-1, the requirements specified in Table 6.3E.2.0.1-1 apply.

Channel bandwidth (MHz)	Transmit OFF power (dBm)	Measurement bandwidth (MHz)
10	-50	9.375
20	-50	19.095
30	-50	28.815
40	-50	38.895

For NR V2X UE supporting SL MIMO, the transmit OFF power at each transmit antenna connector shall not exceed the values specified in Table 6.3E.2.0.1-1 for single carrier. Transmit off power is defined as the mean power in at least one sub-frame 1 ms.

6.3E.2.0.2 Transmit OFF power for V2X con-current operation

For the inter-band con-current NR V2X operation, the requirements specified in clause 6.3.2 shall apply for the uplink in licensed band and the requirements specified in Table 6.3E.2.0.1-1 shall apply for the sidelink in licensed band or Band n47.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3E.2.

6.3E.2.1 Transmit OFF power for V2X / non-concurrent operation

Editor's Note: This test is incomplete. The following aspects are not yet determined:

- 6.3E.3.2.1 General time mask for V2X / non-concurrent operation is FFS.

6.3E.2.1.1 Test purpose

To verify that the UE transmit OFF power is lower than the value specified in the test requirement.

An excess Transmit OFF power potentially increases the Rise Over Thermal (RoT) and therefore reduces the cell coverage area for other UEs.

6.3E.2.1.2 Test applicability

The requirements of this test apply in test case 6.3E.3.2.1 General time mask for V2X / non-concurrent operation to all types of NR UE release 16 and forward that support NR V2X sidelink communication.

6.3E.2.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3E.2.0.

6.3E.2.1.4 Test description

This test is covered by clause 6.3E.3.2.1 General time mask for V2X / non-concurrent operation.

6.3E.2.1.5 Test requirement

The requirement for the Transmit OFF power shall not exceed the values specified in Table 6.3E.2.1.5-1.

Table 6.3E.2.1.5-1: Transmit OFF power

Channel bandwidth (MHz)	Transmit OFF power (dBm)	Measurement bandwidth (MHz)
10	-50+TT	9.375
20	-50+TT	19.095
30	-50+TT	28.815
40	-50+TT	38.895
NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.3E.2.1.5-		
2		

Table 6.3E.2.1.5-2: Test Tolerance (Transmit OFF power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.5 dB	1.8 dB

6.3E.2.1D Transmit OFF power for V2X / non-concurrent operation / SL-MIMO

Editor's Note: This test is incomplete. The following aspects are not yet determined:

- 6.3E.3.2.1D General time mask for V2X / non-concurrent operation / SL-MIMO is FFS.

6.3E.2.1D.1 Test purpose

To verify that the UE transmit OFF power is lower than the value specified in the test requirement.

An excess Transmit OFF power potentially increases the Rise Over Thermal (RoT) and therefore reduces the cell coverage area for other UEs.

6.3E.2.1D.2 Test applicability

The requirements of this test apply in test case 6.3E.3.2.1D General time mask for V2X / non-concurrent operation / SL-MIMO to all types of NR UE release 16 and forward that support NR V2X sidelink communication and SL-MIMO.

6.3E.2.1D.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3E.2.0.

6.3E.2.1D.4 Test description

This test is covered by clause 6.3E.3.2.1D General time mask for V2X / non-concurrent operation / SL-MIMO.

6.3E.2.1D.5 Test requirement

The requirement for the Transmit OFF power shall not exceed the values specified in Table 6.3E.2.1D.5-1.

Table 6.3E.2.1D.5-1: Transmit OFF power

Channel bandwidth	Transmit OFF power	Measurement bandwidth
(MHz)	(dBm)	(MHz)
10	-50+TT	9.375
20	-50+TT	19.095
30	-50+TT	28.815
40	-50+TT	38.895
NOTE 1: TT for each frequency and channel bandwidth is specified in Table		
6.3E.2.1D.5-2		

Table 6.3E.2.1D.5-2: Test Tolerance (Transmit OFF power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.5 dB	1.8 dB

6.3E.2.2 Transmit OFF power for V2X / con-current operation

Editor's Note: This test is incomplete. The following aspects are not yet determined:

- 6.3E.3.2.2 General time mask for V2X / con-current operation is FFS.

6.3E.2.2.1 Test purpose

To verify that the UE transmit OFF power is lower than the value specified in the test requirement.

An excess Transmit OFF power potentially increases the Rise Over Thermal (RoT) and therefore reduces the cell coverage area for other UEs.

6.3E.2.2.2 Test applicability

The requirements of this test apply in test case 6.3E.3.2.2 General time mask for V2X / con-current operation to all types of NR UE release 16 and forward that support NR V2X sidelink communication.

6.3E.2.2.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.3E.2.0.

6.3E.2.2.4 Test description

This test is covered by clause 6.3E.3.2.2 General time mask for V2X / con-current operation.

6.3E.2.2.5 Test requirement

The requirement for the Transmit OFF power shall not exceed the values specified in Table 6.3E.2.2.5-1.

Table 6.3E.2.2.5-1: Transmit OFF power

Channel bandwidth (MHz)	Transmit OFF power (dBm)	Measurement bandwidth (MHz)
10	-50+TT	9.375
20	-50+TT	19.095
30	-50+TT	28.815
40	-50+TT	38.895
NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.3E.2.2.5-		
2		

Table 6.3E.2.2.5-2: Test Tolerance (Transmit OFF power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.5 dB	1.8 dB

6.3F Output power dynamics for shared spectrum channel access

6.3F.1 Minimum output power

Editor's Note: This test is incomplete. The following aspects are not yet determined:

- Test configuration table is FFS

- MU and TT for >6GHz (band n96).

- Test state and generic procedure are TBD in 38.508-1

6.3F.1.1 Test purpose

To verify the UE's ability to transmit with a broadband output power below the value specified in the test requirement when the power is set to a minimum value.

6.3F.1.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR standalone shared spectrum channel access.

6.3F.1.3 Minimum conformance requirements

The minimum controlled output power of the UE is defined as the power in the channel bandwidth for all transmit bandwidth configurations (resource blocks), when the power is set to a minimum value.

The minimum output power is defined as the mean power in at least one sub-frame 1 ms. The minimum output power shall not exceed the values specified in Table 6.3F.1.3-1.

Table 6.3F.1.3-1: Minimum output power

Channel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)
5	-40	4.515
10	-40	9.375
15	-40	14.235
20	-40	19.095
25	-39	23.955
30	-38.2	28.815
40	-37	38.895
45	-36.5	43.575
50	-36	48.615
60	-35.2	58.35
70	-34.6	68.07
80	-34	78.15
90	-33.5	88.23
100	-33	98.31

The normative reference for requirement is TS 38.101-1 [2] clause 6.3F.1 and 6.3.1.

6.3F.1.4 Test description

6.3F.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

786

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.3F.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3F.1.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3F.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3F.1.4.3.

6.3F.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3F.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "down" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step to ensure that the UE transmits at its minimum output power.
- 3. Measure the mean power of the UE in the associated measurement channel bandwidth specified in Table 6.3F.1.5-1 for the specific channel bandwidth under test. The period of measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD symbols with transient periods are not under test.
- 6.3F.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exception.

Table 6.3F.1.4.3-1: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED

6.3F.1.5 Test requirement

The minimum output power, derived in step 3 shall not exceed the values specified in Table 6.3F.1.5-1.

	Measurement bandwidth
(dBm)	(MHz)
-40+TT	4.515
-40+TT	9.375
-40+TT	14.235
-40+TT	19.095
-39+TT	23.955
-38.2+TT	28.815
-37+TT	38.895
-36.5+TT	43.575
-36+TT	48.615
-35.2+TT	58.35
-34.6+TT	68.07
-34+TT	78.15
-33.5+TT	88.23
-33+TT	98.31
	-40+TT -40+TT -40+TT -39+TT -38.2+TT -38.2+TT -36.5+TT -36.5+TT -36+TT -35.2+TT -34.6+TT -34.6+TT -34.FT -33.5+TT

Table 6.3F.1.5-1: Minimum output power

Table 6.3F.1.5-2: Test Tolerance (Minimum output power)

	4.2GHz < f ≤ 5.925GHz	5.925GHz < f ≤ 7.125GHz
BW ≤ 40MHz	1.3 dB	TBD
40MHz < BW ≤ 100MHz	1.3 dB	TBD

6.3F.2 Transmit OFF power for shared spectrum channel access

6.3F.2.1 Test purpose

To verify that the UE transmit OFF power is lower than the value specified in the test requirement.

An excess Transmit OFF power potentially increases the Rise Over Thermal (RoT) and therefore reduces the cell coverage area for other UEs.

6.3F.2.2 Test applicability

The requirements of this test apply in test case 6.3F.3 Transmit ON/OFF time mask for shared spectrum channel access to all types of NR UE release 16 and forward that support NR standalone shared spectrum channel access.

6.3F.2.3 Minimum conformance requirements

Transmit OFF power is defined as the mean power in the channel bandwidth when the transmitter is OFF. The transmitter is considered OFF when the UE is not allowed to transmit on any of its ports.

The Transmit OFF power is defined as the mean power in a duration of at least one sub-frame (1ms) excluding any transient periods. The Transmit OFF power shall not exceed the values specified in Table 6.3F.2.3-1.

Table 6.3F.2.3-1: Transmit OFF power

Channel bandwidth (MHz)	Transmit OFF power (dBm)	Measurement bandwidth (MHz)
5	-50	4.515
10	-50	9.375
15	-50	14.235
20	-50	19.095
25	-50	23.955
30	-50	28.815
40	-50	38.895
50	-50	48.615
60	-50	58.35
70	-50	68.07
80	-50	78.15
90	-50	88.23
100	-50	98.31

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3F.2 and 6.3.2.

6.3F.2.4 Test description

This test is covered by clause 6.3F.3 Transmit ON/OFF time mask.

6.3F.2.5 Test requirement

The requirement for the Transmit OFF power shall not exceed the values specified in Table 6.3F.2.5-1.

Table 6.3F.2.5-1: Transmit OFF power

Channel bandwidth (MHz)	Transmit OFF power (dBm)	Measurement bandwidth (MHz)
()		· · ·
10	-50+TT	9.375
20	-50+TT	19.095
40	-50+TT	38.895
60	-50+TT	58.35
80	-50+TT	78.15
NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.3F.2.5-2		

Table 6.3F.2.5-2: Test Tolerance (Transmit OFF power)

	4.2GHz < f ≤ 5.925GHz	5.925GHz < f ≤ 7.125GHz
BW ≤ 40MHz	1.8 dB	TBD
40MHz < BW ≤ 100MHz	1.8 dB	TBD

6.3F.3 Transmit ON/OFF time mask for shared spectrum channel access

6.3F.3.1 General

The transmit power time mask defines the transient period(s) allowed between transmit OFF power as defined in clause 6.3F.2 and transmit ON power symbols (transmit ON/OFF). The transmit power ON/OFF time mask specified in clause 6.3F.3.2 supersedes the ON/OFF masks specified in clause 6.3.3; however, between continuous ON-power transmissions the requirements in clause 6.3.3 apply. Unless otherwise stated the requirements in clause 6.5F apply also in transient periods.

6.3F.3.2 General ON/OFF time mask

Editor's Note: This test is incomplete. The following aspects are not yet determined:

- Test points are TBD
- MU and TT for >6GHz (band n96).
- RMC in Annex A.
- Test coverage for UL-MIMO
- Message exceptions
- Test state and generic procedure are TBD in 38.508-1
- 6.3F.3.2.1 Test purpose

To verify that the general ON/OFF time mask meets the requirements given in 6.3F.3.2.5.

The transmit power time mask for transmit ON/OFF defines the transient period(s) allowed between transmit OFF power as defined in sub-clause 6.3F.2 and transmit ON power symbols (transmit ON/OFF)

Transmission of the wrong power increases interference to other channels, or increases transmission errors in the uplink channel.

6.3F.3.2.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR standalone shared spectrum channel access.

6.3F.3.2.3 Minimum conformance requirements

The general ON/OFF time mask defines the observation period between transmit OFF and ON power and between transmit ON and OFF power for each SCS as illustrated below in Figure 6.3F.3.2.3-1. ON/OFF scenarios include: contiguous, and non-contiguous transmission, etc.

The OFF power measurement period is defined in a duration of at least one slot excluding any transient periods. The ON power is defined as the mean power over the duration of at least one slot excluding any transient period and non-transmitted symbols. The leading transient period starts 5us before the beginning of the first symbol of transmission and extends 10us into the transmission including the CP extension if applicable. The trailing transient period starts 5us before the end of transmission and extends 5us beyond the end of transmission.

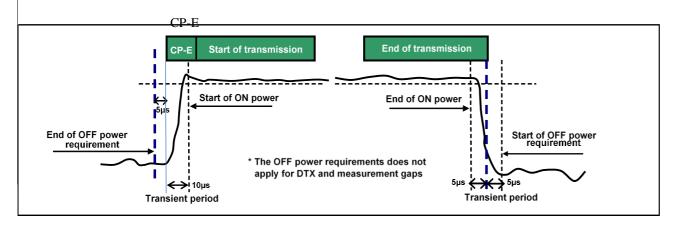


Figure 6.3F.3.2.3-1: General ON/OFF time mask for shared spectrum channel access

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3F.3.2.

6.3F.3.2.4 Test description

6.3F.3.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

790

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 6.3F.3.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexe A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.3F.3.2.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.3F.3.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.3F.3.2.4.3.

6.3F.3.2.4.2 Test procedure

- 1. SS sends uplink scheduling information via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.3F.3.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The UL assignment is such that the UE transmits on slots TBD.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. ON power sub test:
- 3.1. Measure the output power of the UE PUSCH transmission during one slot, excluding a transient period of 10 μ s in the beginning of the slot and 5 μ s in the end of the slot.
- 4. OFF power sub test:
- 4.1. Measure the UE transmission OFF power during the slot prior to the PUSCH transmission, excluding a transient period of 5 μ s in the end of the slot.
- 4.2. Measure the UE transmission OFF power during the slot following the PUSCH transmission, excluding a transient period of 5 μ s at the beginning of the slot.

6.3F.3.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exceptions.

FFS

6.3F.3.2.5 Test requirement

The requirement for the power measured in steps 2, 3 and 4 of the test procedure shall not exceed the values specified in Table 6.3F.3.2.5-1.

791

	Channel bandwidth / minimum output power / measurement bandwidth									
	10	20	40	60	80					
	MHz	MHz	MHz	MHz	MHz					
Transmit		≤ -50+TT dBm								
OFF power										
Transmission	9.375	19.095	38.895	58.35	78.15					
OFF										
Measurement										
bandwidth										
Transmit ON			TBD							
power										
NOTE 1: TT fo	r each frequency	and channel bar	dwidth is specifie	d in Table 6.3F.	3.2.5-2					

Table 6.3F.3.2.5-1: General ON/OFF time mask

792

Table 6.3F.3.2.5-2: Test Tolerance for OFF power

	4.2GHz < f ≤ 5.925GHz	5.925GHz < f ≤ 7.125GHz
BW ≤ 40MHz	1.8 dB	TBD
40MHz < BW ≤ 100MHz	1.8 dB	TBD

Table 6.3F.3.2.5-3: Test Tolerance for ON power

	4.2GHz < f ≤ 5.925GHz	5.925GHz < f ≤ 7.125GHz
BW ≤ 40MHz	1.8 dB	TBD
40MHz < BW ≤ 100MHz	1.8 dB	TBD

6.3G Output power dynamics for Tx Diversity

6.3G.1 Minimum output power for Tx Diversity

Editor's Note: The following aspects are either missing or not yet determined:

- Tests for Power Class 3 are FFS.

6.3G.1.1 Test purpose

Same test purpose as in 6.3.1.1.

6.3G.1.2 Test applicability

This test case applies to all types of NR Power Class 1.5 UE, Power Class 2 UE reporting Tx diversity release 15 and forward.

6.3G.1.3 Minimum conformance requirements

For UE supporting Tx diversity, the minimum output power is defined as the sum of the mean power at each transmit connector in one sub-frame (1 ms). The minimum output power shall not exceed the values specified in Table 6.3.1.3-1.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3G.1.

6.3G.1.4 Test description

Same test description as specified in clause 6.3.1.4 with following exceptions:

Step 3 of Test procedure as in 6.3.1.4.2 is replaced by:

- 793
- 3. Measure the sum of mean power at each antenna connector in the associated measurement channel bandwidth specified in Table 6.3G.1.5-1 for the specific channel bandwidth under test. The period of measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD symbols with transient periods are not under test.

6.3G.1.5 Test requirement

The minimum output power, derived in step 3 shall not exceed the values specified in Table 6.3G.1.5-1.

Table 6.3G.1.5-1: Minimum output powerChannel bandwidth (MHz)	Minimum output power (dBm)	Measurement bandwidth (MHz)				
5	-40+TT	4.515				
10	-40+TT	9.375				
15	-40+TT	14.235				
20	-40+TT	19.095				
25	-39+TT	23.955				
30	-38.2+TT	28.815				
40	-37+TT	38.895				
45	-36.5+TT	43.575				
50	-36+TT	48.615				
60	-35.2+TT	58.35				
70	-34.6+TT	68.07				
80	-34+TT	78.15				
90	-33.5+TT	88.23				
100	-33+TT	98.31				
NOTE 1: TT for each 6.3G.1.5-2	frequency and channel bandwid	th is specified in Table				

Table 6.3G.1.5-2: Test Tolerance (Minimum output power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.0 dB	1.3 dB
40MHz < BW ≤ 100MHz	1.3 dB	1.3 dB

6.3G.2 Transmit OFF power for Tx Diversity

Editor's Note: The following aspects are either missing or not yet determined:

- Tests for Power Class 3 are FFS.

6.3G.2.1 Test purpose

Same test purpose as in 6.3.2.1.

6.3G.2.2 Test applicability

The requirements of this test apply in test cases 6.3G.3 Transmit ON/OFF time mask for Tx Diversity to all types of NR Power Class 1.5 UE, Power Class 2 UE reporting Tx diversity release 15 and forward.

6.3G.2.3 Minimum conformance requirements

For UE supporting Tx diversity, the transmit OFF power is defined as the mean power at each transmit antenna connector in a duration of at least one sub-frame (1 ms) excluding any transient periods.

The transmit OFF power at each transmit antenna connector shall not exceed the values specified in Table 6.3.2.3-1.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3G.2.

6.3G.2.4 Test description

This test is covered by clause 6.3G.3 Transmit ON/OFF time mask.

6.3G.2.5 Test requirement

For each transmit antenna connector, the requirement for the Transmit OFF power shall not exceed the values specified in Table 6.3G.2.5-1.

Table 6.3G.2.5-1: Transmit OFF powerChannel bandwidth (MHz)	Transmit OFF power (dBm)	Measurement bandwidth (MHz)
5	-50+TT	4.515
10	-50+TT	9.375
15	-50+TT	14.235
20	-50+TT	19.095
25	-50+TT	23.955
30	-50+TT	28.815
40	-50+TT	38.895
45	-50+TT	43.575
50	-50+TT	48.615
60	-50+TT	58.35
70	-50+TT	68.07
80	-50+TT	78.15
90	-50+TT	88.23
100	-50+TT	98.31
NOTE 1: TT for each frequence	uency and channel bandwidth is	s specified in Table 6.3G.2.5-2

Table 6.3G.2.5-2: Test Tolerance (Transmit OFF power)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.5 dB	1.8 dB
40MHz < BW ≤ 100MHz	1.7 dB	1.8 dB

6.3G.3 Transmit ON/OFF time mask for Tx Diversity

6.3G.3.1 General ON/OFF time mask for Tx Diversity

Editor's Note: The following aspects are either missing or not yet determined:

- Tests for Power Class 3 are FFS.

6.3G.3.1.1 Test purpose

Same test purpose as in 6.3.3.2.1.

6.3G.3.1.2 Test applicability

This test case applies to all types of NR Power Class 1.5 UE, Power Class 2 UE reporting Tx diversity release 15 and forward.

6.3G.3.1.3 Minimum conformance requirements

For UE supporting Tx diversity, the general ON/OFF time mask requirements in clause 6.3.3.2.3 apply at each transmit antenna connector.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3G.3.

6.3G.3.1.4 Test description

Same test description as in clause 6.3.3.2.4 with following exceptions:

- The ON power is measured as sum of both transmit antenna connectors.
- The OFF power is measured at each transmit antenna connector.

6.3G.3.1.5 Test requirement

The measured ON power and OFF power shall not exceed the values specified in Table 6.3G.3.1.5-1.

Table		Channel bandwidth / minimum output power / measurement bandwidth											
6.3G.3.1.5-1:	5	10	15	20	25	30	40	45	50	60	70	80	90
General	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
ON/OFF													
time mask													
Transmit	≤ -50+TT dBm												
OFF power													
Transmission	4.51	9.37	14.235	19.095	23.955	28.815	38.895	43.5	48.615	58.35	68.07	78.15	88.23
OFF	5	5						75					
Measuremen													
t bandwidth													
Transmit ON	Same as Table 6.2G.2.5-1 and Table 6.2G.2.5-2												
power													
NOTE 1: TT o	f OFF po	ower for	each frequ	uency and	d channel	bandwidth	n is specifi	ied in Ta	able 6.3G	.3.1.5-2			
NOTE 2: TT o	f ON pov	wer for e	each frequ	ency and	channel b	andwidth	is specifie	d in Ta	ble 6.3G.3	3.1.5-3			

Table 6.3G.3.1.5-2: Test Tolerance for OFF power

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	1.5 dB	1.8 dB
40MHz < BW ≤ 100MHz	1.7 dB	1.8 dB

Table 6.3G.3.1.5-3: Test Tolerance for ON power

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	1.5 dB	1.8 dB
40MHz < BW ≤ 100MHz	1.7 dB	1.8 dB

6.3G.3.2 PRACH time mask for Tx Diversity

6.3G.3.2.1 Test purpose

Same test purpose as in 6.3.3.4.1.

6.3G.3.2.2 Test applicability

This test case applies to all types of NR Power Class 1.5 UE, Power Class 2 UE reporting Tx diversity release 15 and forward.

6.3G.3.2.3 Minimum conformance requirements

For UE supporting Tx diversity, the PRACH time mask requirements in clause 6.3.3.4.3 apply at each transmit antenna connector.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3G.3.

6.3G.3.2.4 Test description

Same test description as in clause 6.3.3.4.4 with following exceptions:

- The ON power is measured as sum of both transmit antenna connectors.
- The OFF power is measured at each transmit antenna connector.

6.3G.3.2.5 Test requirement

The measured ON power and OFF power shall not exceed the values specified in Table 6.3G.3.2.5-1.

Table 6.3G.3.2.5-1: PRACH time mask

		Channel bandwidth / minimum output power / measurement bandwidth											
	5	10	15	20	25	30	40	50	60	70	80	90	100
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
Transmit OFF							≤ -50+TT d	lBm					
power													
Transmission OFF	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	68.07	78.15	88.23	98.31
Measurement bandwidth													
Expected PRACH Transmission ON Measured Power for PRACH Format 0 and PRACH Format A3 for SCS 30kHz	-1 dBm	-1 dBm	-1 dBm	-1 dBm	-1 dBm	-1 dBm	-1 dBm	-1 dBm	-1 dBm				
Expected PRACH Transmission ON Measured Power for PRACH Format A3 for SCS 15kHz and SCS 60kHz	-2 dBm	-2 dBm	-2 dBm	-2 dBm	-2 dBm	-2 dBm	-2 dBm	-2 dBm	-2 dBm				
ON Power Tolerance NOTE 1: TT of 0		1					± (9+TT)o	βB	1				

	f ≤ 3.0GHz	3.0GHz < f ≤ 6.0GHz
BW ≤ 40MHz	1.5 dB	1.8 dB
40MHz < BW ≤ 100MHz	1.7 dB	1.8 dB

Table 6.3G.3.2.5-2: Test Tolerance (Transmit OFF power and PRACH time mask)

6.3G.3.3 SRS time mask for Tx Diversity

6.3G.3.3.1 Test purpose

Same test purpose as in 6.3.3.6.1.

6.3G.3.3.2 Test applicability

This test case applies to all types of NR Power Class 1.5 UE, Power Class 2 UE reporting Tx diversity release 15 and forward.

6.3G.3.3.3 Minimum conformance requirements

For UE supporting Tx diversity, the SRS time mask requirements in clause 6.3.3.6.3 apply at each transmit antenna connector.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3G.3.

6.3G.3.3.4 Test description

Same test description as in clause 6.3.3.6.4 with following exceptions:

- The ON power is measured as sum of both transmit antenna connectors.
- The OFF power is measured at each transmit antenna connector.

6.3G.3.3.5 Test requirement

The measured ON power and OFF power shall not exceed the values specified in Table 6.3G.3.3.5-1.

Table 6.3	G.3.3.5-1:	SRS time	mask
-----------	------------	----------	------

		Channel bandwidth / minimum output power / measurement bandwidth									
	5	10 15 20 25 30 40 50 60 70							70	80	
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MH
Transmit OFF power		≤ -50+TT dBm									
Transmission OFF	4.515	515 9.375 14.235 19.095 23.955 28.815 38.895 48.615 58.35 68.07 78.1									
Measurement bandwidth											
Transmit ON power Same as Table 6.2G.1.5-1 and Table 6.2G.1.5-2											
NOTE 1: TT of OFF power for each frequency and channel bandwidth is specified in Table 6.3G.3.3.5-2											

Table 6.3G.3.3.5-2: Test Tolerance (Transmit OFF power and SRS time mask)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	1.5 dB	1.8 dB
40MHz < BW ≤ 100MHz	1.7 dB	1.8 dB

6.3G.4 Power control for Tx Diversity

6.3G.4.1 Absolute power tolerance for Tx Diversity

FFS

6.3G.4.2 Relative power tolerance for Tx Diversity

Editor's Note: The following aspects are either missing or not yet determined:

- Tests for Power Class 3 are FFS.

6.3G.4.2.1 Test purpose

Same test purpose as in 6.3.4.3.1.

6.3G.4.2.2 Test applicability

This test case applies to all types of NR Power Class 1.5 UE, Power Class 2 UE reporting Tx diversity release 15 and forward.

6.3G.4.2.3 Minimum conformance requirement

For UE supporting Tx diversity, the relative power tolerance applies to the sum of output power at each transmit antenna connector.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3G.4.

6.3G.4.2.4 Test description

Same test description as in clause 6.3.4.3.4 with the output power is measured as the sum of both antenna connectors.

6.3G.4.2.5 Test requirement

Each UE power step measured in the test procedure 6.3G.4.2.4 should satisfy the test requirements specified in Table 6.3G.4.2.5-1 through 6.3G.4.2.5-7.

To account for RF Power amplifier mode changes 2 exceptions are allowed for each of ramping up and ramping down test patterns. For these exceptions the power tolerance limit is a maximum of $\pm (6.0 + TT) dB$. If there is an exception in the power step caused by the RB change for all test patterns (A, B, C) then fail the UE.

Test	Sub-	Applicable	Uplink RB	TPC	Expected	_	
SCS [kHz]	test ID	sub-frames	allocation	command	power step size (Up)	Power step size range (Up)	PUSCH
					ΔP [dB]	ΔΡ [dB]	[dB]
		Sub-frames before RB change	Fixed = 1	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
15	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Sub-frames after RB change	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Sub-frames before RB change	Fixed = 1	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	2	RB change	1RB to 15 RBs	TPC=+1dB	12.76	10dB ≤ ΔP < 15dB	12.76 +/- (4 + TT)
		Sub-frames after RB change	Fixed = 15	TPC=+1dB	1	∆P ≤ 1 dB	1 +/- (0.7 + TT)
		Sub-frames before RB change	Fixed = 1	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Sub-frames after RB change	Fixed = 5	TPC=+1dB	1	∆P ≤ 1 dB	1 +/- (0.7 + TT)
30		Sub-frames before RB change	Fixed = 1	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	2	RB change	1RB to 10 RBs	TPC=+1dB	11.00	10dB ≤ ΔP < 15dB	11.00 +/- (4 + TT)
		Sub-frames after RB change	Fixed = 10	TPC=+1dB	1	∆P ≤ 1 dB	1 +/- (0.7 + TT)
Note 1:	Pattern Pattern	B the position of	RB uplink allocatio	n change is af	ter 20 active	uplink Sub-frames uplink Sub-frames uplink Sub-frames	
Note 2:		0	ck shall be RB# 0.				
Note 3: Note 4:	TT=0.7 Applica		≥ Pmin. Pmin as o	defined in sub-	clause 6.3G.	1.	

Table 6.3G.4.2.5-1: Test Requirements Relative Power Tolerance for Transmission, channel BW5MHz, ramp up sub-test

Test SCS (RHz)Sub- test IDApplicable sub-framesUplink RB allocationTPC commandExpected power step size (Down)Power step size range (Down)PUSCH1 D Sub-frames before RBFixed = 5TPC=-1dB1 $\Delta P [dB]$ D D D 1RB change5 RBs to 1 RBTPC=-1dB1 $\Delta P \le 1 dB$ $1 + /- (0.7 + TT)$ D 15 D RB change5 RBs to 1 RBTPC=-1dB1 $\Delta P \le 1 dB$ $1 + /- (0.7 + TT)$ 16 D Sub-frames changeFixed = 1TPC=-1dB1 $\Delta P \le 1 dB$ $1 + /- (0.7 + TT)$ 16 RB changeFixed = 15TPC=-1dB1 $\Delta P \le 1 dB$ $1 + /- (0.7 + TT)$ 17Sub-frames changeFixed = 15TPC=-1dB1 $\Delta P \le 1 dB$ $1 + /- (0.7 + TT)$ 18Sub-frames changeFixed = 1TPC=-1dB1 $\Delta P \le 1 dB$ $1 + /- (0.7 + TT)$ 2RB changeFixed = 1TPC=-1dB1 $\Delta P \le 1 dB$ $1 + /- (0.7 + TT)$ 30IRB changeFixed = 1TPC=-1dB1 $\Delta P \le 1 dB$ $1 + /- (0.7 + TT)$ 30IRB changeFixed = 1TPC=-1dB1 $\Delta P \le 1 dB$ $1 + /- (0.7 + TT)$ 30IRB changeFixed = 1TPC=-1dB1 $\Delta P \le 1 dB$ $1 + /- (0.7 + TT)$ 30IRB changeFixed = 1TPC=-1dB1 $\Delta P \le 1 dB$ $1 + /- (0.7 + TT)$ 30IRB	Jimitz, Tamp down Sub-test								
$1 \qquad \qquad$	SCS	test		-		power step size (Down)	range (Down)		
$30 \before RB \\ change \\ 1 \\ \hline Partial Part = Par$						ΔP [dB]	ΔΡ [dB]	[dB]	
30 $\frac{1}{2}$			before RB			1	ΔP ≤ 1 dB		
$ \begin{array}{ c c c c c } \hline & after RB \\ change \\ \hline \\ 15 \\ \hline \\ 15 \\ \hline \\ 2 \\ \hline \\ \hline$		1	RB change			7.99	$4dB \le \Delta P < 10dB$	•	
$30 \begin{array}{ c c c c c c c } \hline & before RB \\ change \\ \hline & RB change \\ \hline & Sub-frames \\ after RB \\ change \\ \hline & change \\ \hline & \\ \hline & Change \\ \hline & \\ \hline & Change \\ \hline & \\ \hline \\ \hline$			after RB	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)	
$30 \begin{bmatrix} 12.76 & 15dB & TT \\ Sub-frames after RB & Fixed = 1 & TPC=-1dB \\ change & 1 & DC=-1dB & 1 & DP \le 1 dB & 1+/-(0.7 + TT) \\ Sub-frames before RB & Defore RB & 1 & DP \le 1 dB & 1+/-(0.7 + TT) \\ change & 1 & DP \le 1 dB & 1+/-(0.7 + TT) \\ RB change & SRB to 1 RB & TPC=-1dB & 1 & DP \le 1 dB & 1+/-(0.7 + TT) \\ Sub-frames after RB & 1 & TPC=-1dB & 1 & DP \le 1 dB & 1+/-(0.7 + TT) \\ Sub-frames & Fixed = 1 & TPC=-1dB & 1 & DP \le 1 dB & 1+/-(0.7 + TT) \\ change & 1 & DP \le 1 dB & 1+/-(0.7 + TT) \\ change & 1 & DP \le 1 dB & 1+/-(0.7 + TT) \\ change & 1 & PC=-1dB & 1 & DP \le 1 dB & 1+/-(0.7 + TT) \\ change & 1 & PC=-1dB & 1 & DP \le 1 dB & 1+/-(0.7 + TT) \\ change & 1 & PC=-1dB & 1 & DP \le 1 dB & 1+/-(0.7 + TT) \\ Sub-frames & Fixed = 1 & TPC=-1dB & 11.00 & 10dB \le \Delta P < \\ RB change & 1 & RB sto 1 RB & TPC=-1dB & 11.00 & 10dB \le \Delta P < \\ RB change & 1 & RB sto 1 RB & TPC=-1dB & 11.00 & 10dB \le \Delta P < \\ RB change & 1 & RB sto 1 RB & TPC=-1dB & 11.00 & 10dB \le \Delta P < \\ RB change & 1 & RB sto 1 RB & TPC=-1dB & 11.00 & 10dB \le \Delta P < \\ RB change & 1 & RB sto 1 RB & TPC=-1dB & 11.00 & 10dB \le \Delta P < \\ RB change & 1 & RB sto 1 RB & TPC=-1dB & 11.00 & 10dB \le \Delta P < \\ RB change & 1 & RB sto 1 RB & TPC=-1dB & 11.00 & 10dB \le \Delta P < \\ RB change & 1 & RB sto 1 RB & TPC=-1dB & 11.00 & 10dB \le \Delta P < \\ RB change & 1 & RB sto 1 RB & TPC=-1dB & 11.00 & 10dB \le \Delta P < \\ RB change & 1 & RB sto 1 RB & TPC=-1dB & 11.00 & 10dB \le \Delta P < \\ RB change & 1 & RB sto 1 RB & TPC=-1dB & 11.00 & 10dB \le \Delta P < \\ RB change & 1 & RB sto 1 RB & RB sto 1 RB & 1+/-(0.7 + TT) & RB & 1+/-(0.7 + TT) \\ \hline Note 1 & Position of RB change & RB sto 1 RB st$	15		before RB	Fixed = 15	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)	
$ \begin{array}{ c c c c c } \hline & after RB \\ change \\ \hline \\ $		2	RB change	15 RBs to 1 RB	TPC=-1dB	12.76		-	
$\label{eq:approximate} Note 1: Position of RB change = 1 \\ Note 2: The starting resource block shall be RB# 0. \\ Note 3: TT=0.7dB \\ \before RB \\ change = 1 \\ \before RB \\ \before RB \\ \before RB \\ change = 1 \\ \before RB \\ \$			after RB			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)	
$30 \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$			before RB	Fixed = 5	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)	
30after RB changeTPC=-1dB before RB 1 $\Delta P \le 1 dB$ $1 +/- (0.7 + TT)$ 30Sub-frames before RB changeFixed = 10TPC=-1dB before RB 1 $\Delta P \le 1 dB$ $1 +/- (0.7 + TT)$ 2RB change10 RBs to 1 RBTPC=-1dB TPC=-1dB 1 $\Delta P \le 1 dB$ $1 +/- (0.7 + TT)$ 2RB change10 RBs to 1 RBTPC=-1dB 		1	RB change	5 RBs to 1 RB		7.99	4dB ≤ ∆P < 10dB	•	
before RB changebefore RB change1 $\Delta P \le 1 dB$ 1 +/- (0.7 + TT)2RB change10 RBs to 1 RBTPC=-1dB 10 RBs to 1 RB11.0010dB $\le \Delta P <$ 15dB11.00 +/- (4 + TT)Sub-frames after RB changeFixed = 1TPC=-1dB 11 $\Delta P \le 1 dB$ 1 +/- (0.7 + TT)Note 1:Position of RB change: Pattern A the position of RB uplink allocation change is after 10 active uplink Sub-frames Pattern B the position of RB uplink allocation change is after 20 active uplink Sub-frames Patter 30 active uplink Sub-frames Pattern C the position of RB uplink allocation change is after 30 active uplink Sub-frames Note 3:TT=0.7dB			after RB			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)	
Note 1: Position of RB change: Pattern A the position of RB uplink allocation change is after 10 active uplink Sub-frames Pattern B the position of RB uplink allocation change is after 20 active uplink Sub-frames Pattern C the position of RB uplink allocation change is after 30 active uplink Sub-frames Note 2: The starting resource block shall be RB# 0. Note 3: TT=0.7dB	30		before RB	Fixed = 10	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)	
after RB change 1 ΔP ≤ 1 dB 1 +/- (0.7 + TT) Note 1: Position of RB change: Pattern A the position of RB uplink allocation change is after 10 active uplink Sub-frames Pattern B the position of RB uplink allocation change is after 20 active uplink Sub-frames Pattern C the position of RB uplink allocation change is after 30 active uplink Sub-frames Note 2: The starting resource block shall be RB# 0. Note 3: TT=0.7dB		2	RB change		TPC=-1dB	11.00		11.00 +/- (4 + TT)	
 Pattern A the position of RB uplink allocation change is after 10 active uplink Sub-frames Pattern B the position of RB uplink allocation change is after 20 active uplink Sub-frames Pattern C the position of RB uplink allocation change is after 30 active uplink Sub-frames Note 2: The starting resource block shall be RB# 0. Note 3: TT=0.7dB 			after RB	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)	
 Pattern B the position of RB uplink allocation change is after 20 active uplink Sub-frames Pattern C the position of RB uplink allocation change is after 30 active uplink Sub-frames Note 2: The starting resource block shall be RB# 0. Note 3: TT=0.7dB 	Note 1:								
Pattern C the position of RB uplink allocation change is after 30 active uplink Sub-frames Note 2: The starting resource block shall be RB# 0. Note 3: TT=0.7dB									
Note 2: The starting resource block shall be RB# 0. Note 3: TT=0.7dB									
Note 3: TT=0.7dB	Note 2:								
			-		0.				
		-		: P ≥ Pmin. Pmin as	s defined in sul	b-clause 6.3G	i.1.		

Table 6.3G.4.2.5-2: Test Requirements Relative Power Tolerance for Transmission, channel BW5MHz, ramp down sub-test

803

Table 6.3G.4.2.5-3: Test Requirements Relative Power Tolerance for Transmission, channel BW10MHz, 15MHz, 20MHz, 25MHz, 30MHz, 40MHz, 50MHz ramp up sub-test

Test	Sub-	Applicable	Uplink RB	TPC	Expected		
SCS [kHz]	test ID	sub- frames	allocation	command	power step size	Power step size range (Up)	PUSCH
[]		inalitee			(Up)		
					ΔP [dB]	ΔΡ [dB]	[dB]
		Subframes	1RB	TPC=+1dB			
		before RB change			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
	•	Subframes	Fixed = 5	TPC=+1dB	1.00		7.00 17 (0.0 1 11)
		after RB			1	∆P ≤ 1 dB	1 +/- (0.7 + TT)
		change	(55	750 (15			
		Subframes before RB	1RB	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change			I	$\Delta P \ge 1$ UD	1 + (0.7 + 11)
15	2	RB change	1RB to 20 RBs	TPC=+1dB	14.01	10dB ≤ ΔP < 15dB	14.01 +/- (4 + TT)
		Subframes	Fixed = 20	TPC=+1dB			
		after RB			1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		change Subframes	1RB	TPC=+1dB			
		before RB	ind.	II O=IIIdB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change					, , , , , , , , , , , , , , , , , , ,
	3	RB change	1RB to 50 RBs	TPC=+1dB	17.99	15dB ≤ ΔP	17.99 +/- (5 + TT)
		Subframes after RB	Fixed = 50	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change			I		1 +/- (0.7 + 11)
		Subframes	1RB	TPC=+1dB			
		before RB			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	change RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
	1	Subframes	Fixed = 5	TPC=+1dB	7.99	$4ub \ge \Delta F \le 10ub$	7.99 +/- (3.5 + 11)
		after RB			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change					
30		Subframes	1RB	TPC=+1dB	4		1 +/-0.7 + TT
		before RB change			1	ΔP ≤ 1 dB	1 +/-0.7 + 11
	2	RB change	1RB to 24 RBs	TPC=+1dB	14.80	10dB ≤ ΔP < 15dB	14.80+/- (4 + TT)
		Subframes	Fixed = 24	TPC=+1dB			
		after RB			1	∆P ≤ 1 dB	1 +/- (0.7 + TT)
		change Subframes	1RB	TPC=+1dB			
		before RB			1	∆P ≤ 1 dB	1 +/-0.7 + TT
		change					
	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ∆P < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	
		change			1	$\Delta \Gamma \ge I U D$	1 +/- (0.7 + TT)
60		Subframes	1RB	TPC=+1dB			
		before RB			1	∆P ≤ 1 dB	1 +/- (0.7 + TT)
	2	change RB change	1RB to 10 RBs	TPC=+1dB	11.00		
	<u> </u>	RB change Subframes	Fixed = 10	TPC=+1dB TPC=+1dB	11.00	10dB ≤ ΔP < 15dB	11.00 +/- (4 + TT)
		after RB			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change					· · · ·

Note 1:	Position of RB change:
	Pattern A the position of RB uplink allocation change is after 10 active uplink Subframes.
	Pattern B the position of RB uplink allocation change is after 20 active uplink Subframes
	Pattern C the position of RB uplink allocation change is after 30 active uplink Subframes.
Note 2:	The starting resource block shall be RB# 0.
Note 3:	TT=0.7dB
Note 4:	Applicable if PUMAX \ge P \ge Pmin. Pmin as defined in sub-clause 6.3G.1.

Table 6.3G.4.2.5-4: Test Requirements Relative Power Tolerance for Transmission, channel BW10MHz, 15MHz, 20MHz, 25MHz, 30MHz, 40MHz, 50MHz ramp down sub-test

Test	Sub-	Applicable	Uplink RB	TPC	Expected		
SCS	test	sub-	allocation	command	power	Power step size	PUSCH
[kHz]	ID	frames			step size (Down)	range (Down)	
					$\Delta P [dB]$	ΔΡ [dB]	[dB]
		Subframes	Fixed = 5	TPC=-1dB			
		before RB			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change			7.00		7.00 / (0.5 TT)
	1	RB change Subframes	5 RBs to 1RBs Fixed = 1	TPC=-1dB TPC=-1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		after RB	Fixed = 1	TFC=Tub	1	∆P ≤ 1 dB	1 +/- (0.7 + TT)
		change					, (on ,
		Subframes	Fixed = 20	TPC=-1dB			
		before RB			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
15	2	change RB change	20 RBs to 1 RB	TPC=-1dB	14.01	10dB ≤ ΔP < 15dB	14.01 +/- (4 + TT)
15	2	Subframes	Fixed = 1	TPC=-1dB	14.01		14.01 +/- (4 + 11)
		after RB			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change					
		Subframes	Fixed = 50	TPC=-1dB			
		before RB change			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	3	RB change	50 RBs to 1 RB	TPC=-1dB	17.99	15dB ≤ ΔP	17.99 +/- (5 + TT)
	_	Subframes	Fixed = 1	TPC=-1dB			
		after RB			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change	<u> </u>	700 410			
		Subframes before RB	Fixed = 5	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		change			1		1 +/-0.7 + 11
	1	RB change	5 RBs to 1 RB	TPC=-1dB	7.99	4dB ≤ ∆P < 10dB	7.99 +/- (3.5 + TT)
		Subframes	Fixed = 1	TPC=-1dB			
		after RB			1	∆P ≤ 1 dB	1 +/- (0.7 + TT)
		change					
30							
		Subframes	Fixed = 24	TPC=-1dB			
		before RB			1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	2	change RB change	24 RBs to 1 RB	TPC=-1dB	14.80	10dB ≤ ΔP < 15dB	14.80 +/- (4 + TT)
	2	Subframes	Fixed = 1	TPC=-1dB	14.00		14.00 +/- (4 + 11)
		after RB			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change					
		Subframes	Fixed = 5	TPC=-1dB			
		before RB change			1	∆P ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	5 RBs to 1 RB	TPC=-1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
	•	Subframes	Fixed = 1	TPC=-1dB	1.00		7.00 17 (0.0 1 11)
		after RB			1	∆P ≤ 1 dB	1 +/- (0.7 + TT)
		change					
60		Subframes before RB	Fixed = 10	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
		change			1	$\Delta F \ge 1$ ud	1 +/-0.7 + 11
	2	RB change	10 RBs to 1 RB	TPC=-1dB	11.00	10dB ≤ ∆P < 15dB	11.00 +/- (4 + TT)
		Subframes	Fixed = 1	TPC=-1dB			
		after RB			1	∆P ≤ 1 dB	1 +/- (0.7 + TT)
		change					

Note 1:	Position of RB change:
	Pattern A the position of RB uplink allocation change is after 10 active uplink Subframes.
	Pattern B the position of RB uplink allocation change is after 20 active uplink Subframes
	Pattern C the position of RB uplink allocation change is after 30 active uplink Subframes.
Note 2:	The starting resource block shall be RB# 0.
Note 3:	TT=0.7dB
Note 4:	Applicable if PUMAX \ge P \ge Pmin. Pmin as defined in sub-clause 6.3G.1.

Table 6.3G.4.2.5-5: Test Requirements Relative Power Tolerance for Transmission, channel BW 60MHz, 70MHz, 80MHz, 90MHz, 100MHz ramp up sub-test

Test SCS	Sub- test	Applicable sub-	Uplink RB allocation	TPC command	Expected power	Power step size	PUSCH
[kHz]	ID	frames			step size (Up)	range (Up)	
					ΔP [dB]	ΔΡ [dB]	[dB]
		Subframes	1RB	TPC=+1dB			
		before RB change			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ∆P < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change			I		1 +/- (0.7 + 11)
		Subframes	1RB	TPC=+1dB			
		before RB change			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
30	2	RB change	1RB to 24 RBs	TPC=+1dB	14.80	10dB ≤ ΔP < 15dB	14.80 +/- (4 + TT)
		Subframes after RB	Fixed = 24	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change			I		1 +/- (0.7 + 11)
		Subframes	1RB	TPC=+1dB			
		before RB change			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	3	RB change	1RB to 81 RBs	TPC=+1dB	20.08	15dB < ΔP	20.08 +/- (5 + TT)
		Subframes after RB	Fixed = 81	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change			I		1 +/- (0.7 + 11)
		Subframes	1RB	TPC=+1dB			
		before RB change			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	1RB to 5 RBs	TPC=+1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB	Fixed = 5	TPC=+1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		change			1	$\Delta F \leq 1 \text{ub}$	1 +/- (0.7 + 11)
60		Subframes	1RB	TPC=+1dB			
		before RB change			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	2	RB change	1RB to 75 RBs	TPC=+1dB	19.75	15dB < ΔP	19.75 +/- (5 + TT)
		Subframes	Fixed = 75	TPC=+1dB	4		1 · / (0 7 · TT)
		after RB change			1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
Note 1:		n of RB change		- 41 1		ing and inde O. 1.1	
						ive uplink Subframes. ive uplink Subframes	
	Pattern	C the position	of RB uplink alloc	ation change is		ive uplink Subframes.	
Note 2: Note 3:	The sta TT=0.7		block shall be RB	# O.			
Note 4:			≥ P ≥ Pmin. Pmin a	as defined in s	ub-clause 6.3	3G.1.	

Table 6.3G.4.2.5-6: Test Requirements Relative Power Tolerance for Transmission, channel BW
60MHz, 70MHz, 80MHz, 90MHz, 100MHz ramp down sub-test

Test SCS [kHz]	Sub- test ID	Applicable sub- frames	Uplink RB allocation	TPC command	Expected power step size (Down)	Power step size range (Down)	PUSCH
					ΔP [dB]	ΔΡ [dB]	[dB]
		Subframes before RB change	Fixed = 5	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/-0.7 + TT
	1	RB change	5 RBs to 1 RB	TPC=-1dB	7.99	4dB ≤ ∆P < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	Fixed = 24	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
30	2	RB change	24 RBs to 1 RB	TPC=-1dB	14.80	10dB ≤ ∆P < 15dB	14.80 +/- (4 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	Fixed = 81	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	3	RB change	81 RBs to 1 RB	TPC=-1dB	20.08	15dB < ΔP	20.08 +/- (5 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
		Subframes before RB change	Fixed = 5	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	1	RB change	5 RBs to 1 RB	TPC=-1dB	7.99	4dB ≤ ΔP < 10dB	7.99 +/- (3.5 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
60		Subframes before RB change	Fixed = 75	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
	2	RB change	75 RBs to 1 RB	TPC=-1dB	19.75	15dB < ΔP	19.75 +/- (5 + TT)
		Subframes after RB change	Fixed = 1	TPC=-1dB	1	ΔP ≤ 1 dB	1 +/- (0.7 + TT)
Note 1: Note 2: Note 3:	Note 1: Position of RB change: Pattern A the position of RB uplink allocation change is after 10 active uplink Subframes. Pattern B the position of RB uplink allocation change is after 20 active uplink Subframes Pattern C the position of RB uplink allocation change is after 30 active uplink Subframes. Note 2: The starting resource block shall be RB# 0. Note 3: TT=0.7dB						
Note 4:	: Applicable if PUMAX ≥ P ≥ Pmin. Pmin as defined in sub-clause 6.3G.1.						

BW	Test SCS [kHz]	Sub- test ID	Uplink RB allocation	TPC command	Expected power step size (Up or Down)	Power step size range (Up or Down)	PUSCH
					ΔP [dB]	ΔΡ [dB]	[dB]
		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ∆P < 4dB	3.01 +/- (3 + TT)
	15	2	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)
5		3	Alternating 1 and 15	TPC=0dB	11.76	10dB ≤ ΔP < 15dB	11.76 +/- (4 + TT)
		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ΔP < 4dB	3.01 +/- (3 + TT)
	30	2	Alternating 1 and 10	TPC=0dB	10.00	10dB ≤ ΔP < 15dB	10.00 +/- (4 + TT)
		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ΔP < 4dB	3.01 +/- (3 + TT)
		2	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)
	15	3	Alternating 1 and 20	TPC=0dB	13.01	10dB ≤ ΔP < 15dB	13.01 +/- (4 + TT)
		4	Alternating 1 and 50	TPC=0dB	16.99	15dB ≤ ΔP	16.99 +/- (5 + TT)
		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ∆P < 4dB	3.01 +/- (3 + TT)
10,15,20, 25,30,40,50	30	2	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)
		3	Alternating 1 and 24	TPC=0dB	13.80	10dB ≤ ΔP < 15dB	13.80 +/- (4 + TT)
		1	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)
	60	2	Alternating 1 and 10	TPC=0dB	10.00	10dB ≤ ΔP < 15dB	10.00 +/- (4 + TT)
		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ΔP < 4dB	3.01 +/- (3 + TT)
	30	2	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)
		3	Alternating 1 and 81	TPC=0dB	19.08	15dB < ΔP	19.08 +/- (5 + TT)
60, 70,80,90,100		1	Alternating 1 and 2	TPC=0dB	3.01	3dB ≤ ∆P < 4dB	3.01 +/- (3 + TT)
	60	2	Alternating 1 and 5	TPC=0dB	6.99	4dB ≤ ΔP < 10dB	6.99 +/- (3.5 + TT)
		3	Alternating 1 and 75	TPC=0dB	18.75	15dB < ΔP	18.75 +/- (5 + TT)
Note 2: TT=	0.7dB		block shall be RB ≥ P ≥ Pmin. Pmin		ub-clause 6.3	3G.1.	

Table 6.3G.4.2.5-7: Test Requirements Relative Power Tolerance for Transmission, alternating subtest

811

6.3G.4.3 Aggregate power tolerance for Tx Diversity

Editor's Note: The following aspects are either missing or not yet determined:

- Tests for Power Class 3 are FFS.

6.3G.4.3.1 Test purpose

Same test purpose as in 6.3.4.4.1.

6.3G.4.3.2 Test applicability

This test case applies to all types of NR Power Class 1.5 UE, Power Class 2 UE reporting Tx diversity release 15 and forward.

6.3G.4.3.3 Minimum conformance requirements

For UE supporting Tx diversity, the absolute power tolerance applies to the sum of output power at each transmit antenna connector.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.3G.4.

6.3G.4.3.4 Test description

Same test description as in clause 6.3.4.4.4 with the output power is measured as the sum of both antenna connectors.

6.3G.4.3.5 Test requirement

The requirement for the power measurements made in step 1.3 and 2.3 of the test procedure shall not exceed the values specified in Table 6.3G.4.3.5-1. The power measurement period shall be 1 sub-frame(1ms).

Table 6.3G.4.3.5-1: Power control tolerance

TPC command	UL channel	Test requirement measured power
0 dB	PUCCH	Given 5power measurements in the pattern, the 2^{nd} , and later measurements shall be within $\pm (2.5 + TT)$ dB of the 1^{st} measurement.
0 dB	PUSCH	Given 5 power measurements in the pattern, the 2^{nd} , and later measurements shall be within ± (3.5 + TT) dB of the 1^{st} measurement.
со		ame corresponds to 2 slots and for SCS 60kHz 1 sub-frame o 2 TPC commands will be sent for a single measurement
Note 2: T	[=0.7dB.	

6.4 Transmit signal quality

In this clause a multitude of results are derived, all using one common algorithm returning these results: Global In-Channels TX-Test Annex E. Each sub clause of this clause contains a procedure and test requirements described for a specific measurement. If all relevant test parameters in different sub clauses are the same, then the results, returned by the Global In-Channel TX-Test, may be used across the applicable sub clauses.

6.4.1 Frequency error

6.4.1.1 Test purpose

This test verifies the ability of both, the receiver and the transmitter, to process frequency correctly.

Receiver: to extract the correct frequency from the stimulus signal, offered by the System simulator, under ideal propagation conditions and low level.

Transmitter: to derive the correct modulated carrier frequency from the results, gained by the receiver.

6.4.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.1.3 Minimum conformance requirements

The UE basic measurement interval of modulated carrier frequency is 1 UL slot. The mean value of basic measurements of UE modulated carrier frequency shall be accurate to within ± 0.1 PPM observed over a period of 1 ms of cumulated measurement intervals compared to the carrier frequency received from the NR Node B.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4.1

6.4.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table (6.4.1.4.1-1	: Test	Configuration	Table
	••••••		•••·····	

	Initial Conditions					
Test Environment as specified in TS 38.508-1 [5] subclause 4.1			Normal, TL/VL, TL/VH, TH/VL, TH/VH			
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1			Mid range (NOTE 3)			
Test Channel Bandwidths as specified in TS 38.508- 1 [5] subclause 4.3.1			Highest			
	as specified in Table	5.3.5-1	Lowest			
Test Parameters						
	Downlink	Configuration	Uplink Configuration			
Test ID	Modulation	RB allocation	Modulation	RB allocation		
1 CP-OFDM Full RB (NOTE 1) QPSK			DFT-s-OFDM QPSK	REFSENS (NOTE 2)		
NOTE 1:	NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2					
NOTE 2:	REFSENS refers to	Table 7.3.2.4.1-3 which	defines uplink RB config	uration and start RB location for		
	each SCS, channel BW and NR band.					
NOTE 3:	For NR band n28, 3	0MHz test channel band	dwidth is tested with Low	range test frequencies.		

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The DL and UL Reference Measurement channels are set according to Table 6.4.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4.1.4.3

6.4.1.4.2 Test procedure

1. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 6.4.1.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.

- 814
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the appropriate REFSENS value defined in Table 7.3.2.5-1. Send continuously uplink power control "up" commands to the UE in every uplink scheduling information to the UE so that the UE transmits at P_{UMAX} level for the duration of the test. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 4. Measure the Frequency Error using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- 5. For UEs supporting DSS, repeat steps 1~4 on the applicable bands as specified in Section 5.4.2.1 with message contents being according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-61 and Table 4.6.3-62 with condition DSS.

6.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4.1.5 Test requirement

The 10 frequency error Δf results must fulfil the test requirement:

 $|\Delta f| \leq (0.1 \text{ PPM} + 15 \text{ Hz})$

6.4.2 Transmit modulation quality

Transmit modulation quality defines the modulation quality for expected in-channel RF transmissions from the UE. The transmit modulation quality is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs),
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage
- In-band emissions for the non-allocated RB

All the parameters defined in subclause 6.4.2 are defined using the measurement methodology specified in Annex E.

In case the parameter 3300 or 3301 is reported from UE via *txDirectCurrentLocation* IE (as defined in TS 38.331 [6]), carrier leakage measurement requirement in subclause 6.4.2.2 and 6.4.2.3 shall be waived, and the RF correction with regard to the carrier leakage and IQ image shall be omitted during the calculation of transmit modulation quality.

6.4.2.1 Error Vector Magnitude

6.4.2.1.1 Test Purpose

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the carrier leakage shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further equalised using the channel estimates subjected to the EVM equaliser spectrum flatness requirement specified in sub-clause 6.4.2.4.3. For DFT-s-OFDM waveforms, the EVM result is defined after the front-end FFT and IDFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %. For CP-OFDM waveforms, the EVM result is defined after the front-end FFT as the square root of the mean reference power expressed as a %.

The basic EVM measurement interval in the time domain is one preamble sequence for the PRACH and the duration of PUCCH/PUSCH channel, or one hop, if frequency hopping is enabled for PUCCH and PUSCH in the time domain. The EVM measurement interval is reduced by any symbols that contains an allowable power transient as defined in subclause 6.3.3.3.

6.4.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.2.1.3 Minimum conformance requirements

The RMS average of the basic EVM measurements for 10 sub-frames excluding any transient period for the average EVM case, and 60 sub-frames excluding any transient period for the reference signal EVM case, for the different modulation schemes shall not exceed the values specified in Table 6.4.2.1.3-1 for the parameters defined in Table 6.4.2.1.3-2. For EVM evaluation purposes, all PRACH preamble formats 0-4 and all 5 PUCCH formats are considered to have the same EVM requirement as QPSK modulated.

Table 6.4.2.1.3-1: Requirement	for Error Vector	Magnitude
--------------------------------	------------------	-----------

Parameter	Unit	Average EVM Level
Pi/2-BPSK	%	30
QPSK	%	17.5
16 QAM	%	12.5
64 QAM	%	8
256 QAM	%	3.5

Table 6.4.2.1.3-2: Parameters for Error Vector Magnitude

Parameter	Unit	Level
UE Output Power	dBm	≥ Table 6.3.1.3-1
UE Output Power for 256 QAM	dBm	≥ Table 6.3.1-1 + 10 dB
Operating conditions		Normal conditions

The normative reference for this requirement is TS 38.101 [2] clause 6.4.2.1.

6.4.2.1.4 Test description

6.4.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.2.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

	In	itial Conditions		
Test Environment as specified in TS 38.508-1 [5] subclause 4.1		Normal		
	uencies as specified in TS 38.508-1 [5]	Low range, Mid range, Hig	h range (NOTE 4)	
subclause				
	nnel Bandwidths as specified in TS	Lowest, Highest		
	[5] subclause 4.3.1	<u></u>		
Test SCS	as specified in Table 5.3.5-1	All est Parameters		
Test ID	Downlink Configuration		k Configuration	
Testib	N/A	Modulation (NOTE 3)	RB allocation (NOTE 1)	
42	IN/A	. ,		
1 ³		DFT-s-OFDM PI/2 BPSK	Inner Full	
2 ³		DFT-s-OFDM PI/2	Outer Full	
		BPSK		
3		DFT-s-OFDM QPSK	Inner Full	
4		DFT-s-OFDM QPSK	Outer Full	
5		DFT-s-OFDM 16 QAM	Inner Full	
6		DFT-s-OFDM 16 QAM	Outer Full	
7		DFT-s-OFDM 64 QAM	Outer Full	
8		DFT-s-OFDM 256 QAM	Outer Full	
9		CP-OFDM QPSK	Inner Full	
10		CP-OFDM QPSK	Outer Full	
11	7	CP-OFDM 16 QAM	Inner Full	
12	1	CP-OFDM 16 QAM	Outer Full	
13	1	CP-OFDM 64 QAM	Outer Full	
14	1	CP-OFDM 256 QAM	Outer Full	
NOTE 1:	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.			
NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel				
	bandwidths are specified in Table 5.3.5-1.			
	DFT-s-OFDM PI/2 BPSK test applies or			
NOTE 4:	NOTE 4: For NR band n28, 30MHz test channel bandwidth is tested with Low range and High range test frequencies.			

Table 6.4.2.1.4.1-1: Test Configuration Table for PUSCH

Initial Conditions					
Test Environment as specified in TS Normal					
38.50	8-1 [5] subclause 4.	1			
Test I	-requencies as spec	ified in TS	See Table 6.4.	2.1.4.1-1	
38.50	8-1 [5] subclause 4.	3.1			
Test 0	Channel Bandwidths	Bandwidths as specified in See Table 6.4.2.1.4.1-1			
TS 38	3.508-1 [5] subclaus	e 4.3.1			
Test S	SCS as specified in	Table 5.3.5-1	See Table 6.4.	2.1.4.1-1	
			Test Para	meters	
ID	Downlink Co	onfiguration		Uplink Configuration	
	Modulation	RB allocation	Waveform	PUCCH format	RB index
1	CP-OFDM	Full RB (Note	CP-OFDM	PUCCH format = Format 1 (Note 4)	0
	QPSK	1)		Length in OFDM symbols = 14	-
2	CP-OFDM	Full RB (Note	CP-OFDM	PUCCH format = Format (Note 4)1	N _{RB} -1
	QPSK	1)		Length in OFDM symbols = 14	
3	CP-OFDM	Full RB (Note	DFT-s-	PUCCH format = Format 3 (Note 3)	0
	QPSK	1)	OFDM	Length in OFDM symbols = 14	
4	CP-OFDM	Full RB (Note	DFT-s-	PUCCH format = Format 3 (Note 3)	N _{RB} -1
	QPSK	1)	OFDM	Length in OFDM symbols = 14	
NOTE	1: Full RB allocat	ion shall be used p	er each SCS an	d channel BW as specified in Table 7.3.2	.4.1-2.
NOTE	2: Test Channel E	Bandwidths are che	ecked separately	for each NR band, which applicable cha	nnel bandwidths
		1 Table 5.3.5-1.			
NOTE		•	o-HARQ-timing-i	ndicator) as follows:	
	K1 = 2 if mod(i				
	K1 = 2 if mod(i				
	K1 = 4 if mod(i				
K1 = 3 if mod(i,5) = 3					
K1 = 2 if mod(i,5) = 4					
		ndex per frame			
NOTE			DD and SCS 30	kHz, schedule the DL RMC as follows:	
	if $mod(i,10) = 3$				
	Other slots: No				
where i is slot index per frame					

Table 6.4.2.1.4.1-2: Test Configuration Table for PUCCH

Table 6.4.2.1.4.1-3: Test Configuration for PRACH

Ir	nitial Conditions		
Test Environment as specified in TS 38.508-1 [5]	Normal		
subclause 4.1			
Test Frequencies as specified in TS 38.508-1 [5]	See Table 6.4.2.1.4.1-1		
subclause 4.3.1			
Test Channel Bandwidths as specified in TS	See Table 6.4.2.1.4.1-1		
38.508-1 [5] subclause 4.3.1			
Test SCS as specified in Table 5.3.5-1	SCS defined in TS 38.211 [8] subclause 6.3.3.2 determined by		
	PRACH Configuration Index		
PRA	CH preamble format		
	FDD	TDD	
PRACH Configuration Index	17 12		
RS EPRE setting for test point 1 (dBm/15kHz)	-71		
RS EPRE setting for test point 2 (dBm/15kHz)	-86		

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.

- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4.2.1.4.3

6.4.2.1.4.2 Test procedure

Test procedure for PUSCH:

- 1.1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4.2.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 1.2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX level}, allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 1.3. Measure the EVM and *EVM* _{DMRS} using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- 1.4. For modulations except 256QAM, send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level Pmin, where:
 - Pmin is the minimum output power according to Table 6.3.1.3-1.
 - MU is the test system uplink power measurement uncertainty and is specified in Table F.1.2-1 for the carrier frequency f and the channel bandwidth BW.
 - Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [2], Table 6.3.4.3-1 and is 0.7dB for 1dB power step size, and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.
 - For 256 QAM, send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level Pmin + 10 dB, where Pmin, MU and Uplink power control window size are defined above.
- 1.5. Measure the EVM and *EVM* _{DMRS} using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4.2.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.
- NOTE2: The purpose of the Uplink power control window is to ensure that the actual UE output power is no less than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.2.

Table 6.4.2.1.4.2-1: Void

Test procedure for PUCCH:

- 2.1. PUCCH is set according to Table 6.4.2.1.4.1-2.
- 2.2. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 6.4.2.1.4.1-2. The SS sends downlink MAC padding bits on the DL RMC. The transmission of PDSCH will make the UE send uplink ACK/NACK using PUCCH. There is no PUSCH transmission.
- 2.3. SS send appropriate TPC commands for PUCCH to the UE until the UE transmit PUCCH at P_{UMAX} level. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 2.4. Measure PUCCH EVM using Global In-Channel Tx-Test (Annex E).
- 2.5. Send uplink power control commands for PUCCH to the UE using 1dB power step size to ensure that the UE PUCCH output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level Pmin, where:
 - Pmin is the minimum output power according to Table 6.3.1.3-1.
 - MU is the test system uplink power measurement uncertainty and is specified in Table F.1.2-1 for the carrier frequency f and the channel bandwidth BW.
 - Uplink power control window size = 1dB (UE power step size) + 2.0dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [2], Table 6.3.4.3-1 and is 2.0dB for 1dB power step size, and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.
- 2.6. Measure PUCCH EVM using Global In-Channel Tx-Test (Annex E).
- NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4.2.1.4.1-2, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.
- NOTE2: The purpose of the Uplink power control window is to ensure that the actual UE output power is no less than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.2.

Test procedure for PRACH:

- 3.1. The SS shall set RS EPRE according to Table 6.4.2.1.4.1-3.
- 3.2. PRACH is set according to Table 6.4.2.1.4.1-3.
- 3.3. The SS shall signal a Random Access Preamble ID via a PDCCH order to the UE and initiate a Non-contention based Random Access procedure.
- 3.4. The UE shall send the signalled preamble to the SS.
- 3.5. In response to the preamble, the SS shall transmit a random access response not corresponding to the transmitted random access preamble, or send no response.
- 3.6. The UE shall consider the random access response reception not successful then re-transmit the preamble with the calculated PRACH transmission power.
- 3.7. Repeat step 5 and 6 until the SS collect enough PRACH preambles. Measure the EVM in PRACH channel using Global In-Channel Tx-Test (Annex E).
- 6.4.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions:

Derivation Path: TS 38.508-1[5], Table 4.6.3-128 Information Element	Value/remark	Comment	Condition
RACH-ConfigCommon::= SEQUENCE {			
rach-ConfigGeneric	RACH-ConfigGeneric		
totalNumberOfRA-Preambles	Not present		
ssb-perRACH-OccasionAndCB-PreamblesPerSSB	•		
CHOICE {			
one	n8		FR1
}			
groupBconfigured	Not present		
ra-ContentionResolutionTimer	sf64		
rsrp-ThresholdSSB	RSRP-Range		
rsrp-ThresholdSSB-SUL	Not present		
	RSRP-Range		SUL
prach-RootSequenceIndex CHOICE {			
1139	Set according to table		PRACH
	4.4.2-2 for the NR Cell.		Format A3
1839	0	NR Cell 1	PRACH
			Format 0
	TBD	Other than NR	PRACH
		Cell 1	Format 0
}			
msg1-SubcarrierSpacing	SubcarrierSpacing		
restrictedSetConfig	unrestrictedSet		
msg3-transformPrecoder	Not present	transform	
		precoding is	
		disabled for Msg3	
		PUSCH	
		transmission and	
		any PUSCH transmission	
		scheduled with DCI format 0_0	
`			

Table 6.4.2.1.4.3-1: RACH-ConfigCommon: PRACH measurement

Table 6.4.2.1.4.3-2: RACH-ConfigGeneric: PRACH measurement

Derivation Path: TS 38.508-1[5], Table 4.6.3-130)		
Information Element	Value/remark	Comment	Condition
RACH-ConfigGeneric ::= SEQUENCE {			
prach-ConfigurationIndex	17	Paired Spectrum	PRACH
			Format 0
	12	Unpaired	PRACH
		Spectrum	Format 0
msg1-FDM	four		FR1
msg1-FrequencyStart	0		
zeroCorrelationZoneConfig	15		
preambleReceivedTargetPower	-92		Test point 1
	-74		Test point 2
preambleTransMax	n7		
powerRampingStep	dB0		
ra-ResponseWindow	sl20		
}			

Table 6.4.2.1.4.3-3: PUSCH-TimeDomainResourceAllocationList: PRACH measurement

Derivation Path: TS 38.508-1[5], Table 4.6.3-122			
Information Element	Value/remark	Comment	Condition
PUSCH-TimeDomainResourceAllocationList ::= SEQUENCE (SIZE(1maxNrofUL-Allocations)) OF PUSCH-TimeDomainResourceAllocation {	2 entries		
PUSCH-TimeDomainResourceAllocation[2] SEQUENCE {		entry 2 addressed by Msg3 PUSCH time resource allocation field of the Random Access Response acc. to TS 38.213 [22] Table 8.2-1.	
k2	6	K2+ Δ=8 acc. to TS 38.214 [21] Table 6.1.2.1.1-5	Unpaired Spectrum for SCS15kHz and PRACH Format 0
}			

Table 6.4.2.1.4.3-4: PDSCH-ServingCellConfig: PUCCH format3 measurement

Derivation Path: TS 38.508-1[15], Table 4.6.3-102			
Information Element	Value/remark	Comment	Condition
PDSCH-ServingCellConfig ::= SEQUENCE {			
codeBlockGroupTransmission	Not present		
xOverhead	Not present		
nrofHARQ-ProcessesForPDSCH	n6		FDD
pucch-Cell	Not present		
maxMIMO-Layers	Not present		
processingType2Enabled	Not present		
pdsch-CodeBlockGroupTransmissionList-r16	Not present		
}			

6.4.2.1.5 Test requirement

The PUSCH EVM, derived in Annex E.4.2, shall not exceed the values in Table 6.4.2.1.5-1.

The PUSCH \overline{EVM}_{DMRS} , derived in Annex E.4.6.2, shall not exceed the values in Table 6.4.2.1.5-1 when embedded with data symbols of the respective modulation scheme.

Table 6.4.2.1.5-1: Test requirements for Error Vector Magnitude

Parameter	Unit	Average EVM Level
Pi/2-BPSK	%	30 + TT
QPSK	%	17.5 + TT
16 QAM	%	12.5 + TT
64 QAM	%	8 + TT
256 QAM	%	3.5 + TT
Note 1: TT is defined in Table 6.4.2.1.5-2.		

Parameter	Unit	Average EVM Level
Pi/2-BPSK	%	0
QPSK	%	0
16 QAM	%	0
64 QAM	%	0
256 QAM	%	0.3 for 15 dBm < P _{UL}
		0.8 for -25 dBm < P∪∟≤ 15 dBm
		1.1 for -40dBm $\leq P_{UL} \leq -25$ dBm

Table 6.4.2.1.5-2: Test Tolerance

The PUCCH EVM derived in Annex E.5.9.2 shall not exceed 17.5 %.

The PRACH EVM derived in Annex E.6.9.2 shall not exceed 17.5%.

6.4.2.1a Error Vector Magnitude including symbols with transient period

6.4.2.1a.1 Test Purpose

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the carrier leakage shall be removed from the measured waveform before calculating the EVM.

6.4.2.1a.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support short transient period capability.

6.4.2.1a.3 Minimum conformance requirements

In 6.4.2.1, EVM has been defined by excluding the symbols which have a transient period. In this section, measurement interval is defined for the symbols with a transient period to include these symbols in the RMS average EVM computation when the UE reports a transient period capability other than the default. Before calculating the EVM, the measured waveform is corrected for sample timing offset and RF frequency offset. Then the carrier leakage shall be removed from the measured waveform before calculating the EVM. The symbols with transient period should not be used for equalization. Only CP-OFDM waveform is used for conformance testing.

In the case of PUSCH or PUCCH transmissions when the mean power, modulation or RB allocation across slot or subslot boundaries is expected to change the EVM result over the symbols where the transient occurs is calculated according to Table 6.4.2.1a.3-1.

orted transient pability (us)	EVM definition	tp _{start} (μs)	SCS⁴
2	$EVM_{after} = \max \left(\overline{EVM_{l_tp}}, \overline{EVM_h} \right)$ $EVM_{before} = \max \left(\overline{EVM_l}, \overline{EVM_h}, t_p \right)$	-0.5	15kHz or 30kHz⁵
4	$\frac{EVM_{after}}{EVM_{efter}} = \max\left(\frac{EVM_{l,tp}}{EVM_{h}}, \frac{EVM_{h}}{EVM_{hefore}}\right)$	-1	15kHz
7	$EVM_{after} = \min \left(\overline{EVM_{l_tp}}, \overline{EVM_h} \right)$ $EVM_{before} = \max \left(\overline{EVM_l}, \overline{EVM_{h_tp}} \right)$	-2.7	15kHz
NOTE 1: $\overline{EVM_l}$, $\overline{EVM_h}$, $\overline{EVM_{l_tp}}$, and $\overline{EVM_{h_tp}}$ are defined in Annex E.4.7 NOTE 2: EVM_{after} is the EVM for a symbol right after a transition; EVM_{before} is the EVM for a symbol			/M for a symbol
right before a transition			
 NOTE 4: SCS denotes the SCS that can be used in the conformance test NOTE 5: 30kHz shall be used in the conformance test unless the UE signals in supportedSubCarrierSpacingUL in FeatureSetPerCC that it only supports 15kHz in the 			
supportedSubCarrierSpacingUL in FeatureSetPerCC that it only supports 15kHz in the corresponding band			

Table 6.4.2.1a.3-1: EVM definition for reported transient period

The RMS average of the basic EVM measurements over 108 subframes for the symbols where the transient occurs for the different modulation schemes shall not exceed the values specified in Table 6.4.2.1a.3-2 for the parameters defined in Table 6.4.2.1a.3-3. This requirement can be verified with 64 QAM and 256 QAM modulation.

Table 6.4.2.1a.3-2: Requirements for	r Error Vector Magnitude
--------------------------------------	--------------------------

Parameter	Unit	Average EVM Level
64 QAM	%	10
256 QAM	%	8

Table 6.4.2.1a.3-3: Parameters	for Error	Vector Magnitude
		Veolor magintade

Parameter	Unit	Level
UE Output Power	dBm	≥ Table 6.3.1-1
UE Output Power for 256 QAM	dBm	≥ Table 6.3.1-1 + 10 dB
Operating conditions		Normal conditions

The normative reference for this requirement is TS 38.101 [2] clause 6.4.2.1a.

6.4.2.1a.4 Test description

6.4.2.1a.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

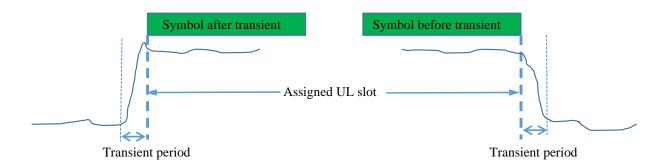

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.2.1a.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

 Table 6.4.2.1a.4.1-1: Test Configuration Table for PUSCH

	Initial Conditions		
Test Envir	st Environment as specified in TS 38.508-1 [5] Normal		
subclause	subclause 4.1		
Test Frequ	uencies as specified in TS 38.508-1 [5]	Low range, Mid range, Hig	h range (NOTE 4)
subclause	4.3.1		
	nel Bandwidths as specified in TS	Lowest, Highest	
	5] subclause 4.3.1		
Test SCS	as specified in Table 5.3.5-1	15 kHz (Note 3)	
		est Parameters	
Test ID	Downlink Configuration	Uplin	k Configuration
	N/A	Modulation	RB allocation (NOTE 1)
1		CP-OFDM 64 QAM	Outer Full
2		CP-OFDM 256 QAM Outer Full	
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.			
NOTE 2:	NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel		
	bandwidths are specified in Table 5.3.5-1.		
NOTE 3:	NOTE 3: For UE supporting 2 us transient period, 30kHz shall be used in the conformance test unless the UE		
	signals in supportedSubCarrierSpacingUL in FeatureSetPerCC that it only supports 15kHz in the		
	corresponding band.		
NOTE 4:	E 4: For NR band n28, 30MHz test channel bandwidth is tested with Low range and High range test		
	frequencies.		

1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.

- 824
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4.2.1a.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4.2.1a.4.3
- 6.4.2.1a.4.2 Test procedure

Figure 6.4.2.1a.4.2-1: Error Vector Magnitude including symbols with transient period

- SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4.2.1a.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The UL assignment is such that the UE transmits on slots 8 for 15 kHz SCS, on slots 8 and 18 for 30 kHz SCS and on slots 17 and 37 for 60 kHz SCS.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX level}, allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure the EVM and *EVM* _{DMRS} using Global In-Channel Tx-Test (Annex E) applying tp_{start} of Table 6.4.2.1a.3-1 according to the declared enhanced transient capability. For TDD, only slots consisting of only UL symbols are under test as indicated in Figure 6.4.2.1a.4.2-1.
- 4. For CP-OFDM 64 QAM modulations, send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level Pmin, where:
 - Pmin is the minimum output power according to Table 6.3.1.3-1.
 - MU is the test system uplink power measurement uncertainty and is specified in Table F.1.2-1 for the carrier frequency f and the channel bandwidth BW.
 - Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where the UE power step tolerance is specified in TS 38.101-1 [2], Table 6.3.4.3-1 and is 0.7dB for 1dB power step size, and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.
 - For CP-OFDM 256 QAM modulations, send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control

window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level Pmin + 10 dB, where Pmin, MU and Uplink power control window size are defined above.

- 5. Measure the EVM and \overline{EVM}_{DMRS} using Global In-Channel Tx-Test (Annex E) applying tp_{start} of Table 6.4.2.1a.3-1 according to the declared enhanced transient capability. For TDD, only slots consisting of only UL symbols are under test.
- NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is no less than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.2.

6.4.2.1a.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions:

Derivation Path: TS 38.508-1[5], Table 4.6.3-192			
Information Element	Value/remark	Comment	Condition
TDD-UL-DL-ConfigCommon ::= SEQUENCE {			
referenceSubcarrierSpacing	SubcarrierSpacing		
pattern1 SEQUENCE {			
dl-UL-TransmissionPeriodicity	ms5		FR1
	ms10		FR1_15kHz
nrofDownlinkSlots	6		FR1_15kHz
	6		FR1_30kHz
	14		FR1_60kHz
nrofDownlinkSymbols	10		FR1_15kHz
	6		FR1_30kHz
	12		FR1_60kHz
nrofUplinkSlots	3		FR1_15kHz,
			FR1_30kHz
	4		FR1_60kHz
nrofUplinkSymbols	4		FR1_30kHz
	2		FR1_15kHz,
	8		FR1_60kHz
}			
pattern2	Not present		
}			

Table 6.4.2.1a.4.3-1: TDD-UL-DL-Config

6.4.2.1a.5 Test requirement

The PUSCH EVM, derived in Annex E.4.2, shall not exceed the values in Table 6.4.2.1a.5-1.

The PUSCH EVM_{DMRS} , derived in Annex E.4.6.2, shall not exceed the values in Table 6.4.2.1a.5-1 when embedded with data symbols of the respective modulation scheme.

Parameter	Unit	Average EVM Level
64 QAM	%	10 + TT
256 QAM	%	8 + TT
Note 1: TT is defined in Table 6.4.2.1a.5-2.		

Parameter	Unit	Average EVM Level
64 QAM	%	0
256 QAM	%	0.3 for 15 dBm < P∪∟
		0.8 for -25 dBm < P∪∟≤ 15 dBm
		1.1 for -40dBm ≤ P _{UL} ≤ -25dBm

Table 6.4.2.1a.5-2: Test Tolerance

6.4.2.2 Carrier leakage

6.4.2.2.1 Test purpose

Carrier leakage expresses itself as unmodulated sine wave with the carrier frequency or centre frequency of aggregated transmission bandwidth configuration. It is an interference of approximately constant amplitude and independent of the amplitude of the wanted signal.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of carrier leakage.

6.4.2.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.2.2.3 Minimum conformance requirements

Carrier leakage is an additive sinusoid waveform whose frequency is the same as the modulated waveform carrier frequency. The measurement interval is one slot in the time domain.

In the case that uplink sharing, the carrier leakage may have 7.5 kHz shift with the carrier frequency.

The relative carrier leakage power is a power ratio of the additive sinusoid waveform and the modulated waveform. The relative carrier leakage power shall not exceed the values specified in Table 6.4.2.3-1.

Table 6.4.2.2.3-1: Requirements for	or Carrier Leakage
-------------------------------------	--------------------

Parameter	Relative Limit (dBc)
Output power > 10 dBm	-28
0 dBm ≤ Output power ≤ 10 dBm	-25
-30 dBm ≤ Output power < 0 dBm	-20
-40 dBm ≤ Output power < -30 dBm	-10

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4.2.2.

6.4.2.2.4 Test description

6.4.2.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.2.2.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions				
Test Envir	Test Environment as specified in TS 38.508-1 [5] Normal			
subclause	4.1			
Test Frequ	encies as specified in TS 38.508-1 [5]	Low range, Mid range, Higl	h range	
subclause	4.3.1			
Test Chan	nel Bandwidths as specified in TS	Mid		
38.508-1 [5] subclause 4.3.1			
Test SCS	as specified in Table 5.3.5-1	Lowest		
	Т	est Parameters		
Test ID	Downlink Configuration	Uplink Configuration		
	N/A	Modulation	RB allocation (NOTE 1, 3)	
1		DFT-s-OFDM QPSK Inner_1RB_Left		
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.				
NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel				
bandwidths are specified in Table 5.3.5-1.				
NOTE 3:	NOTE 3: When the signalled DC carrier position is at Inner_1RB_Left, use Inner_1RB_Right for UL RB allocation.			

Table 6.4.2.2.4.1-1: Test Configuration

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to AnnexC.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4.2.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4.2.2.4.3.
- 7. In case the parameter 3300 or 3301 is reported from the UE via *txDirectCurrentLocation* IE, do not proceed to test procedure and mark the test not applicable with reasoning in the test report.

6.4.2.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4.2.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level 10 dBm, where:
 - MU is the test system uplink power measurement uncertainty and is specified in Table F.1.2-1 for the carrier frequency f and the channel bandwidth BW.
 - Uplink power control window size = 1dB (UE power step size) + 0.7 dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [2], Table 6.3.4.3-1 and is 0.7dB for 1dB power step size, and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.
- 3. Measure carrier leakage using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- 4. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink

power control window size) dB of the target power level 0 dBm, where MU and Uplink power control window size are defined above.

- 5. Measure carrier leakage using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- 6. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level -30 dBm, where MU and Uplink power control window size are defined above.
- 7. Measure carrier leakage using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- 8. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level Pmin, where MU and Uplink power control window size are defined above, Pmin is the minimum output power according to Table 6.3.1.3-1.
- 9. Measure carrier leakage using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power is no less than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.2.

Table 6.4.2.2.4.2-1: Void

Table 6.4.2.1.4.2-2: Void

6.4.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exception:

Table 6.4.2.2.4.3-1: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED

6.4.2.2.5 Test requirement

Each of the *n* carrier leakage results, derived in Annex E.3.1, shall not exceed the values in table 6.4.2.2.5-1. Allocated RBs are not under test.

	Parameters	Relative limit	
UE output power		(dBc)	
10 + N	10 + MU to 10 + (MU + Uplink power control window size) dBm		
0 + MU to	0 0 + (MU + Uplink power control window size) dBm	-25 + TT	
-30 + N	IU to -30 + (MU + Uplink power control window size) dBm	-20 + TT	
Pmin + N	IU to Pmin + (MU + Uplink power control window size) dBm	-10 + TT	
NOTE 1:	The measurement bandwidth is 1 RB and	I the limit is	
	expressed as a ratio of measured power i allocated RB to the measured total power RBs.		
NOTE 2:	NOTE 2: The applicable frequencies for this limit depend on the parameter <i>txDirectCurrentLocation</i> in <i>UplinkTxDirectCurrent</i> IE, and are those that are enclosed either in the RBs containing the carrier leakage frequency, or in the two RBs immediately adjacent to the carrier leakage frequency but excluding any allocated RB.		
NOTE 3:	$N_{\rm RB}$ is the Transmission Bandwidth Con Section 5.3).	figuration (see	
NOTE 4: MU is the test system uplink power measurement uncertainty and is specified in Table F.1.2-1 for the carrier frequency f and the channel bandwidth BW.			
NOTE 5: Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [2], Table 6.3.4.3-1 and is 0.7dB for 1dB power step size, and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.			
	Test tolerance TT = 0.8 dB. Pmin is the minimum output power accord 6.3.1.3-1.	ding to Table	

Table 6.4.2.2.5-1: Test requirements for Relative Carrier Leakage Power

6.4.2.3 In-band emissions

6.4.2.3.1 Test purpose

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks

The in-band emission is defined as the average emission across 12 sub-carriers and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non–allocated RB to the UE output power in an allocated RB.

The basic in-band emissions measurement interval is defined over one slot in the time domain, however, the minimum requirement applies when the in-band emission measurement is averaged over 10 sub-frames. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one or more symbols, accordingly.

The purpose of this test is to exercise the UE transmitter to verify its modulation quality in terms of in-band emissions.

6.4.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.2.3.3 Minimum conformance requirements

The average of the basic in-band emission measurement over 10 sub-frames shall not exceed the values specified in Table 6.4.2.3.3-1.

Parameter description	Unit		Limit (NOTE 1)	Applicable Frequencies
General dB		$\max\{ -25 - 10 \cdot \log_{10} (N_{RB} / L_{CRB}), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot (\Delta_{RB} - 1) / L_{CRB}, \\ -57 dBm + 10 \log_{10} (SCS / 15kHz) - \overline{P_{RB}} \}$		Any non-allocated (NOTE 2)
IQ Image	dB		frequencies when output power > 10 dBm frequencies when output power ≤ 10 dBm	Image frequencies (NOTES 2, 3)
Carrier leakage	dBc	-25 0 dBm -20 -30 dB	t power > 10 dBm ≤ Output power ≤ 10 dBm Bm ≤ Output power < 0 dBm Bm ≤ Output power < -30 dBm	Carrier leakage frequency (NOTES 4, 5)
r (NOTE 2: 1 a	ninimum requireme General, IQ Image Fhe measurement l allocated RB to the	is combined limit is eva nt is calculated as the l or Carrier leakage) tha andwidth is 1 RB and t	Iluated in each non-allocated RB. For each s higher of P_{RB} - 30 dB and the power sum of a t apply. P_{RB} is defined in NOTE 10. he limit is expressed as a ratio of measured ver per allocated RB, where the averaging is	Il limit values
 allocated RBs. NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier leakage frequency, but excluding any allocated RBs. NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs. NOTE 5: The applicable frequencies for this limit depend on the parameter <i>txDirectCurrentLocation</i> in <i>UplinkTxDirectCurrent</i> IE, and are those that are enclosed either in the RBs containing the carrier leakage frequency, or in the two RBs immediately adjacent to the carrier leakage frequency but excluding any allocated RB. 				
NOTE 6:	$L_{\scriptscriptstyle CRB}$ is the Transr	ission Bandwidth (see	Section 5.3).	
NOTE 7: N_{RB} is the Transmission Bandwidth Configuration (see Section 5.3). NOTE 8: EVM is the limit specified in Table 6.4.2.1.3-1 for the modulation format used in the allocated RBs. NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB} = 1$ or $\Delta_{RB} = -1$ for the first adjacent RB outside of the allocated bandwidth. NOTE 10: $\overline{P_{RB}}$ is an average of the transmitted power over 10 sub-frames normalized by the number of allocated				
	RBs, measured in c			

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4.2.3.

6.4.2.3.4 Test description

6.4.2.3.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table

6.4.2.3.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

	In	itial Conditions		
Test Environment as specified in TS 38.508-1 [5]		Normal		
subclause	4.1			
	uencies as specified in TS 38.508-1 [5]	Low range, Mid range, Higl	h range (NOTE 3)	
subclause	4.3.1			
Test Char	nel Bandwidths as specified in TS	Lowest, Mid, Highest		
38.508-1 [5] subclause 4.3.1			
Test SCS	as specified in Table 5.3.5-1	Lowest		
	Т	est Parameters		
Test ID	Downlink Configuration	Uplinl	k Configuration	
	N/A	Modulation	RB allocation (NOTE 1)	
1		DFT-s-OFDM QPSK	Inner_1RB_Left	
2		DFT-s-OFDM QPSK	Inner_1RB_Right	
3		CP-OFDM QPSK	Inner_1RB_Left	
4		CP-OFDM QPSK	Inner_1RB_Right	
NOTE 1:	The specific configuration of each RB al	location is defined in Table 6	5.1-1.	
NOTE 2:	Test Channel Bandwidths are checked s	separately for each NR band	, which applicable channel	
	bandwidths are specified in Table 5.3.5-1.			
NOTE 3:	E 3: For NR band n28, 30MHz test channel bandwidth is tested with Low range and High range test			
	frequencies.			

Table 6.4.2.3.4.1-2: Test Configuration Table for PUCCH

	Initial Conditions				
	Environment as spec		See Table 6.4.	2.3.4.1-1	
38.50	08-1 [5] subclause 4.	1			
	Frequencies as spec		See Table 6.4.	2.3.4.1-1	
38.50	8-1 [5] subclause 4.3	3.1			
Test 0	Test Channel Bandwidths as specified in		See Table 6.4.	2.3.4.1-1	
TS 38	TS 38.508-1 [5] subclause 4.3.1				
Test \$	Test SCS as specified in Table 5.3.5-1		See Table 6.4.	2.3.4.1-1	
			Test Para	meters	
ID	ID Downlink Configuration			Uplink Configuration	on
	Modulation	RB allocation	Waveform	PUCCH format	RB index

1	CP-OFDM QPSK	Full RB (Note 1)	DFT-s-OFDM	PUCCH format = Format 3 (Note 4)	0	
1			DEL-2-OEDIVI		0	
				Length in OFDM symbols = 14		
2	CP-OFDM QPSK	Full RB (Note 1)	DFT-s-OFDM	PUCCH format = Format 3 (Note 4)	N _{RB} -1	
				Length in OFDM symbols = 14		
3	CP-OFDM QPSK	Full RB (Note 1)	CP-OFDM	PUCCH format = Format 1 (Note 5)	0	
				Length in OFDM symbols = 14		
4	CP-OFDM QPSK	Full RB (Note 1)	CP-OFDM	PUCCH format = Format 1 (Note 5)	N _{RB} -1	
				Length in OFDM symbols = 14		
NOTE	1: Full RB allocation	on shall be used pe	r each SCS and	channel BW as specified in Table 7.3.2.4	.1-2.	
NOTE	2: Test Channel B	andwidths are cheo	cked separately f	or each NR band, which applicable chanr	nel bandwidths	
	are specified in	Table 5.3.5-1.				
NOTE	•		es only for UEs	which supports half Pi BPSK in FR1.		
	IOTE 3: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1. IOTE 4: For FDD, set K1 value (PDSCH-to-HARQ-timing-indicator) as follows:					
	K1 = 2 if mod(i,5) = 0					
	(<i>'</i>					
		K1 = 2 if mod(i,5) = 1				
	()	K1 = 4 if mod(i,5) = 2				
		K1 = 3 if mod(i,5) = 3				
		K1 = 2 if mod(i,5) = 4				
	where i is slot index per frame					
NOTE	IOTE 5: For TDD and SCS 30 kHz, schedule the DL RMC as follows:					
	if $mod(i,10) = 3$: Scheduled					
1	Other slots: Not scheduled					
1	where i is slot index per frame					
L	where his slot index per name					

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4.2.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4.2.3.4.3

6.4.2.3.4.2 Test procedure

Test procedure for PUSCH:

- 1.1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4.2.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 1.2. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level 10 dBm, where:
 - MU is the test system uplink power measurement uncertainty and is specified in Table F.1.2-1 for the carrier frequency f and the channel bandwidth BW.
 - Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [2], Table 6.3.4.3-1 and is 0.7dB for 1dB power step size, and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.

- 1.3. Measure In-band emission using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- 1.4. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level 0 dBm, where MU and Uplink power control window size are defined above.
- 1.5. Measure In-band emission using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- 1.6. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level -30 dBm, where MU and Uplink power control window size are defined above.
- 1.7. Measure In-band emission using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- 1.8. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level Pmin, where MU and Uplink power control window size are defined above and Pmin is the minimum output power according to Table 6.3.1.3-1.
- 1.9. Measure In-band emission using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4.2.3.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.
- NOTE2: The purpose of the Uplink power control window is to ensure that the actual UE output power is no less than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.2.

Test procedure for PUCCH:

- 2.1. PUCCH is set according to Table 6.4.2.3.4.1-2. SS transmits PDSCH via PDCCH DCI format 1-1 for C_RNTI to transmit the DL RMC according to Table 6.4.2.3.4.1-2. The SS sends downlink MAC padding bits on the DL RMC. The transmission of PDSCH will make the UE send uplink ACK/NACK using PUCCH.
- 2.2. Send uplink power control commands for PUCCH to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level 10 dBm, where:
 - MU is the test system uplink power measurement uncertainty and is specified in Table F.1.2-1 for the carrier frequency f and the channel bandwidth BW.
 - Uplink power control window size = 1dB (UE power step size) + 2.0 dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [2], Table 6.3.4.3-1 and is 0.7dB for 1dB power step size and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.
- 2.3. Measure In-band emission using Global In-Channel Tx-Test (Annex E)
- 2.4. Send uplink power control commands for PUCCH to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level 0 dBm, where MU and Uplink power control window size are defined above.

- 2.5. Measure In-band emission using Global In-Channel Tx-Test (Annex E)
- 2.6. Send uplink power control commands for PUCCH to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level -30 dBm, where MU and Uplink power control window size are defined above.
- 2.7. Measure In-band emission using Global In-Channel Tx-Test (Annex E)
- 2.8. Send uplink power control commands for PUCCH to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level Pmin, where MU and Uplink power control window size are defined above and Pmin is the minimum output power according to Table 6.3.1.3-1.
- 2.9. Measure In-band emission using Global In-Channel Tx-Test (Annex E)
- NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4.2.3.4.1-2, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.
- NOTE2: The purpose of the Uplink power control window is to ensure that the actual UE output power is no less than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.2.

Table 6.4.2.3.4.2-1: Void

Table 6.4.2.3.4.2-2: Void

6.4.2.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions:

Table 6.4.2.3.4.3-1: PDSCH-ServingCellConfig: PUCCH format3 measurement

Derivation Path: TS 38.508-1[15], Table 4.6.3-102			
Information Element	Value/remark	Comment	Condition
PDSCH-ServingCellConfig ::= SEQUENCE {			
codeBlockGroupTransmission	Not present		
xOverhead	Not present		
nrofHARQ-ProcessesForPDSCH	n6		FDD
pucch-Cell	Not present		
maxMIMO-Layers	Not present		
processingType2Enabled	Not present		
pdsch-CodeBlockGroupTransmissionList-r16	Not present		
}			

6.4.2.3.5 Test requirement

The averaged In-band emission result, derived in Annex E.4.3 shall not exceed the corresponding values in Tables 6.4.2.3.5-1.

Parameter description	Linit		Limit (NOTE 1)	Applicable Frequencies
General (NOTE 12)	dB	20 · lo	$-25 - 10 \cdot \log_{10} (N_{RB} / L_{CRB}),$ $\log_{10} EVM - 3 - 5 \cdot (\Delta_{RB} - 1) / L_{CRB},$ $dBm + 10 \log_{10} (SCS / 15kHz) - \overline{P_{RB}} \}_{+\text{TT}}$	Any non-allocated (NOTE 2)
IQ Image (NOTE 12)	dB	-28 + TT -25 + TT	Image frequencies when output power > 10 dBm Image frequencies when output power ≤ 10 dBm	Image frequencies (NOTES 2, 3)
Carrier leakage (NOTE 12)	dBc	-28 + TT -25 + TT -20 + TT -10 + TT	Output power > 10 dBm 0 dBm ≤ Output power ≤ 10 dBm -30 dBm ≤ Output power < 0 dBm -40 dBm ≤ Output power < -30 dBm	Carrier leakage frequency (NOTES 4, 5)
m ((NOTE 2: T a	ninimum requireme General, IQ Image The measurement I	ent is calculated or Carrier leaka bandwidth is 1 F	hit is evaluated in each non-allocated RB. For each s as the higher of P_{RB} - 30 dB and the power sum of a age) that apply. P_{RB} is defined in NOTE 10. RB and the limit is expressed as a ratio of measured age power per allocated RB, where the averaging is	Il limit values power in one non-
 NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier leakage frequency, but excluding any allocated RBs. NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs. NOTE 5: The applicable frequencies for this limit depend on the parameter <i>txDirectCurrentLocation</i> in <i>UplinkTxDirectCurrent</i> IE, and are those that are enclosed either in the RBs containing the carrier leakage frequency, or in the two RBs immediately adjacent to the carrier leakage frequency, but excluding any allocated RB. 				
NOTE 6: 1	L_{CRB} is the Transr	nission Bandwid	th (see Section 5.3).	
NOTE 8: A NOTE 9: A				
NOTE 10: $\overline{P_{RB}}$ is an average of the transmitted power over 10 sub-frames normalized by the number of allocated RBs, measured in dBm. NOTE 11: Test tolerance TT = 0.8 dB. NOTE 12: In case the parameter 3300 or 3301 is reported from UE via <i>txDirectCurrentLocation</i> IE, IQ Image and Carrier leakage limit do not apply and General limit applies for all non-allocated frequencies.				

Table 6.4.2.3.5-1: Test requirements for in-band emissions

6.4.2.4 EVM equalizer spectrum flatness

6.4.2.4.1 Test purpose

The zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex E) must meet a spectral flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the allocated uplink block, at which the equalizer coefficients are generated by the EVM measurement process. The basic measurement interval is the same as for EVM.

The EVM equalizer spectrum flatness requirement does not limit the correction applied to the signal in the EVM measurement process but for the EVM result to be valid, the equalizer correction that was applied must meet the EVM equalizer spectrum flatness minimum requirements.

6.4.2.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.4.2.4.3 Minimum conformance requirements

The peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.4.2.4.3-1 for normal conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 5 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 7 dB (see Figure 6.4.2.4.3-1).

The EVM equalizer spectral flatness shall not exceed the values specified in Table 6.4.2.4.3-2 for extreme conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 10 dB (see Figure 6.4.2.4.3-1).

Table 6.4.2.4.3-1: Requirements for EVM equalizer spectrum flatness (normal conditions)

	Frequency range	Maximum ripple (dB)
FUL_Meas	$s - F_{UL_{Low}} \ge 3 \text{ MHz} \text{ and } F_{UL_{High}} - F_{UL_{Meas}} \ge 3 \text{ MHz}$	4 (p-p)
	(Range 1)	
FUL_Mea	as – FUL_Low < 3 MHz or FUL_High – FUL_Meas < 3 MHz	8 (p-p)
	(Range 2)	
NOTE 1:	$F_{\text{UL}_\text{Meas}}$ refers to the sub-carrier frequency for which evaluated	the equalizer coefficient is
NOTE 2:	F_{UL_Low} and F_{UL_High} refer to each E-UTRA frequency 5.5-1	band specified in Table

Table 6.4.2.4.3-2: Minimum requirements for EVM equalizer spectrum flatness (extreme conditions)

	Frequency range	Maximum Ripple (dB)
FUL_Meas -	– F _{UL_Low} ≥ 5 MHz and F _{UL_High} – F _{UL_Meas} ≥ 5 MHz	4 (p-p)
	(Range 1)	
F _{UL_Meas}	– F _{UL_Low} < 5 MHz or F _{UL_High} – F _{UL_Meas} < 5 MHz	12 (p-p)
	(Range 2)	
	FuL_Meas refers to the sub-carrier frequency for which evaluated	the equalizer coefficient is
	$F_{UL_{Low}}$ and $F_{UL_{High}}$ refer to each E-UTRA frequency 5.5-1	band specified in Table

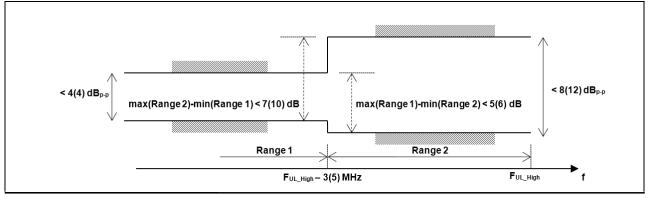


Figure 6.4.2.4.3-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated (the ETC minimum requirement are within brackets)

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4.2.4.

6.4.2.4.4 Test description

6.4.2.4.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4.2.4.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4.2.4.4.1-1: Tes	st Configuration
--------------------------	------------------

	In	itial Conditions		
Test Environment as specified in TS 38.508-1 [5] subclause 4.1		Normal, TL/VL, TL/VH, TH/VL, TH/VH		
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1		Low range, Mid range, Hig	h range (NOTE 3)	
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1		Lowest, Mid, Highest		
Test SCS	as specified in Table 5.3.5-1	Lowest		
	Т	est Parameters		
Test ID	Downlink Configuration	Uplink Configuration		
	N/A	Modulation	RB allocation (NOTE 1)	
1		DFT-s-OFDM QPSK	Outer Full	
2		CP-OFDM QPSK	Outer Full	
NOTE 2:	 IOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1. IOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel bandwidths are specified in Table 5.3.5-1. IOTE 3: For NR band n28, 30MHz test channel bandwidth is tested with Low range and High range test frequencies. 			

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.

- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4.2.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4.2.4.4.3.

6.4.2.4.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4.2.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure spectrum flatness using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- NOTE1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.4.2.1.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.4.2.4.4.3 Message contents

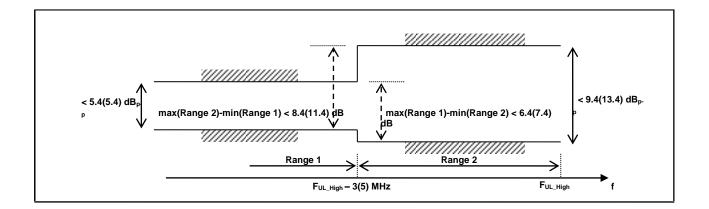
Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4.2.4.5 Test requirement

Each of the *n* spectrum flatness functions, shall derive four ripple results in Annex E.4.4.1. The derived results shall not exceed the values in Figure 6.4.2.4.5-1:

For normal conditions, the maximum ripple in Range 1 and Range 2 shall not exceed the values specified in Table 6.4.2.4.5-1 and the following additional requirement: the relative difference between the maximum coefficient in Range 2 must not be larger than 6.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 8.4 dB (see Figure 6.4.2.4.5-1).

For normal conditions, the peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.4.2.4.5-1. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 8.4 dB (see Figure 6.4.2.4.5-1).


For extreme conditions, the EVM equalizer spectral flatness shall not exceed the values specified in Table 6.4.2.4.5-2. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 7.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 11.4 dB (see Figure 6.4.2.4.5-1).

Frequency range	Maximum ripple [dB]	
F _{UL_Meas} – F _{UL_Low} ≥ 3 MHz and F _{UL_High} – F _{UL_Meas} ≥ 3 MHz	4 + TT (p-p)	
(Range 1)		
FUL_Meas – FUL_Low < 3 MHz or FUL_High – FUL_Meas < 3 MHz	8 + TT (p-p)	
(Range 2)		
NOTE 1: FUL_Meas refers to the sub-carrier frequency for which	the equalizer coefficient is	
evaluated		
NOTE 2: FUL_Low and FUL_High refer to each E-UTRA frequency band specified in Table		
5.5-1		
NOTE 3: Test tolerance TT = 1.4 dB.		

Table 6.4.2.4.5-1: Requirements for EVM equalizer spectrum flatness (normal conditions)

Table 6.4.2.4.5-2: Minimum requirements for EVM equalizer spectrum flatness (extreme conditions)

Frequency range	Maximum Ripple [dB]
F _{UL_Meas} – F _{UL_Low} ≥ 5 MHz and F _{UL_High} – F _{UL_Meas} ≥ 5 MHz	4 + TT (p-p)
(Range 1)	
F _{UL_Meas} – F _{UL_Low} < 5 MHz or F _{UL_High} – F _{UL_Meas} < 5 MHz	12 + TT (p-p)
(Range 2)	
NOTE 1: F _{UL_Meas} refers to the sub-carrier frequency for which evaluated	the equalizer coefficient is
NOTE 2: FUL_Low and FUL_High refer to each E-UTRA frequency 5.5-1	band specified in Table
NOTE 3: Test tolerance TT = 1.4 dB.	

Figure 6.4.2.4.5-1: The test requirements for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated for unshaped modulations (the ETC test requirements are within brackets)

6.4.2.5 EVM equalizer spectrum flatness for Pi/2 BPSK

Editor's Note: The following aspects are either missing or not yet determined:

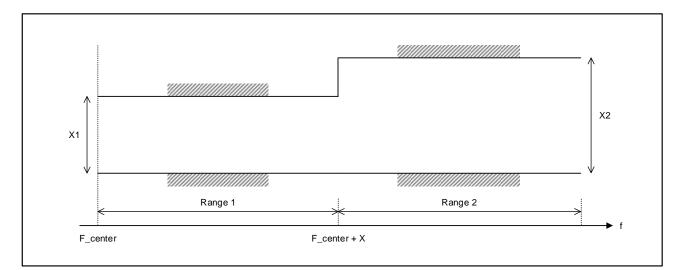
6.4.2.5.1 Test purpose

The zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex E) must meet a spectral flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the allocated uplink block, at which the equalizer coefficients are generated by the EVM measurement process. The basic measurement interval is the same as for EVM.

6.4.2.5.2 Test applicability

This test case applies to all types of power class 3 capable NR UE release 15 and forward indicating support for UE capability *powerBoosting-pi2BPSK* and operating in TDD bands n40, n41, n77, n78 and n79.

This test case applies to all types of NR UE release 16 and forward indicating support for UE capability *lowPAPR-DMRS-PUSCHwithPrecoding-r16*.


6.4.2.5.3 Minimum conformance requirements

These requirements apply if the IE *powerBoostPi2BPSK* is set to 1 for power class 3 capable UE operating in TDD bands n40, n41, n77, n78 and n79 with pi/2 BPSK modulation and UE indicates support for UE capability *powerBoosting-pi2BPSK* and 40 % or less slots in radio frame are used for UL transmission. These requirements also apply if the IE *dmrs-UplinkTransformPrecoding-r16* is configured and UE indicates support for UE capability *lowPAPR-DMRS-PUSCHwithPrecoding-r16*. Otherwise the requirements for EVM equalizer spectrum flatness defined in clause 6.4.2.4.3 apply.

The EVM equalizer coefficients across the allocated uplink block shall be modified to fit inside the mask specified in Table 6.4.2.5.3-1 for normal conditions, prior to the calculation of EVM. The limiting mask shall be placed to minimize the change in equalizer coefficients in a sum of squares sense.

Table 6.4.2.5.3-1: Mask for EVM equalizer coefficients for Pi/2 BPSK, normal conditions

Frequency range	Parameter	Maximum ripple (dB)	
F _{UL_Meas} – F_center ≤ X MHz	X1	6 (p-p)	
(Range 1)			
F _{UL_Meas} – F_center > X MHz	X2	14 (p-p)	
(Range 2)			
NOTE 1: FUL_Meas refers to the sub-carrier frequency for which the equalizer coefficient is evaluated			
NOTE 2: F_center refers to the center frequency of an allocated block of PRBs			
NOTE 3: X, in MHz, is equal to 25% of the bandwidth of the PRB allocation			
NOTE 4: See Figure 6.4.2.5.3-1 for description of X1, X2			

Figure 6.4.2.5.3-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation. F_center denotes the center frequency of the allocated block of PRBs. X, in MHz, is equal to 25 % of the bandwidth of the PRB allocation.

For pi/2 BPSK modulation the UE shall be allowed to employ spectral shaping and the shaping filter shall be restricted so that the impulse response of the shaping filter itself shall meet

 $\left| \tilde{a}_{t}(t,0) \right| \geq \left| \tilde{a}_{t}(t,\tau) \right| \quad \forall \tau \neq 0$

 $20 \log_{10} | \tilde{a}_t(t,\tau) | < -15 \text{ dB} \quad 1 < \tau < \text{M} - 1,$

where, $|\tilde{a}_t(t,\tau)| = IDFT\{ |\tilde{a}_t(t,f)| e^{j\varphi(t,f)} \}$, *f* is the frequency of the *M* allocated subcarriers, $\tilde{a}(t,f)$ and $\varphi(t,f)$ are the amplitude and phase response.

0dB reference is defined as $20log_{10} | \tilde{a}_t(t,0) |$.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4.2.4.1.

6.4.2.5.4 Test description

6.4.2.5.4.1 Initial condition

Same initial conditions as in clause 6.4.2.4.4.1 with following exceptions:

- Instead of Table 6.4.2.4.4.1-1 → use Table 6.4.2.5.4.1-1

Table 6.4.2.5.4.1-1: Test Configuration

	In	itial Conditions		
Test Environment as specified in TS 38.508-1 [5]		Normal		
subclause	94.1			
Test Frequencies as specified in TS 38.508-1 [5]		Low range, Mid range, High range (NOTE 3)		
subclause				
	nel Bandwidths as specified in TS	Lowest, Mid, Highest		
	5] subclause 4.3.1			
Test SCS	as specified in Table 5.3.5-1	Lowest		
	Test Parameters			
Test ID	Downlink Configuration	Uplink Configuration		
	N/A	Modulation	RB allocation (NOTE 1)	
1 ⁴	7	DFT-s-OFDM Pi/2 BPSK	Outer Full	
2 ⁵	7	DFT-s-OFDM Pi/2 BPSK	Outer Full	
		w Pi/2 BPSK DMRS		
NOTE 1:	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.			
NOTE 2:	Test Channel Bandwidths are checked s	separately for each NR band	, which applicable channel	
	bandwidths are specified in Table 5.3.5-1.			
NOTE 3:	NOTE 3: For NR band n28, 30MHz test channel bandwidth is tested with Low range and High range test			
	frequencies.			
	NOTE 4: UEs indicating support for UE capability powerBoosting-pi2BPSK.			
NOTE 5:	NOTE 5: Applicable to UEs indicating support for UE capability <i>lowPAPR-DMRS-PUSCHwithPrecoding-r16</i> .			

6.4.2.5.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4.2.5.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure spectrum flatness using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.

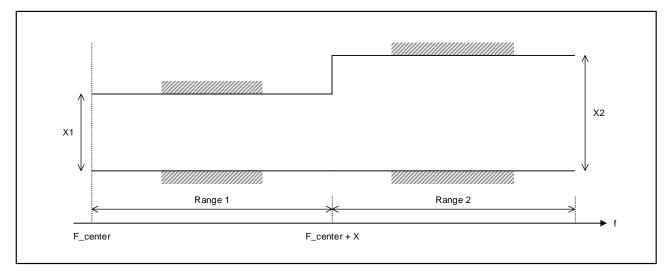
6.4.2.5.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exception:

Information Element	Value/remark	Comment	Condition
uplinkConfig SEQUENCE {			
initialUplinkBWP	BWP-UplinkDedicated		
uplinkBWP-ToReleaseList	Not present		
uplinkBWP-ToAddModList	Not present		
firstActiveUplinkBWP-Id	BWP-Id		
pusch-ServingCellConfig CHOICE {			
setup	PUSCH-		
	ServingCellConfig		
}			
carrierSwitching	Not present		
powerBoostPi2BPSK	enabled		

Table 6.4.2.5.4.3-1: ServingCellConfig (Test ID 1 in Table 6.4.2.5.4.1-1)

Table 6.4.2.5.4.3-2: DMRS-UplinkConfig (Test ID 2 in Table 6.4.2.5.4.1-1)


Derivation Path: TS 38.508-1 [5], Table 4.6.3-51			
Information Element	Value/remark	Comment	Condition
DMRS-UplinkConfig ::= SEQUENCE {			
transformPrecodingEnabled SEQUENCE			
{			
nPUSCH-Identity	Not present		
sequenceGroupHopping	Not present		
sequenceHopping	Not present		
dmrs-UplinkTransformPrecoding-r16			
SEQUENCE {			
pi2BPSK-ScramblingID0	Not present		
pi2BPSK-ScramblingID1	Not present		
}			
}			
}			

6.4.2.5.5 Test requirement

Each of the *n* spectrum flatness functions, shall derive four ripple results in Annex E.4.4.1 The derived results shall not exceed the values in Figure 6.4.2.5.5-1:

Table 6.4.2.5.5-1: Mask for EVM equalizer co	oefficients for Pi/2 BPSK, normal conditions
--	--

Frequency range	Parameter	Maximum ripple (dB)	
F _{UL_Meas} – F_center ≤ X MHz	X1	6 + TT (p-p)	
(Range 1)			
F _{UL_Meas} – F_center > X MHz	X2	14 + TT (p-p)	
(Range 2)			
NOTE 1: FUL_Meas refers to the sub-carrier frequency for which the equalizer coefficient is evaluated			
NOTE 2: F_center refers to the center frequency of an allocated block of PRBs			
NOTE 3: X, in MHz, is equal to 25% of the bandwidth of the PRB allocation			
NOTE 4: See Figure 6.4.2.5.5-1 for description of X1, X2			
NOTE 5: Test tolerance TT = 1.4 dB.			

Figure 6.4.2.5.5-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation. F_center denotes the center frequency of the allocated block of PRBs. X, in MHz, is equal to 25 % of the bandwidth of the PRB allocation.

Each of the n spectrum flatness functions shall derive an impulse response of the spectral shaping filter in Annex E.4.4.2. The derived results shall fulfill:

$$\left|\tilde{a}(0)\right| \geq \left|\tilde{a}(\tau)\right| \quad \forall \tau \neq 0$$

 $20\log_{10} \left| \tilde{a} \left(\tau \right) \right| < -15 \mathrm{dB} + \mathrm{TT} \quad 1 < \tau < M - 1,$

where TT = 1.4 dB.

6.4A Transmit signal quality for CA

6.4A.1 Frequency error for CA

Editor's note: The following aspects are either missing or not yet determined:

- Extending the coverage of the TCs with intra-band CA scenarios is FFS

6.4A.1.0 Minimum conformance requirements

For inter-band carrier aggregation with uplink assigned to two NR bands, the minimum conformance requirements specified in subclause 6.4.1.3 shall apply on each component carrier with all component carriers active.

6.4A.1.1 Frequency error for CA (2UL CA)

6.4A.1.1.1 Test purpose

This test verifies the ability of both, the receiver and the transmitter, to process frequency for 2UL CA correctly.

Receiver: to extract the correct frequency from the stimulus signal, offered by the System simulator, under ideal propagation conditions and low level.

Transmitter: to derive the correct modulated carrier frequency from the results, gained by the receiver.

6.4A.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports 2UL CA.

6.4A.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.4A.1.0.

6.4A.1.1.4	Test description

6.4A.1.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state. The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and sub-carrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, and are shown in Table 6.4A.1.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4A.1.1.4.1-1: Inter band CA Test Configuration Table

		Initia	I Conditions		
Test Enviro	onment as specified	in TS 38.508-1 [5]	Normal, TL/VL, TL/VH,	TH/VL, TH/VH	
subclause	4.1				
Test Frequ	lencies as specified	in TS 38.508-1 [5]	Mid range for PCC and	SCC (NOTE 3)	
subclause	4.3.1.1.3 for inter ba	nd CA in FR1			
Test Chan	nel Bandwidths as s	pecified in TS 38.508-	Highest NRB_agg for both	n PCC and SCC	
1 [5] subcla	ause 4.3.1				
Test SCS a	as specified in Table	5.5A.3-1	Lowest		
		Test	Parameters		
	Downlink	Configuration	Uplink Configuration		
Test ID	Modulation	RB allocation	Modulation	RB allocation	
1	CP-OFDM	Full RB (NOTE 1)	DFT-s-OFDM QPSK	REFSENS (NOTE 2)	
	QPSK				
NOTE 1:	Full RB allocation sh	hall be used per each So	CS and channel BW as s	pecified in Table 7.3.2.4.1-2.	
NOTE 2: REFSENS refers to Table 7.3.2.4.1-3 which defines uplink RB configuration and start RB location for					
	each SCS, channel BW and NR band belongs to inter-band CA combination.				
NOTE 3:	For NR band n28, 3	0MHz test channel band	dwidth is tested with Low	range test frequencies.	

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure 3.1.1.3 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The DL and UL Reference Measurement channels are set according to Table 6.4A.1.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4A.1.1.4.3

6.4A.1.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause 5.5.1. Message contents are defined in clause 6.4A.1.1.4.3
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause 9.3).

- 4. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 6.4A.1.1.4.1-1 on both PCC and SCC. The SS sends downlink MAC padding bits on the DL RMC.
- 5. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4A.1.1.4.1-1 on both PCC and SCC. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 6. Set the Downlink signal level to the appropriate REFSENS value defined in subclauses 7.3A.1.5. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE so that the UE transmits at P_{UMAX} level for the duration of the test. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 7. Measure the Frequency Error on PCC and SCC using Global In-Channel Tx-Test (Annex E) respectively. For TDD slots with transient periods are not under test.
- 8. For UEs supporting DSS, repeat steps 1~7 on the applicable bands as specified in Section 5.4.2.1 with message contents being according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-61 and Table 4.6.3-62 with condition DSS.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.4A.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exception.

Table 6.4A.1.1.4.3-1 FrequencyInfoUL-SIB for inter-band CA

Derivation Path: TS 38.508-1 [5] Table 4.6.3-62 FrequencyInfoUL-SIB					
Information Element Value/remark Comment Condition					
p-Max	20				

6.4A.1.1.5 Test requirement

The 10 frequency error Δf results must fulfil the test requirement:

 $|\Delta f| \leq (0.1 \text{ PPM} + \text{TT})$ for each test point

where PPM refers to each CC UL frequency.

Table 6.4A.1.1.5-1: Test Tolerance for frequency error

	f ≤ 3.0GHz 3.0GHz < f ≤ 6GH		
BW ≤ 40MHz	15Hz	15Hz	
40MHz < BW ≤ 100MHz	15Hz	15Hz	

6.4A.2 Transmit modulation quality for CA

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Extending the coverage of the TCs with intra-band CA scenarios is FFS

The requirements in this clause apply with PCC and SCC in the UL configured and activated: PCC with PRB allocation and SCC without PRB allocation and without CSI reporting and SRS configured.

6.4A.2.1 Error Vector Magnitude for CA

6.4A.2.1.0 Minimum conformance requirements

For Inter-band carrier aggregation, EVM measurements are evaluated for each component carrier, and for the different modulations schemes, the EVM requirements shall not exceed the values specified in Table 6.4.2.1.3-1 for the parameters defined in Table 6.4.2.1.3-2, if CA is configured in uplink.

For the intra-band non-contiguous carrier aggregation, EVM measurements are evaluated for each component carrier,

and for the different modulations schemes, the EVM requirements shall not exceed the values specified in Table

6.4A.2.1.0-1, if CA is configured in uplink.

For the intra-band contiguous carrier aggregation, EVM measurements are evaluated for each component carrier, and for the different modulations schemes, the EVM requirements shall not exceed the values specified in Table 6.4A.2.1.0-1, if CA is configured in uplink.

When a single component carrier is configured Table 6.4.2.1.3-1 apply.

The EVM requirements are according to Table 6.4A.2.1.0-1 if CA is configured in uplink with the parameters defined in Table 6.4.2.1.3-2.

Table 6.4A.2.1.0-1: Minimum requirements for Error Vector Magni	itude
---	-------

Parameter	Unit	Average EVM Level per CC
Pi/2-BPSK	%	30
QPSK	%	17.5
16 QAM	%	12.5
64 QAM	%	8
256 QAM	%	3.5

The normative reference for this requirement is TS 38.101 [2] clause 6.4A.2.1

6.4A.2.1.1 Error Vector Magnitude for CA (2UL CA)

Editor's note: The following aspects are either missing or not yet determined:

- The minimum requirements for intra-band contiguous CA and intra-band non-contiguous CA have not been defined.

6.4A.2.1.1.1 Test Purpose

For 2UL carrier aggregation, the Error Vector Magnitude requirement should be defined for each component carrier. Requirement applies for the allocated component carrier, when all other component carriers are activated, but not allocated.

Similar transmitter impairment removal procedures are applied for CA waveform before EVM calculation as is specified for non-CA waveform in clause 6.4.2.1.

6.4A.2.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports 2UL CA.

6.4A.2.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.4A.2.1.0.

3GPP TS 38.521-1 V17.6.1 (2022-10)

847

6.4A.2.1.1.4 Test description

6.4A.2.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, and are shown in Table 6.4A.2.1.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

	In	itial Conditions			
	est Environment as specified in TS 38.508-1 [5] Normal				
subclause					
	encies as specified in TS 38.508-1 [5]	Low range for PCC and SC			
	4.3.1.1.3 for inter band CA in FR1	High range for PCC and S			
	nel Bandwidths as specified in TS	Lowest N _{RB_agg} for both PC			
	5] subclause 4.3.1 as specified in Table 5.5A.3-1	Highest N _{RB_agg} for both PC Smallest and biggest supp		anal Bandwidth	
1651 303 8		est Parameters	oneu 303 per Chai		
Test ID	Downlink Configuration		k Configuration		
		Modulation (NOTE 3)	RB allocatio	on (NOTE 1)	
			PCC	SCC	
1 ³	N/A	DFT-s-OFDM PI/2	Inner Full	0	
		BPSK			
2 ³		DFT-s-OFDM PI/2	Outer Full	0	
		BPSK			
3		DFT-s-OFDM QPSK	Inner Full	0	
4		DFT-s-OFDM QPSK	Outer Full	0	
5		DFT-s-OFDM 16 QAM	Inner Full	0	
6		DFT-s-OFDM 16 QAM	Outer Full	0	
7		DFT-s-OFDM 64 QAM	Outer Full	0	
8		DFT-s-OFDM 256 QAM Outer Full 0			
9		CP-OFDM QPSK	Inner Full	0	
10		CP-OFDM QPSK	Outer Full	0	
11		CP-OFDM 16 QAM	Inner Full	0	
12		CP-OFDM 16 QAM	Outer Full	0	
13		CP-OFDM 64 QAM	Outer Full	0	
14		CP-OFDM 256 QAM	Outer Full	0	
	The specific configuration of each RB al				
	Test Channel Bandwidths and Test SCS			combination,	
	which applicable channel bandwidths ar				
	DFT-s-OFDM PI/2 BPSK test applies or				
NOTE 4: The frequencies of PCC and SCC shall be switched and tested in each configuration.					

Table 6.4A.2.1.1.4.1-1: Inter band CA Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.3 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4A.2.1.1.4.1-1.

- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4A.2.1.1.4.3

6.4A.2.1.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause 5.5.1. Message contents are defined in clause 6.4A.2.1.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4A.2.1.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 5. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX level}, allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 6. Measure the EVM and EVM _{DMRS} on PCC using Global In-Channel Tx-Test (Annex E).
- 7. For modulations except 256QAM, send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level Pmin, where:
 - Pmin is the minimum output power according to Table 6.3.1.3-1.
 - MU is the test system uplink power measurement uncertainty and is specified in Table F.1.2-1 for the carrier frequency f and the channel bandwidth BW.
 - Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [2], Table 6.3.4.3-1 and is 0.7dB for 1dB power step size, and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.
- For 256 QAM, send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level Pmin + 10 dB, where Pmin, MU and Uplink power control window size are defined above.
- 8. Measure the EVM and EVM _{DMRS} on PCC using Global In-Channel Tx-Test (Annex E).
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.
- NOTE2: The purpose of the Uplink power control window is to ensure that the actual UE output power is no less than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.2.

6.4A.2.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4A.2.1.1.5 Test requirement

The PUSCH EVM, derived in Annex E.4.2, shall not exceed the values in Table 6.4A.2.1.1.5-1.

The PUSCH *EVM* _{DMRS}, derived in Annex E.4.6.2, shall not exceed the values in Table 6.4A.2.1.1.5-1 when embedded with data symbols of the respective modulation scheme.

Table 6.4A.2.1.1.5-1: Test requirements for Error Vector Magnitude	÷
--	---

Parameter	Unit	Average EVM Level
Pi/2-BPSK	%	30+TT
QPSK	%	17.5+TT
16QAM	%	12.5+TT
64QAM	%	8+TT
256 QAM	%	3.8+TT for 15 dBm< P _{UL}
		4.3+TT for -25 dBm< P _{∪L} ≤ 15 dBm
		4.6+TT for -40dBm ≤ P _{UL} ≤ -25dBm

Table 6.4A.2.1.1.5-2: Test Tolerance for Error Vector Magnitude

	f ≤ 6.0GHz, BW ≤ 100MHz			
Parameter	15dBm < PUL	-25dBm < P∪∟ ≤ 15dBm	-40dBm ≤ P _{UL} ≤ - 25dBm	
Pi/2-BPSK	0%	0%	0%	
QPSK	0%	0%	0%	
16QAM	0%	0%	0%	
64QAM	0%	0%	0%	
256 QAM	0.3%	0.8%	1.1%	

6.4A.2.2 Carrier leakage for CA

6.4A.2.2.0 Minimum conformance requirements

6.4A.2.2.0.1 Minimum conformance requirements for intra-band contiguous CA

FFS

6.4A.2.2.0.2 Minimum conformance requirements for intra-band non-contiguous CA

FFS

6.4A.2.2.0.3 Minimum conformance requirements for inter-band CA

For inter-band carrier aggregation, the carrier leakage shall not exceed the values specified in Table 6.4A.2.2.0.3-1.

In the case that uplink sharing, the carrier leakage may have 7.5 kHz shift with the carrier frequency.

Table 6.4A.2.2.0.3-1: Requirements for carrier leakage

Parameter description	Unit	Limit		Applicable Frequencies
		-28	Output power > 10 dBm	Corrier lookage
Carrier	dBc	-25	0 dBm ≤ Output power ≤10 dBm	Carrier leakage
leakage	UDC	-20	-30 dBm ≤ Output power ≤ 0 dBm	frequency (NOTES 1, 2)
		-10	-40 dBm ≤ Output power < -30 dBm	(1101231, 2)

NOTE 1: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one nonallocated RB to the measured total power in all allocated RBs.

NOTE 2: The applicable frequencies for this limit depend on the parameter *txDirectCurrentLocation* in *UplinkTxDirectCurrent* IE, and are those that are enclosed either in the RBs containing the carrier leakage frequency, or in the two RBs immediately adjacent to the carrier leakage frequency but excluding any allocated RB.

The normative reference for this requirement is TS 38.101-1 [2] clauses 6.4A.2.3.

6.4A.2.2.1 Carrier leakage for CA (2UL CA)

Editor's note: The following aspects are either missing or not yet determined:

- The minimum requirements for intra-band contiguous CA and intra-band non-contiguous CA have not been defined.

6.4A.2.2.1.1 Test purpose

Carrier leakage is an additive sinusoid waveform that is confined within the aggregated transmission bandwidth configuration. The carrier leakage requirement for 2UL CA is defined for each component carrier and is measured on the component carrier with PRBs allocated.

6.4A.2.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports 2UL CA.

6.4A.2.2.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.4A.2.2.0.

6.4A.2.2.1.4 Test description

6.4A.2.2.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, and are shown in Table 6.4A.2.2.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

	In	nitial Conditions			
Test Envir	onment as specified in TS 38.508-1 [5]	Normal			
subclause	4.1				
Test Frequ	uencies as specified in TS 38.508-1 [5]	Low range for PCC and S	CC		
subclause	4.3.1.1.3 for inter band CA in FR1	High range for PCC and S	SCC		
Test Chan	nel Bandwidths as specified in TS	Mid NRB_agg for both PCC	and SCC		
38.508-1 [5] subclause 4.3.1				
Test SCS	as specified in Table 5.5A.3-1	Smallest supported SCS p	per Channel Bandwi	dth	
	Т	est Parameters			
Test ID	Downlink Configuration	Uplir	k Configuration		
		Modulation	RB allocation	n (NOTE 1, 3)	
			PCC	SCC	
1	N/A	DFT-s-OFDM QPSK	Inner_1RB_Left	0	
NOTE 1:	The specific configuration of each RB al	llocation is defined in Table	6.1-1.		
NOTE 2:	Test Channel Bandwidths and Test SCS	S are checked separately for	r each NR CA band	combination,	
	which applicable channel bandwidths an	nd SCS are specified in Tab	le 5.5A3-1.		
NOTE 3: When the signalled DC carrier position is at Inner_1RB_Left, use Inner_1RB_Right for UL RB allocation.					
NOTE 4:	NOTE 4: The frequencies of PCC and SCC shall be switched and tested in each configuration.				

Table 6.4A.2.2.1.4.1-1: Inter band CA Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure 3.1.1.3 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause4.4.3.
- 3. Downlink signals for PCC are initially set up according to AnnexC.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4A.2.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4A.2.2.1.4.3.

6.4A.2.2.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause 5.5.1. Message contents are defined in clause 6.4A.2.2.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4A.2.2.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level 10 dBm, where:
 - MU is the test system uplink power measurement uncertainty and is specified in Table F.1.2-1 for the carrier frequency f and the channel bandwidth BW.
 - Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS

38.101-1 [2], Table 6.3.4.3-1 and is 0.7dB for 1dB power step size, and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.

- 6. Measure carrier leakage using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test.
- 7. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level 0 dBm, where MU and Uplink power control window size are defined above.
- 8. Measure carrier leakage on PCC using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test.
- 9. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level -30 dBm, where MU and Uplink power control window size are defined above.
- 10. Measure carrier leakage on PCC using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test.
- 11. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level Pmin, where MU and Uplink power control window size are defined above, and Pmin is the minimum output power according to Table 6.3.1.3-1.
- 12. Measure carrier leakage on PCC using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.
- NOTE2: The purpose of the Uplink power control window is to ensure that the actual UE output power is no less than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.2.

Table 6.4A.2.2.1.4.2-1: Void

Table 6.4A.2.2.1.4.2-2: Void

6.4A.2.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4A.2.2.1.5 Test requirement

Each of the [20] carrier leakage results, derived in Annex E.3.1, shall not exceed the values in table 6.4A.2.2.1.5-1. Allocated RBs are not under test.

LO Leakage	Parameters UE output power	Relative limit (dBc)
	10 + MU to 10 + (MU + Uplink power control window size) dBm	-28+TT
	0 + MU to 0 + (MU + Uplink power control window size) dBm	-25+TT
	-30 + MU to -30 + (MU + Uplink power control window size) dBm	-20+TT

 Table 6.4A.2.2.1.5-1: Test requirements for Carrier Leakage

		Pmin + MU to Pmin + (MU + Uplink power control window	-10+TT			
		size) dBm				
NOTE 1:	The m	neasurement bandwidth is 1 RB and	I the limit is			
	•	ssed as a ratio of measured power i				
	alloca RBs.	ted RB to the measured total power	in all allocated			
NOTE 2:	The a	pplicable frequencies for this limit de	epend on the			
	•	neter txDirectCurrentLocation in Upl				
	,	d are those that are enclosed in the	0			
		r leakage frequency, or in the two R	•			
	•	ent to the carrier leakage frequency ted RB.	but excluding any			
NOTE 3:	$N_{\scriptscriptstyle RB}$ is the Transmission Bandwidth Configuration (see					
	Sectio	Section 5.3).				
NOTE 4:	Void					
NOTE 5:		the test system uplink power meas				
		and is specified in Table F.1.2-1 for the carrier frequency f and the channel bandwidth BW.				
NOTE 6:	Uplink	c power control window size = 1dB (UE power step			
	-	+ 0.7dB (UE power step tolerance) -				
		e power measurement uncertainty)				
		power step tolerance is specified in TS 38.101-1 [2], Table				
		3.4.3-1 and is 0.7dB for 1dB power step size, and the Test				
	-	m relative power measurement unce ble F.1.2-1.	enanny is specified			
NOTE 7		is the minimum output power accord	ding to Table			
	6.3.1.					

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	0.8dB	0.8dB
40MHz < BW ≤ 100MHz	0.8dB	0.8dB

6.4A.2.3 In-band emissions for CA

6.4A.2.3.0 Minimum conformance requirements

For inter-band carrier aggregation with uplink assigned to two NR bands, the requirements shall apply on each component carrier as defined in clause 6.4.2 with all component carriers active.

The requirements in Table 6.4A.2.3.0-1 apply with PCC and SCC in the UL configured and activated: PCC with PRB allocation and SCC without PRB allocation and without CSI reporting and SRS configured.

Parameter description	Unit		Applicable Frequencies	
General	dB	$\max\{ -25 - 10 \cdot \log_{10} (N_{RB} / L_{CRB}), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot (\Delta_{RB} - 1) / L_{CRB}, \\ -57 dBm + 10 \log_{10} (SCS / 15kHz) - P_{RB} \}$		Any non-allocated (NOTE 2)
		-28	Image frequencies when output power > 10 dBm	Image
IQ Image dB		-25	Image frequencies when output power ≤ 10 dBm	frequencies (NOTES 2, 3)
Carrier		-28	Output power > 10 dBm	Carrier leakage
leakage	dBc	-25	0 dBm ≤ Output power ≤10 dBm	frequency
leakaye		-20	-30 dBm ≤ Output power ≤ 0 dBm	(NOTES 4, 5)

		-10	-40 dBm≤ Output power < -30 dBm			
NOTE 1:	NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the					
	minimum requirement is calculated as the higher of P_{RB} - 30 dB and the power sum of all limit values					
			age) that apply. <i>P</i> _{RB} is defined in NOTE 10.			
NOTE 2:			B and the limit is expressed as a ratio of measured	-		
	allocated RB to the allocated RBs.	measured avera	age power per allocated RB, where the averaging is	done across all		
NOTE 3:	The applicable freq	uencies for this	limit are those that are enclosed in the reflection of the	ne allocated		
	bandwidth, based o RBs.	on symmetry with	n respect to the carrier leakage frequency, but exclud	ding any allocated		
NOTE 4:	The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non- allocated RB to the measured total power in all allocated RBs.					
NOTE 5:			limit depend on the parameter txDirectCurrentLocation	on in		
	-		hose that are enclosed either in the RBs containing t	-		
	frequency, or in the two RBs immediately adjacent to the carrier leakage frequency but excluding any allocated RB.					
NOTE 6:	: L_{CRB} is the Transmission Bandwidth (see Section 5.3).					
NOTE 7:	$N_{\scriptscriptstyle RB}$ is the Transmission Bandwidth Configuration (see Section 5.3).					
NOTE 8:	EVM is the limit specified in Table 6.4A.2.3.1.3-1 for the modulation format used in the allocated RBs.					
NOTE 9:						
	$\Delta_{\scriptscriptstyle RB}=1$ or $\Delta_{\scriptscriptstyle RB}=1$	= -1 for the firs	at adjacent RB outside of the allocated bandwidth.			
NOTE 10	$P_{\scriptscriptstyle RB}$ is the transmi	tted power norm	alized by the number of allocated RBs, measured in	dBm.		

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4A.2.3.

6.4A.2.3.1 In-band emissions for CA (2UL CA)

6.4A.2.3.1.1 Test purpose

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks.

For an allocated component carrier, the in-band emission is defined as the average across 12 sub-carrier and as a function of the RB offset from the edge of the allocated UL transmission bandwidth. The in-band emission is measured as the ratio of the UE output power in a non–allocated RB to the UE output power in an allocated RB. The basic inband emissions measurement interval is defined over one slot in the time domain, however, the minimum requirement applies when the in-band emission measurement is averaged over 10 sub-frames. When the PUSCH or PUCCH transmission slot is shortened due to multiplexing with SRS, the in-band emissions measurement interval is reduced by one or more symbols, accordingly.

For a non allocated component carrier a spectral measurement is specified.

6.4A.2.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports 2UL CA.

6.4A.2.3.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in clause 6.4A.2.3.0.

6.4A.2.3.1.4 Test description

6.4A.2.3.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, and are shown in Table 6.4A.2.3.1.4.1-1. The details of the uplink

and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

	Ir	nitial Conditions			
Test Environment as specified in TS 38.508-1 [5]		Normal			
subclause	4.1				
Test Frequ	uencies as specified in TS 38.508-1 [5]	Low range for PCC and S	Low range for PCC and SCC		
subclause	4.3.1.1.3 for inter band CA in FR1	High range for PCC and S	SCC		
Test Chan	nel Bandwidths as specified in TS	Lowest N _{RB_agg} for both P	CC and SCC		
38.508-1 [5] subclause 4.3.1	Highest N _{RB_agg} for both F	PCC and SCC		
Test SCS	as specified in Table 5.5A.3-1	Smallest supported SCS	per Channel Bandwid	lth	
	1	Fest Parameters			
Test ID	Downlink Configuration	Upli	Uplink Configuration tion RB allocation (NOTE 1)		
		Modulation			
			PCC	SCC	
1	N/A	DFT-s-OFDM QPSK	Inner_1RB_Left	0	
2		DFT-s-OFDM QPSK	Inner_1RB_Right	0	
3		CP-OFDM QPSK	Inner_1RB_Left	0	
4		CP-OFDM QPSK	Inner_1RB_Right	0	
NOTE 1:	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.				
NOTE 2:	NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel				
	bandwidths are specified in Table 5.5A3-1.				
NOTE 3:	: The frequencies of PCC and SCC shall be switched and tested in each configuration.				

Table 6.4A.2.3.1.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.3 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4A.2.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4A.2.3.1.4.3.

6.4A.2.3.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause 5.5.1. Message contents are defined in clause 6.4A.2.3.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4A.2.3.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level 10 dBm, where:

- MU is the test system uplink power measurement uncertainty and is specified in Table F.1.2-1 for the carrier frequency f and the channel bandwidth BW.
- Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [2], Table 6.3.4.3-1 and is 0.7dB for 1dB power step size, and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.
- 6. Measure In-band emission on PCC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on the SCC. For TDD slots with transient periods are not under test.
- 7. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level 0 dBm, where MU and Uplink power control window size are defined above.
- 8. Measure In-band emission on PCC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on the SCC. For TDD slots with transient periods are not under test.
- 9. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU +Uplink power control window size) dB of the target power level -30 dBm, where MU and Uplink power control window size are defined above.
- 10. Measure In-band emission on PCC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on the SCC. For TDD slots with transient periods are not under test.
- 11. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level Pmin, where MU and Uplink power control window size are defined above, and Pmin is the minimum output power according to Table 6.3.1.3-1.
- 12. Measure In-band emission on PCC using Global In-Channel Tx-Test (Annex E). Measure power spectral density on the SCC. For TDD slots with transient periods are not under test.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.
- NOTE2: The purpose of the Uplink power control window is to ensure that the actual UE output power is no less than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.2.

Table 6.4A.2.3.1.4.2-1: Void

Table 6.4A.2.3.1.4.2-2: Void

6.4A.2.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4A.2.3.1.5 Test requirement

The averaged In-band emission result, derived in Annex E.4.3, shall not exceed the corresponding values in Table 6.4A.2.3.1.5-1. n is 10 for 15kHz SCS, 20 for 30kHz SCS and 40 for 60kHz SCS.

Parameter Unit description			Applicable Frequencies		
General dB		$\max\{ -25 - 10 \cdot \log_{10} (N_{RB} / L_{CRB}), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot (\Delta_{RB} - 1) / L_{CRB}, \\ -57 dBm + 10 \log_{10} (SCS / 15kHz) - P_{RB} \} + TT$		Any non-allocated (NOTE 2)	
IQ Image	e dB	-28+TT Image frequencies when output power > 10 dBm -25+TT Image frequencies when output power ≤ 10 dBm		Image frequencies (NOTES 2, 3)	
Carrier dBc		-28+TT -25+TT -20+TT -10+TT	Output power > 10 dBm 0 dBm ≤ Output power ≤10 dBm -30 dBm ≤ Output power ≤ 0 dBm -40 dBm≤ Output power < -30 dBm	Carrier leakage frequency (NOTES 4, 5)	
 NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of <i>P_{RB}</i>- 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. <i>P_{RB}</i> defined in NOTE 10. NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. 					
NOTE 3:	TE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated bandwidth, based on symmetry with respect to the carrier leakage frequency, but excluding any allocated RBs.				
 NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs. NOTE 5: The applicable frequencies for this limit depend on the parameter <i>txDirectCurrentLocation</i> in <i>UplinkTxDirectCurrent</i> IE, and are those that are enclosed either in the RBs containing the carrier leakage frequency, or in the two RBs immediately adjacent to the carrier leakage frequency but excluding any allocated RB. 					
NOTE 6:	L_{CRB} is the Transmission Bandwidth (see Section 5.3).				
NOTE 7: NOTE 8: NOTE 9:	DTE 8: EVM is the limit specified in Table 6.4.2.1.3-1 for the modulation format used in the allocated RBs. DTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g.				
NOTE 10:	$\Delta_{RB} = 1$ or $\Delta_{RB} = -1$ for the first adjacent RB outside of the allocated bandwidth. D: P_{RB} is the transmitted power normalized by the number of allocated RBs, measured in dBm.				

Table 6.4A.2.3.1.5-1: Test requirements for in-band emissions

Table 6.4A.2.3.1.5-2: Test Tolerance for In-band emission

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	0.8dB	0.8dB
40MHz < BW ≤ 100MHz	0.8dB	0.8dB

6.4B Transmit signal quality for NR-DC

For inter-band NR-DC with one uplink carrier assigned per NR band, the transmit signal quality for the corresponding inter-band CA configuration as specified in clause 6.4A applies.

Note: For NR-DC testing, replace CA by NR-DC, PCC by PCell, and SCC by PSCell in clause 6.4A.

6.4B.1 Frequency error for NR-DC

For inter-band dual connectivity, the frequency error for the corresponding inter-band CA configuration as specified in clause 6.4A.1 applies.

Note: For NR-DC testing, replace CA by NR-DC, PCC by PCell, and SCC by PSCell in clause 6.4A.1.

6.4B.2 Transmit modulation quality for NR-DC

For inter-band dual connectivity, the transmit modulation quality for the corresponding inter-band CA configuration as specified in clause 6.4A.2 applies.

Note: For NR-DC testing, replace CA by NR-DC, PCC by PCell, and SCC by PSCell in clause 6.4A.2.

6.4B.2.1 Error Vector Magnitude for NR-DC

For inter-band dual connectivity, the Error Vector Magnitude for the corresponding inter-band CA configuration as specified in clause 6.4A.2.1 applies.

Note: For NR-DC testing, replace CA by NR-DC, PCC by PCell, and SCC by PSCell in clause 6.4A.2.1.

6.4B.2.2 Carrier leakage for NR-DC

For inter-band dual connectivity, the carrier leakage for the corresponding inter-band CA configuration as specified in clause 6.4A.2.2 applies.

Note: For NR-DC testing, replace CA by NR-DC, PCC by PCell, and SCC by PSCell in clause 6.4A.2.2.

6.4B.2.3 In-band emissions for NR-DC

For inter-band dual connectivity, the in-band emissions for the corresponding inter-band CA configuration as specified in clause 6.4A.2.3 applies.

Note: For NR-DC testing, replace CA by NR-DC, PCC by PCell, and SCC by PSCell in clause 6.4A.2.3.

6.4C Transmit signal quality for SUL

6.4C.1 Frequency error for SUL

6.4C.1.1 Test purpose

Same test purpose as in clause 6.4.1.1

6.4C.1.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.4C.1.3 Minimum conformance requirements

For a terminal that supports SUL for the band combination specified in Table 5.2C-1, the current version of the specification assumes the terminal is configured with active transmission either on UL carrier or SUL carrier at any time in one serving cell and the UE requirements for single carrier shall apply for the active UL or SUL carrier accordingly.

The normative reference for this requirement is TS 38.101-1 [2] clauses 4.3 and 6.4.1.

6.4C.1.4 Test description

Same test description as specified in clause 6.4.1.4 with following exceptions:

Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1.

Instead of table 6.4.1.4-1 \rightarrow use Table 6.4C.1.4-1

		Ini	tial Conditions			
Test Environment as specified in TS 38.508-1 [5] subclause 4.1			Normal, TL/VL, TL/VH, TH/VL, TH/VH			
	Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1			Mid range for both SUL carrier and Non-SUL carrier		
Test Ch	annel Bandwidths as	specified in TS	Highest for SUL	carrier		
38.508-	1 [5] subclause 4.3.1		Lowest for Non-S	SUL carrier		
Test SC	Test SCS as specified in Table 5.3.5-1		15kHz for SUL carrier and Lowest supported SCS for Non-SUL			
				carrier		
		Test Paramete	rs for Channel Ba	ndwidths		
Test	Downlink (Configuration	UL	SUL Confi	iguration	
ID			Configuration			
	Modulation	RB allocation	N/A	Modulation	RB allocation	
1	1 CP-OFDM QPSK Full RB (NOTE 1) DFT-s-OFDM QPSK SUL REFSENS (NOTE 2)					
NOTE 1	NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2					
NOTE 2: SUL REFSENS refers to Table 7.3C.2.4.1-1a which defines SUL RB configuration and start RB location for each SCS, channel BW and NR band.						

Table 6.4C.1.4-1: Test Configuration Table

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.
- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause 4.4.3.
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.

Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Table 4.6.1-28 with condition SUL AND (RF OR RRM), Tables 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL.

Table 6.4C.1.4-1: Void

6.4C.1.5 Test requirement

The 10 frequency error Δf results measured on the SUL carrier must fulfil the test requirement:

 $|\Delta f| \leq (0.1 \text{ PPM} + 15 \text{ Hz})$

6.4C.2 Transmit modulation quality for SUL

6.4C.2.1 Error Vector Magnitude for SUL

6.4C.2.1.1 Test purpose

Same test purpose as in clause 6.4.2.1

6.4C.2.1.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.4C.2.1.3 Minimum conformance requirements

For a terminal that supports SUL for the band combination specified in Table 5.2C-1, the current version of the specification assumes the terminal is configured with active transmission either on UL carrier or SUL carrier at any time in one serving cell and the UE requirements for single carrier shall apply for the active UL or SUL carrier accordingly.

The normative reference for this requirement is TS 38.101-1 [2] clauses 4.3 and 6.4.2.1.

6.4C.2.1.4 Test description

Same test description as specified in clause 6.4.2.1.4 with following exceptions:

Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1.

Instead of table 6.4.2.1.4-1, table 6.4.2.1.4-2, table 6.4.2.1.4-3 \rightarrow use Table 6.4C.2.1.4-1, table 6.4C.2.1.4-2, table 6.4C.2.1.4-3

			Initial Con	ditions	
Test Envir	onment as specified in TS 3	8.508-1	Normal		
[5] subclau	use 4.1				
Test Frequencies as specified in TS 38.508-1			Low, Mid,	High range for SUL carrier	
[5] subclau	use 4.3.1			for Non-SUL carrier	
Test Chan	nel Bandwidths as specified	l in TS	Lowest, H	ighest for SUL carrier	
38.508-1 [5] subclause 4.3.1		Lowest for	Non-SUL carrier	
Test SCS	as specified in Table 5.3.5-	1	15kHz for	SUL carrier and Lowest supp	orted SCS for Non-SUL
			carrier		
		est Parame	eters for C	hannel Bandwidths	
Test ID	Downlink	UL Confi	guration	SUL Conf	iguration
	Configuration				
	N/A	N/A		Modulation	RB allocation (NOTE 2)
1 ³				DFT-s-OFDM PI/2 BPSK	Inner Full
2 ³				DFT-s-OFDM PI/2 BPSK	Outer Full
3				DFT-s-OFDM QPSK	Inner Full
4				DFT-s-OFDM QPSK	Outer Full
5				DFT-s-OFDM 16 QAM	Inner Full
6				DFT-s-OFDM 16 QAM	Outer Full
7				DFT-s-OFDM 64 QAM	Outer Full
8				DFT-s-OFDM 256 QAM	Outer Full
9				CP-OFDM QPSK	Inner Full
10				CP-OFDM QPSK	Outer Full
11]			CP-OFDM 16 QAM	Inner Full
12]			CP-OFDM 16 QAM	Outer Full
13				CP-OFDM 64 QAM	Outer Full
14				CP-OFDM 256 QAM	Outer Full
		are checked	separately	defined in Table 6.1-1. for each SUL band combinati	on, the applicable channel
	bandwidths are specified in				
NOTE 3:	DFT-s-OFDM PI/2 BPSK te	est applies o	nly for UEs	which supports half Pi BPSK	in FR1.

Table 6.4C.2.1.4-2: Test Configuration Table for PUCCH

	Initial Conditions								
	Test Environment as specified in TS 38.508-1 [5] subclause 4.1				C.2.1.4.1-1				
	Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1				IC.2.1.4.1-1				
	Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1				See Table 6.4C.2.1.4.1-1				
Test	SCS as specified in	n Table 5.3.5-1		See Table 6.4C.2.1.4.1-1					
			Test Pa	arameters					
ID	ID Downlink Configuration Uplink Configuration				SUL Configuration				
	Modulation	RB allocation	N/A	Waveform	PUCCH format	RB index			

1	CP-OFDM	Full RB (Note		CP-OFDM	PUCCH format = Format 1	0	
	QPSK	1)			Length in OFDM symbols = 14		
2	CP-OFDM	Full RB (Note		CP-OFDM	PUCCH format = Format 1	N _{RB} -1	
	QPSK	1)			Length in OFDM symbols = 14		
3	CP-OFDM	Full RB (Note		DFT-s-	PUCCH format = Format 3	0	
	QPSK	1)		OFDM	Length in OFDM symbols = 14		
4	CP-OFDM	Full RB (Note		DFT-s-	PUCCH format = Format 3	N _{RB} -1	
	QPSK	1)		OFDM	Length in OFDM symbols = 14		
NOT	E 1: Full RB alloca	tion shall be used	per each SCS and	d channel BW a	s specified in Table 7.3.2.4.1-2.		
NOT	NOTE 2: Test Channel Bandwidths are checked separately for each SUL band combination, the applicable channel						
	bandwidths are specified in Table 5.5C-1.						
NOT	E 3: DFT-s-OFDM	PI/2 BPSK test ap	plies only for UEs	which supports	half Pi BPSK in FR1.		

Initial Conditions					
Test Environment as specified in TS 38.508-1 [5] subclause 4.1	Normal				
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1	See Table 6.4C.2.1.4.1-1				
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1	See Table 6.4C.2.1.4.1-1				
Test SCS as specified in Table 5.3.5-1	See Table 6.4C.2.1.4.1-1				
PRAC	CH preamble format				
	SUL				
PRACH Configuration Index	17				
RS EPRE setting for test point 1 (dBm/15kHz)	-71				
RS EPRE setting for test point 2 (dBm/15kHz)	-86				

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.
- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause 4.4.3.
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.

Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Table 4.6.1-28 with condition SUL AND (RF OR RRM), Tables 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL. Additionally the following exceptions shown in Table 6.4C.2.1.4-2 is considered.

Table 6.4C.2.1.4-1: Void

Table 6.4C.2.1.4-2: BWP-UplinkCommon: PRACH measurement

Derivation Path: TS 38.508-1 [5], Table 4.6.3-14						
Information Element	Value/remark	Comment	Condition			
BWP-UplinkCommon ::= SEQUENCE {						
rach-ConfigCommon CHOICE {			SUL_SUL AND RF			
setup	RACH-ConfigCommon					
}						
}						

6.4C.2.1.5 Test requirement

Same test requirement for EVM measured on the SUL carrier as specified in 6.4.2.1.5.

6.4C.2.2 Carrier leakage for SUL

6.4C.2.2.1 Test purpose

Same test purpose as in clause 6.4.2.2.1.

6.4C.2.2.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.4C.2.2.3 Minimum conformance requirements

For a terminal that supports SUL for the band combination specified in Table 5.2C-1, the current version of the specification assumes the terminal is configured with active transmission either on UL carrier or SUL carrier at any time in one serving cell and the UE requirements for single carrier shall apply for the active UL or SUL carrier accordingly.

The normative reference for this requirement is TS 38.101-1 [2] clauses 4.3and 6.4.2.2.

6.4C.2.2.4 Test description

Same test description as specified in clause 6.4.2.2.4 with following exceptions:

Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1.

Instead of table 6.4.2.2.4-1 \rightarrow use Table 6.4C.2.2.4-1

Table 6.4C.2.2.4-1: Test Configuration Table

Initial Conditions						
Test Environment as specified in TS 38.508-1			Normal			
[5] subcla	use 4.1					
Test Freq	uencies as specified in TS 3	8.508-1	Low, Mid,	High range for SUL carrier		
[5] subcla	use 4.3.1		Mid range	for Non-SUL carrier		
Test Char	nnel Bandwidths as specified	d in TS	Mid for SL	IL carrier		
38.508-1	[5] subclause 4.3.1		Lowest for	Non-SUL carrier		
Test SCS	Test SCS as specified in Table 5.3.5-1			15kHz for SUL carrier and Lowest supported SCS for Non-SUL		
				carrier		
	7	Fest Param	eters for Cl	hannel Bandwidths		
Test ID	Downlink	UL Conf	iguration	SUL Con	figuration	
	Configuration					
	N/A	N	/A	Modulation	RB allocation (NOTE 1)	
1				DFT-s-OFDM QPSK	Inner_1RB_Left	
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.						
NOTE 2:	NOTE 2: Test Channel Bandwidths are checked separately for each SUL band combination, the applicable channel					
	bandwidths are specified in Table 5.5C-1.					
NOTE 3:	: When the signalled DC carrier position is at Inner_1RB_Left, use Inner_1RB_Right for UL RB allocation.					

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.
- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause 4.4.3.
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.

Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Table 4.6.1-28 with condition SUL AND

(RF OR RRM), Table 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_ON_SUL.

Table 6.4C.2.2.4-1: Void

6.4C.2.2.5 Test requirement

Same test requirement for carrier leakage measured on the SUL carrier as specified in 6.4.2.2.5.

6.4C.2.3 In-band emissions for SUL

6.4C.2.3.1 Test purpose

Same test purpose as in clause 6.4.2.3.1.

6.4C.2.3.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.4C.2.3.3 Minimum conformance requirements

For a terminal that supports SUL for the band combination specified in Table 5.2C-1, the current version of the specification assumes the terminal is configured with active transmission either on UL carrier or SUL carrier at any time in one serving cell and the UE requirements for single carrier shall apply for the active UL or SUL carrier accordingly.

The normative reference for this requirement is TS 38.101-1 [2] clauses 4.3and 6.4.2.3.

6.4C.2.3.4 Test description

Same test description as specified in clause 6.4.2.3.4 with following exceptions:

Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1.

Instead of table 6.4.2.3.4-1 \rightarrow use Table 6.4C.2.3.4-1

Table 6.4C.2.3.4-1: Test Configuration Table for PUSCH

	Initial Conditions						
Test Environment as specified in TS 38.508-1			Normal				
[5] subclau	[5] subclause 4.1						
Test Frequ	encies as specified in TS 3	8.508-1	Low range	, Mid range, High range for S	UL carrier		
[5] subclau	ise 4.3.1		Mid range	for Non-SUL carrier			
Test Chan	nel Bandwidths as specified	d in TS	Lowest, M	id, Highest for SUL carrier			
38.508-1 [5] subclause 4.3.1		Lowest for	Non-SUL carrier			
Test SCS	as specified in Table 5.3.5-7	1	15kHz for	SUL carrier and Lowest supp	orted SCS for Non-SUL		
	Test Parameters for Channel Bandwidths						
Test ID	Downlink	UL Confi	guration	SUL Cont	iguration		
	Configuration						
	N/A	N/	Ά	Modulation	RB allocation (NOTE 1)		
1				DFT-s-OFDM QPSK	Inner_1RB_Left		
2				DFT-s-OFDM QPSK	Inner_1RB_Right		
3				CP-OFDM QPSK	Inner_1RB_Left		
4				CP-OFDM QPSK	Inner_1RB_Right		
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.							
	NOTE 2: Test Channel Bandwidths are checked separately for each SUL band combination, the applicable channel bandwidths are specified in Table 5.5C-1.						

			Initial C	Conditions				
Test	Environment as sp	ecified in TS 38.50	8-1 [5]	See Table 6.4	C.2.3.4.1-1			
subclause 4.1								
Test	Frequencies as spe	ecified in TS 38.508	3-1 [5]	See Table 6.4	C.2.3.4.1-1			
subc	lause 4.3.1							
Test	Channel Bandwidtl	ns as specified in T	S 38.508-1 [5]	See Table 6.4	C.2.3.4.1-1			
	lause 4.3.1							
Test	SCS as specified in	n Table 5.3.5-1		See Table 6.4	C.2.3.4.1-1			
			1	arameters				
ID	Downlink C	onfiguration	Uplink		SUL Configuration			
		1	Configuration		1			
	Modulation	RB allocation	N/A	Waveform	PUCCH format	RB		
						index		
1	CP-OFDM	Full RB (Note		DFT-s-	PUCCH format = Format 3	0		
	QPSK	1)		OFDM	Length in OFDM symbols = 14			
2	CP-OFDM	Full RB (Note		DFT-s-	PUCCH format = Format 3	N _{RB} -1		
	QPSK	1)		OFDM	Length in OFDM symbols = 14			
3	CP-OFDM	Full RB (Note		CP-OFDM	PUCCH format = Format 1	0		
	QPSK	1)			Length in OFDM symbols = 14			
4	CP-OFDM	Full RB (Note		CP-OFDM	PUCCH format = Format 1	N _{RB} -1		
	QPSK	1)			Length in OFDM symbols = 14			
					s specified in Table 7.3.2.4.1-2.			
NOT	NOTE 2: Test Channel Bandwidths are checked separately for each SUL band combination, the applicable channel							
	bandwidths are specified in Table 5.5C-1.							
NOT	NOTE 3: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.							

Table 6.4.2.3.4.1-2: Test Configuration Table for PUCCH

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.
- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause 4.4.3.
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.

Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Table 4.6.1-28 with condition SUL AND (RF OR RRM), Tables 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL.

Table 6.4C.2.3.4-1: Void

6.4C.2.3.5 Test requirement

Same test requirement for carrier leakage measured on the SUL carrier as specified in 6.4.2.3.5.

6.4C.2.4 EVM equalizer spectrum flatness for SUL

6.4C.2.4.1 Test purpose

Same test purpose as in clause 6.4.2.4.1.

6.4C.2.4.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.4C.2.4.3 Minimum conformance requirements

For a terminal that supports SUL for the band combination specified in Table 5.2C-1, the current version of the specification assumes the terminal is configured with active transmission either on UL carrier or SUL carrier at any

time in one serving cell and the UE requirements for single carrier shall apply for the active UL or SUL carrier accordingly.

The normative reference for this requirement is TS 38.101-1 [2] clauses 4.3 and 6.4.2.4.

6.4C.2.4.4 Test description

Same test description as specified in clause 6.4.2.4.4 with following exceptions:

Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1.

Instead of table 6.4.2.4.4-1 \rightarrow use Table 6.4C.2.4.4-1

Table 6.4C.2.4.4-1: Test Configuration Table

	Initial Conditions					
Test Environment as specified in TS 38.508-1			Normal, TL/VL, TL/VH, TH/VL, TH/VH			
[5] subclau	se 4.1					
Test Frequ	encies as specified in TS 3	8.508-1	Low range	e, Mid range, High range for S	UL carrier	
[5] subclau	se 4.3.1		Mid range	for Non-SUL carrier		
Test Chan	nel Bandwidths as specified	l in TS	Lowest, M	id, Highest for SUL carrier		
38.508-1 [5	5] subclause 4.3.1		Lowest for	Non-SUL carrier		
Test SCS a	as specified in Table 5.5C-1		15kHz for SUL carrier and Lowest supported SCS for Non-SUL			
			carrier			
	Т	est Param	eters for C	hannel Bandwidths		
Test ID	Downlink	UL Conf	iguration	SUL Cont	iguration	
	Configuration					
	N/A	N	/A	Modulation	RB allocation (NOTE 1)	
1				DFT-s-OFDM QPSK	Outer Full	
2				CP-OFDM QPSK	Outer Full	
NOTE 1:	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.					
NOTE 2:	NOTE 2: Test Channel Bandwidths are checked separately for each SUL band combination, the applicable channel					
	bandwidths are specified in	Table 5.5C	;-1 .			

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.
- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause 4.4.3.
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.

Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Table 4.6.1-28 with condition SUL AND (RF OR RRM), Table 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL.

Table 6.4C.2.4.4-1: Void

6.4C.2.4.5 Test requirement

Same test requirement for EVM equalizer spectrum flatness measured on the SUL carrier as specified in 6.4.2.4.5.

6.4C.2.5 EVM equalizer spectrum flatness for Pi/2 BPSK for SUL

6.4C.2.5.1 Test purpose

Same test purpose as in clause 6.4.2.5.1.

6.4C.2.5.2 Test applicability

This test applies to all types of NR UE release 16 and forward that support SUL operating on the SUL bands and indicate support for UE capability *lowPAPR-DMRS-PUSCHwithPrecoding-r16*.

6.4C.2.5.3 Minimum conformance requirements

For a terminal that supports SUL for the band combination specified in Table 5.2C-1, the current version of the specification assumes the terminal is configured with active transmission either on UL carrier or SUL carrier at any time in one serving cell and the UE requirements for single carrier shall apply for the active UL or SUL carrier accordingly.

The normative reference for this requirement is TS 38.101-1 [2] clauses 4.3 and 6.4.2.4.1.

ription

6.4C.2.5.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.5C-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4C.2.5.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4C.2.5.4.1-1: Test Configuration Tal	ble
--	-----

Initial Conditions						
Test Environment as specified in TS 38.508-1		Normal				
[5] subclau	use 4.1					
Test Frequencies as specified in TS 38.508-1		Low range	e, Mid range, High range for S	UL carrier		
[5] subclau	use 4.3.1		Mid range	for Non-SUL carrier		
Test Chan	nel Bandwidths as specified	l in TS	Lowest, M	id, Highest for SUL carrier		
38.508-1 [5] subclause 4.3.1		Lowest for	Non-SUL carrier		
Test SCS	as specified in Table 5.5C-1	l	15kHz for	15kHz for SUL carrier and Lowest supported SCS for Non-SUL		
		carrier				
	1	Fest Param	eters for C	hannel Bandwidths		
Test ID	Downlink	UL Configuration		SUL Configuration		
	Configuration					
	N/A	N/A		Modulation	RB allocation (NOTE 1)	
1				DFT-s-OFDM Pi/2 BPSK	Outer Full	
w Pi/2 BPSK DMRS						
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.						
NOTE 2:	NOTE 2: Test Channel Bandwidths are checked separately for each SUL band combination, the applicable channel bandwidths are specified in Table 5.5C-1.					

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4C.2.5.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.

- 867
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4C.2.5.4.3.

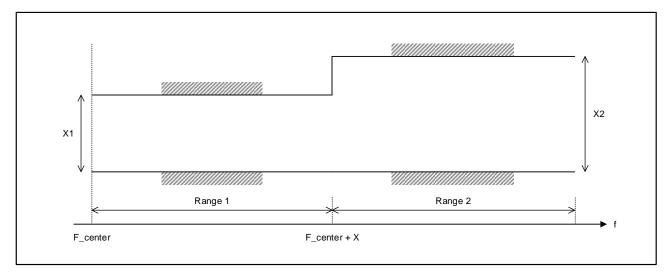
6.4C.2.5.4.2 Test procedure

Same as in 6.4.2.5.4.2.

6.4C.2.5.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Tables 4.6.1-28 with condition SUL AND (RF OR RRM), Table 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL with the following exception:

Table 6.4C.2.5.4.3-1: DMRS-UplinkConfig


Derivation Path: TS 38.508-1 [5], Table 4.6.3-51					
Information Element	Value/remark	Comment	Condition		
DMRS-UplinkConfig ::= SEQUENCE {					
transformPrecodingEnabled SEQUENCE					
{					
dmrs-UplinkTransformPrecoding-r16					
SEQUENCE {					
pi2BPSK-ScramblingID0	Not present				
pi2BPSK-ScramblingID1	Not present				
}					
}					
}					

6.4C.2.5.5 Test requirement

Each of the *n* spectrum flatness functions, shall derive four ripple results in Annex E.4.4.1 The derived results shall not exceed the values in Figure 6.4C.2.5.5-1:

Table 6.4C.2.5.5-1: Mask for EVM equalizer coefficients for Pi/2 BPSK, normal conditions

Frequency range	Parameter	Maximum ripple (dB)			
F _{UL_Meas} – F_center ≤ X MHz	X1	6 + TT (p-p)			
(Range 1)					
F _{UL_Meas} – F_center > X MHz	X2	14 + TT (p-p)			
(Range 2)					
NOTE 1: FUL_Meas refers to the sub-carrier frequency for which the equalizer coefficient is evaluated					
NOTE 2: F_center refers to the center frequency of an allocated block of PRBs					
NOTE 3: X, in MHz, is equal to 25% of the bandwidth of the PRB allocation					
NOTE 4: See Figure 6.4C.2.5.5-1 for description of X1, X2					
NOTE 5: Test tolerance TT = 1.4 dB.					

Figure 6.4C.2.5.5-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation. F_center denotes the center frequency of the allocated block of PRBs. X, in MHz, is equal to 25 % of the bandwidth of the PRB allocation.

Each of the n spectrum flatness functions shall derive an impulse response of the spectral shaping filter in Annex E.4.4.2. The derived results shall fulfill:

$\left| \tilde{a}(0) \right| \geq \left| \tilde{a}(\tau) \right| \quad \forall \tau \neq 0$

 $20\log_{10}\left|\tilde{a}\left(\tau\right)\right| < -15\mathrm{dB} + \mathrm{TT} \quad 1 < \tau < M - 1,$

where TT = 1.4 dB.6.4D Transmit signal quality for UL MIMO.

6.4D Transmit signal quality for UL MIMO

6.4D.1 Frequency error for UL MIMO

6.4D.1.1 Test purpose

This test verifies the ability of both, the receiver and the transmitter for UL MIMO, to process frequency correctly.

Receiver: to extract the correct frequency from the stimulus signal, offered by the System simulator, under ideal propagation conditions and low level.

Transmitter: to derive the correct modulated carrier frequency for each antenna connector from the results, gained by the receiver.

6.4D.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL MIMO.

6.4D.1.3 Minimum conformance requirements

For UE(s) supporting UL MIMO, the basic measurement interval of modulated carrier frequency is 1 UL slot. The mean value of basic measurements of UE modulated carrier frequency at each transmit antenna connector shall be accurate to within \pm 0.1 PPM observed over a period of 1 ms of cumulated measurement intervals compared to the carrier frequency received from the NR Node B.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4D.1.

6.4D.1.4 Test description

6.4D.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4D.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

		Initia	I Conditions		
	onment as specified	in TS 38.508-1 [5]	Normal, TL/VL, TL/VH, TH/VL, TH/VH		
subclause					
Test Frequ	uencies as specified	in TS 38.508-1 [5]	Mid range		
subclause	4.3.1				
Test Chan	nel Bandwidths as s	pecified in TS 38.508-	Highest		
1 [5] subcl	ause 4.3.1	-			
Test SCS	as specified in Table	5.3.5-1	Lowest		
		Test	Parameters		
	Downlink	Configuration	Uplink Configuration		
Test ID	Modulation RB allocation		Modulation	RB allocation	
1	CP-OFDM	Full RB (NOTE 1)	CP-OFDM QPSK	REFSENS (NOTE 2)	
	QPSK	, , , , , , , , , , , , , , , , , , ,			
NOTE 1:	NOTE 1: Full RB allocation shall be used per each SCS and channel BW as specified in Table 7.3.2.4.1-2				
NOTE 2:	NOTE 2: REFSENS refers to Table 7.3.2.4.1-3 which defines uplink RB configuration and start RB location for				
	each SCS, channel BW and NR band.				

Table 6.4D.1.4.1-1:	Test Configuration Table
	i oot ooinigaration rabio

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.2.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.4D.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4D.1.4.3.

6.4D.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 6.4D.1.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4D.1.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2
- 3. Set the Downlink signal level to the appropriate REFSENS value defined in 7.3D.2.5. Send continuously uplink power control "up" commands to the UE in every uplink scheduling information to the UE so that the UE

transmits at P_{UMAX} level for the duration of the test. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.

- 4. Measure the Frequency Error using Global In-Channel Tx-Test (Annex E) at each transmit antenna connector of the UE. For TDD, only slots consisting of only UL symbols are under test.
- 5. For UEs supporting DSS, repeat steps 1~4 on the applicable bands as specified in Section 5.4.2.1 with message contents being according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-61 and Table 4.6.3-62 with condition DSS.

6.4D.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO.

6.4D.1.5 Test requirement

The requirements apply to each transmit antenna connector.

The 10 frequency error Δf results must fulfil the test requirement:

 $|\Delta f| \leq (0.1 \text{PPM} + 15 \text{ Hz})$

6.4D.2 Transmit modulation quality for UL MIMO

For UE supporting UL-MIMO, the transmit modulation quality requirements are specified at each transmit antenna connector.

If UE is configured for transmission on single-antenna port, the requirements specified for single carrier apply.

The transmit modulation quality is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage (caused by IQ offset)
- In-band emissions for the non-allocated RB

6.4D.2.1 Error Vector Magnitude for UL MIMO

6.4D.2.1.1 Test purpose

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the carrier leakage shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further equalised using the channel estimates subjected to the EVM equaliser spectrum flatness requirement specified in sub-clause 6.4D.2.4.3. For DFT-s-OFDM waveforms, the EVM result is defined after the front-end FFT and IDFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %. For CP-OFDM waveforms, the EVM result is defined after the front-end FFT as the square root of the mean reference power expressed as a %.

The basic EVM measurement interval in the time domain is the duration of PUSCH channel, or one hop, if frequency hopping is enabled for PUSCH in the time domain. The EVM measurement interval is reduced by any symbols that contains an allowable power transient as defined in subclause 6.3D.3.3.

6.4D.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL MIMO.

6.4D.2.1.3 Minimum conformance requirements

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the Error Vector Magnitude requirements specified in Table 6.4.2.1.3-1 which is defined in subclause 6.4.2.1.3 apply at each transmit antenna connector. The requirements shall be met with the UL MIMO configurations specified in Table 6.2D.1.3-2

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4D.2.1.

n
n

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4D.2.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table	6 4 D 2	1 4 1-1-	Test	Confic	guration	Table
Iable	0.40.2		ICOL	Conne	juration	Iable

Initial Conditions					
Test Environment as specified in TS 38.508-1 [5]		Normal			
subclause	4.1				
	encies as specified in TS 38.508-1 [5]	Low range, Mid range, High	range		
subclause	4.3.1				
Test Chan	nel Bandwidths as specified in TS	Lowest, Highest			
38.508-1 [5	5] subclause 4.3.1				
Test SCS a	as specified in Table 5.3.5-1	All			
	Т	est Parameters			
Test ID	Downlink Configuration	Uplink Configuration			
	N/A	Modulation	RB allocation (NOTE 1)		
1		CP-OFDM QPSK	Inner Full		
2		CP-OFDM QPSK	Outer Full		
3		CP-OFDM 16 QAM	Inner Full		
4		CP-OFDM 16 QAM	Outer Full		
5		CP-OFDM 64 QAM	Outer Full		
6	6 CP-OFDM 256 QAM Outer Full				
NOTE 1:	The specific configuration of each RB al	location is defined in Table 6.	.1-1.		
NOTE 2:	Test Channel Bandwidths are checked s	separately for each NR band,	which applicable channel		
	bandwidths are specified in Table 5.3.5-				
	•				

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.4D.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4D.2.1.4.3.

6.4D.2.1.4.2 Test procedure

Test procedure for PUSCH:

- 1.1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4D.2.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2
- 1.2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX level}, allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 1.3. Measure the EVM and *EVM* _{DMRS} using Global In-Channel Tx-Test (Annex E) for each of transmit antenna of the UE. For TDD, only slots consisting of only UL symbols are under test.
- 1.4. For modulations except 256QAM, send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power at each antenna connector under measurement measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level Pmin, where:
 - Pmin is the minimum output power according to Table 6.3.1.3-1.
 - MU is the test system uplink power measurement uncertainty and is specified in Table F.1.2-1 for the carrier frequency f and the channel bandwidth BW.
 - Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [2], Table 6.3.4.3-1 and is 0.7dB for 1dB power step size, and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.

For 256 QAM, send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power at each antenna connector under measurement measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level Pmin + 10 dB, where MU and Uplink power control window size are defined above. Pmin is the minimum output power according to Table 6.3D.1.3-1.

- 1.5. Measure the EVM and EVM_{DMRS} using Global In-Channel Tx-Test (Annex E) for each of transmit antennas of the UE. For TDD, only slots consisting of only UL symbols are under test.
- NOTE1: Void.
- NOTE2: The purpose of the Uplink power control window is to ensure that the actual UE output power at each antenna connector under measurement is no less than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.2.
- NOTE3: For the UE which the output power at each antenna connector can reach the Uplink power control window at the same time, execute measurement for each of antenna connectors. For the UE which the output power at each antenna connector cannot reach the Uplink power control window at the same time, execute measurement for the one antenna connector which the output power is within Uplink power control window. And then ensure output power of the other antenna connector is within Uplink power control window and execute measurement for this antenna connector.

Table 6.4D.2.1.4.2-1: Void

6.4D.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the condition 2TX_UL_MIMO.

6.4D.2.1.5 Test requirement

The requirements apply to each transmit antenna connector.

The PUSCH EVM, derived in Annex E.4.2, shall not exceed the values in Table 6.4D.2.1.5-1.

The PUSCH EVM_{DMRS} , derived in Annex E.4.6.2, shall not exceed the values in Table 6.4D.2.1.5-1 when embedded with data symbols of the respective modulation scheme.

Parameter	Unit	Average EVM Level		
Pi/2-BPSK	%	30 + TT		
QPSK	%	17.5 + TT		
16 QAM	%	12.5 + TT		
64 QAM	%	8 + TT		
256 QAM	%	3.5 + TT		
Note 1: TT is defined in Table 6.4D.2.1.5-2.				

Parameter	Unit	Average EVM Level
Pi/2-BPSK	%	0
QPSK	%	0
16 QAM	%	0
64 QAM	%	0
256 QAM	%	0.3 for 15 dBm < P∪∟
		0.8 for -25 dBm < P∪∟≤ 15 dBm
		1.1 for -40dBm $\leq P_{UL} \leq -25$ dBm

Table	6.4D.2.1	.5-2:	Test	Tolerance
labic	0.40.2.1		I COL	rolciance

6.4D.2.2 Carrier leakage for UL MIMO

6.4D.2.2.1 Test purpose

The purpose of this test is to exercise the UE transmitter for UL MIMO to verify its modulation quality in terms of carrier leakage.

6.4D.2.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL MIMO.

6.4D.2.2.3 Minimum conformance requirements

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the Relative Carrier Leakage Power requirements specified in Table 6.4.2.2.3-1 which is defined in subclause 6.4.2.2.3 apply at each transmit antenna connector. The requirements shall be met with the UL MIMO configurations specified in Table 6.2.1.3-2

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4D.2.2.

6.4D.2.2.4 Test description

6.4D.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4D.2.2.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions				
Test Enviro	onment as specified in TS 38.508-1 [5]	Normal		
subclause 4.1				
Test Frequencies as specified in TS 38.508-1 [5]		Low range, Mid range, High range		
subclause 4.3.1				
Test Channel Bandwidths as specified in TS		Mid		
38.508-1 [5] subclause 4.3.1			
Test SCS a	as specified in Table 5.3.5-1	Lowest		
	Test Parameters			
Test ID	Downlink Configuration	Uplink Configuration		
	N/A	Modulation	RB allocation (NOTE 1, 3)	
1		CP-OFDM QPSK	Inner_1RB_Left	
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.				
NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel				
bandwidths are specified in Table 5.3.5-1.				
NOTE 3:	NOTE 3: When the signalled DC carrier position is at Inner_1RB_Left, use Inner_1RB_Right for UL RB allocation.			

Table 6.4D.2.2.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.4D.2.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4D.2.2.4.3.

6.4D.2.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4D.2.2.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power at each antenna connector under measurement measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level 10 dBm, where:
 - MU is the test system uplink power measurement uncertainty and is specified in Table F.1.2-1 for the carrier frequency f and the channel bandwidth BW.
 - Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [2], Table 6.3.4.3-1 and is 0.7dB for 1dB power step size, and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.
- 3. Measure carrier leakage using Global In-Channel Tx-Test (Annex E) for each of transmit antenna of the UE. For TDD, only slots consisting of only UL symbols are under test.
- 4. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power at each antenna connector under measurement measured by the test system is within the Uplink power control

window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level 0 dBm, where MU and Uplink power control window size are defined above.

- 5. Measure carrier leakage using Global In-Channel Tx-Test (Annex E) for each of transmit antenna of the UE. For TDD, only slots consisting of only UL symbols are under test.
- 6. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power at each antenna connector under measurement measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level -30 dBm, where MU and Uplink power control window size are defined above.
- 7. Measure carrier leakage using Global In-Channel Tx-Test (Annex E) for each of transmit antenna of the UE. For TDD, only slots consisting of only UL symbols are under test.
- 8. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power at each antenna connector under measurement measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level Pmin, where MU and Uplink power control window size are defined above. Pmin is the minimum output power according to Table 6.3D.1.3-1..
- 9. Measure carrier leakage using Global In-Channel Tx-Test (Annex E) for each of transmit antenna of the UE. For TDD, only slots consisting of only UL symbols are under test.
- NOTE: The purpose of the Uplink power control window is to ensure that the actual UE output power at each antenna connector under measurement is no less than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.2.
- NOTE2: For the UE which the output power at each antenna connector can reach the Uplink power control window at the same time, execute measurement for each of antenna connectors. For the UE which the output power at each antenna connector cannot reach the Uplink power control window at the same time, execute measurement for the one antenna connector which the output power is within Uplink power control window. And then ensure output power of the other antenna connector is within Uplink power control window and execute measurement for this antenna connector.

Table 6.4D.2.2.4.2-1: Void

Table 6.4D.2.1.4.2-2: Void

6.4D.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the condition 2TX_UL_MIMO.

6.4D.2.2.5 Test requirement

The requirements apply to each transmit antenna connector.

Each of the n carrier leakage results, derived in Annex E.3.1, shall not exceed the values in table 6.4D.2.2.5-1. Allocated RBs are not under test. n is 10 for 15kHz SCS, 20 for 30kHz SCS and 30 for 60kHz SCS.

Table 6.4D.2.2.5-1: Test requirements for Relative Carrier Leakage Power

LO Leakage	Parameters	Relative limit
	UE output power	(dBc)
	10 + MU to 10 + (MU + Uplink	-28 + TT
	power control window size) dBm	
	0 + MU to 0 + (MU + Uplink	-25 + TT
	power control window size) dBm	
	-30 + MU to -30 + (MU + Uplink	-20 + TT
	power control window size) dBm	
	-40 + MU to -40 + (MU + Uplink	-10 + TT
	power control window size) dBm	

NOTE 1:	The measurement bandwidth is 1 RB and the limit is
	expressed as a ratio of measured power in one non-
	allocated RB to the measured total power in all allocated
	RBs.
NOTE 2:	The applicable frequencies for this limit depend on the
	parameter txDirectCurrentLocation in UplinkTxDirectCurrent
	IE, and are those that are enclosed either in the RBs
	containing the carrier leakage frequency, or in the two RBs
	immediately adjacent to the carrier leakage frequency but
	excluding any allocated RB.
NOTE 3:	$N_{_{R\!B}}$ is the Transmission Bandwidth Configuration (see
	Section 5.3).
NOTE 4:	,
NOTE 5:	MU is the test system uplink power measurement uncertainty
	and is specified in Table F.1.2-1 for the carrier frequency f
	and the channel bandwidth BW.
NOTE 6:	Uplink power control window size = 1dB (UE power step
	size) + 0.7dB (UE power step tolerance) + (Test system
	relative power measurement uncertainty), where, the UE
	power step tolerance is specified in TS 38.101-1 [2], Table
	6.3.4.3-1 and is 0.7dB for 1dB power step size, and the Test
	system relative power measurement uncertainty is specified
	in Table F.1.2-1.
NOTE 7	Test tolerance $TT = 0.8 \text{ dB}.$
NOTE 7.	$1 \in S[1] \cup [e] = [1] = 0.0 \cup D.$

Table 6.4D.2.2.5-2: Void

6.4D.2.3 In-band emissions for UL MIMO

6.4D.2.3.1 Test purpose

The purpose of this test is to exercise the UE transmitter for UL MIMO to verify its modulation quality in terms of inband emissions.

6.4D.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL MIMO.

6.4D.2.3.3 Minimum conformance requirements

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the In-band Emission requirements specified in Table 6.4.2.3.3-1 which is defined in subclause 6.4.2.3.3 apply at each transmit antenna connector. The requirements shall be met with the uplink MIMO configurations specified in Table 6.2D.1.3-2.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4D.2.3.

6.4D.2.3.4 Test description

6.4D.2.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4D.2.3.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

	In	itial Conditions		
Test Environment as specified in TS 38.508-1 [5]		Normal		
subclause 4.1				
Test Frequencies as specified in TS 38.508-1 [5]		Low range, Mid range, High range		
subclause 4.3.1				
Test Channel Bandwidths as specified in TS		Lowest, Mid, Highest		
38.508-1 [5] subclause 4.3.1				
Test SCS as specified in Table 5.3.5-1		Lowest		
		est Parameters		
Test ID	Downlink Configuration	Uplink Configuration		
	N/A	Modulation	RB allocation (NOTE 1)	
1		CP-OFDM QPSK	Inner_1RB_Left	
2		CP-OFDM QPSK	Inner_1RB_Right	
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.				
NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel				
bandwidths are specified in Table 5.3.5-1.				

Table 6.4D.2.3.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.4D.2.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4D.2.3.4.3.

6.4D.2.3.4.2 Test procedure

Test procedure for PUSCH:

- 1.1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4D.2.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 1.2. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power at each antenna connector under measurement measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level 10 dBm, where:
 - MU is the test system uplink power measurement uncertainty and is specified in Table F.1.2-1 for the carrier frequency f and the channel bandwidth BW.
 - Uplink power control window size = 1dB (UE power step size) + 0.7dB (UE power step tolerance) + (Test system relative power measurement uncertainty), where, the UE power step tolerance is specified in TS 38.101-1 [2], Table 6.3.4.3-1 and is 0.7dB for 1dB power step size, and the Test system relative power measurement uncertainty is specified in Table F.1.2-1.
- 1.3. Measure In-band emission using Global In-Channel Tx-Test (Annex E) for each of transmit antennas of the UE. For TDD, only slots consisting of only UL symbols are under test.

- 1.4. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power at each antenna connector under measurement measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level 0 dBm, where MU and Uplink power control window size are defined above.
- 1.5. Measure In-band emission using Global In-Channel Tx-Test (Annex E) for each of transmit antennas of the UE. For TDD, only slots consisting of only UL symbols are under test.
- 1.6. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power at each antenna connector under measurement measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level -30 dBm, where MU and Uplink power control window size are defined above.
- 1.7. Measure In-band emission using Global In-Channel Tx-Test (Annex E) for each of transmit antennas of the UE. For TDD, only slots consisting of only UL symbols are under test.
- 1.8. Send uplink power control commands to the UE using 1dB power step size to ensure that the UE output power at each antenna connector under measurement measured by the test system is within the Uplink power control window, defined as +MU to +(MU + Uplink power control window size) dB of the target power level Pmin, where MU and Uplink power control window size are defined above. Pmin is the minimum output power according to Table 6.3D.1.3-1.
- 1.9. Measure In-band emission using Global In-Channel Tx-Test (Annex E) for each of transmit antennas of the UE. For TDD, only slots consisting of only UL symbols are under test.
- NOTE1: Void.
- NOTE2: The purpose of the Uplink power control window is to ensure that the actual UE output power at each antenna connector under measurement is no less than the target power level, and as close as possible to the target power level. The relationship between the Uplink power control window, the target power level and the corresponding possible actual UE Uplink power window is illustrated in Annex F.4.2.
- NOTE3: For the UE which the output power at each antenna connector can reach the Uplink power control window at the same time, execute measurement for each of antenna connectors. For the UE which the output power at each antenna connector cannot reach the Uplink power control window at the same time, execute measurement for the one antenna connector which the output power is within Uplink power control window. And then ensure output power of the other antenna connector is within Uplink power control window and execute measurement for this antenna connector.

Table 6.4D.2.3.4.2-1: Void

Table 6.4D.2.3.4.2-2: Void

6.4D.2.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the condition 2TX_UL_MIMO.

6.4D.2.3.5 Test requirement

The requirements apply to each transmit antenna connector.

The averaged In-band emissions result, derived in Annex E.4.3, shall not exceed the corresponding values in Tables 6.4D.2.3.5-1. n is 10 for 15kHz SCS, 20 for 30kHz SCS and 40 for 60kHz SCS.

Paramete descriptio	l Init		Limit (NOTE 1)	Applicable Frequencies
General dB		$\max\{ -25 - 10 \cdot \log_{10} (N_{RB} / L_{CRB}), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot (\Delta_{RB} - 1) / L_{CRB}, \\ -57 dBm + 10 \log_{10} (SCS / 15kHz) - P_{RB} \} + TT$		Any non-allocated (NOTE 2)
IQ Image	e dB	-28 + TT -25 + TT	Image frequencies when output power > 10 dBm Image frequencies when output power ≤ 10 dBm	Image frequencies (NOTES 2, 3)
Carrier leakage	dBc	-28 + TT -25 + TT -20 + TT -10 + TT	Output power > 10 dBm 0 dBm ≤ Output power ≤10 dBm -30 dBm ≤ Output power ≤ 0 dBm -40 dBm ≤ Output power < -30 dBm	Carrier leakage frequency (NOTES 4, 5)
 NOTE 1: An in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the minimum requirement is calculated as the higher of <i>P_{RB}</i> - 30 dB and the power sum of all limit values (General, IQ Image or Carrier leakage) that apply. <i>P_{RB}</i> is defined in NOTE 10. NOTE 2: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured average power per allocated RB, where the averaging is done across all allocated RBs. NOTE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated 				
 bandwidth, based on symmetry with respect to the carrier leakage frequency, but excluding any allocated RBs. NOTE 4: The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-allocated RB to the measured total power in all allocated RBs. NOTE 5: The applicable frequencies for this limit depend on the parameter <i>txDirectCurrentLocation</i> in <i>UplinkTxDirectCurrent</i> IE, and are those that are enclosed either in the RB containing the carrier leakage frequency, or in the two RBs immediately adjacent to the carrier leakage frequency but excluding any allocated RB. 				
NOTE 6: NOTE 7: NOTE 8:				
NOTE 9: Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g. $\Delta_{RB} = 1$ or $\Delta_{RB} = -1$ for the first adjacent RB outside of the allocated bandwidth. NOTE 10: P_{RB} is an average of the transmitted power over 10 sub-frames normalized by the number of allocated				
NOTE 11:	RBs, measured in o Test tolerance TT =			

Table 6.4D.2.3.5-1: Test requirements for in-band emissions

Table 6.4D.2.3.5-2: Void

6.4D.2.4 EVM equalizer spectrum flatness for UL MIMO

6.4D.2.4.1 Test purpose

The purpose of this test is to verify the zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex E) meets a spectrum flatness requirement for the EVM measurement to be valid.

6.4D.2.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL MIMO.

6.4D.2.4.3 Minimum conformance requirements

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the EVM Equalizer Spectrum Flatness requirements specified in Table 6.4.2.4.3-1 and Table 6.4.2.4.3-2 which are defined in subclause 6.4.2.4.3 apply at each transmit antenna connector. The requirements shall be met with the UL MIMO configurations specified in Table 6.2D.1.3-2

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4D.2.4.

6.4D.2.4.4 Test description

6.4D.2.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4D.2.4.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions					
Test Enviro	Test Environment as specified in TS 38.508-1 [5] Normal, TL/VL, TL/VH, TH/VL, TH/VH				
subclause	subclause 4.1				
Test Frequ	encies as specified in TS 38.508-1 [5]	Low range, Mid range, High range			
subclause	subclause 4.3.1				
Test Chan	Test Channel Bandwidths as specified in TS Lowest, Mid, Highest				
38.508-1 [5	38.508-1 [5] subclause 4.3.1				
Test SCS a	Test SCS as specified in Table 5.3.5-1 Lowest				
Test Parameters					
Test ID	Test ID Downlink Configuration Uplink Configuration				
	N/A	Modulation	RB allocation (NOTE 1)		
1	1 CP-OFDM QPSK Outer Full				
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.					
NOTE 2:	NOTE 2: Test Channel Bandwidths are checked separately for each NR band, which applicable channel				
	bandwidths are specified in Table 5.3.5-1.				

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.2.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement Channel is set according to Table 6.4D.2.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4D.2.4.4.3.

6.4D.2.4.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4D.2.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.

- 881
- 3. Measure spectrum flatness using Global In-Channel Tx-Test (Annex E) for each of transmit antennas of the UE. For TDD, only slots consisting of only UL symbols are under test.

6.4D.2.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the condition 2TX_UL_MIMO.

6.4D.2.4.5 Test requirement

The requirements apply to each transmit antenna connector.

Each of the *n* spectrum flatness functions, shall derive four ripple results in Annex E.4.4.1. The derived results shall not exceed the values in Figure 6.4D.2.4.5-1:

For shaped Pi/2-BPSK modulated waveforms, the test requirements are TBD.

For normal conditions and unshaped modulated waveforms, the maximum ripple in Range 1 and Range 2 shall not exceed the values specified in Table 6.4D.2.4.5-1 and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 8.4 dB (see Figure 6.4D.2.4.5-1).

For normal conditions and for unshaped modulated waveforms, the peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.4D.2.4.5-1. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 8.4 dB (see Figure 6.4D.2.4.5-1).

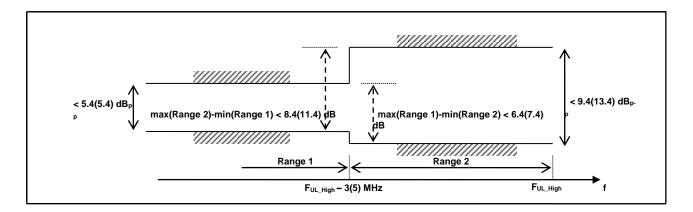

For extreme conditions, the EVM equalizer spectral flatness shall not exceed the values specified in Table 6.4D.2.4.5-2. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 7.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 11.4 dB (see Figure 6.4D.2.4.5-1).

Table 6.4D.2.4.5-1: Requirements for EVM equalizer spectrum flatness for unshaped modulations (normal conditions)

	Frequency range	Maximum ripple [dB]
FUL_Meas	– $F_{UL_{Low}} \ge 3 \text{ MHz}$ and $F_{UL_{High}}$ – $F_{UL_{Meas}} \ge 3 \text{ MHz}$	4 + TT (p-p)
	(Range 1)	
FUL_Meas	s – FUL_Low < 3 MHz or FUL_High – FUL_Meas < 3 MHz	8 + TT (p-p)
	(Range 2)	
	F_{UL_Meas} refers to the sub-carrier frequency for which	the equalizer coefficient is
	evaluated	
NOTE 2:	$F_{\text{UL_Low}}$ and $F_{\text{UL_High}}$ refer to each E-UTRA frequency	band specified in Table 5.5-
	1	
NOTE 3:	Test tolerance TT = 1.4 dB.	

Table 6.4D.2.4.5-2: Minimum requirements for EVM equalizer spectrum flatness for unshaped modulations (extreme conditions)

Frequency range	Maximum Ripple [dB]
FuL_Meas – FuL_Low ≥ 5 MHz and FuL_High – FuL_Meas ≥ 5 MHz	4 + TT (p-p)
(Range 1)	
FUL_Meas – FUL_Low < 5 MHz or FUL_High – FUL_Meas < 5 MHz	12 + TT (p-p)
(Range 2)	
NOTE 1: FUL_Meas refers to the sub-carrier frequency for which	the equalizer coefficient is
evaluated	
NOTE 2: FUL_Low and FUL_High refer to each E-UTRA frequency	band specified in Table 5.5-
1	
NOTE 3: Test tolerance TT = 1.4 dB.	

Figure 6.4D.2.4.5-1: The test requirements for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated for unshaped modulations (the ETC test requirements are within brackets)

6.4D.3 Time alignment error for UL MIMO

6.4D.3.1 Test purpose

To verify that the error of time alignment in UL MIMO does not exceed the range prescribed by the specified UL MIMO Time Alignment Error (TAE) and tolerance.

An excess time alignment error has the possibility to interfere to other channels or other systems and decrease UL MIMO performance because of the timing unsynchronization.

6.4D.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL MIMO.

6.4D.3.3 Minimum conformance requirements

For UE(s) with multiple transmit antenna connectors supporting UL MIMO, this requirement applies to frame timing differences between transmissions on multiple transmit antenna connectors in the closed-loop spatial multiplexing scheme.

The time alignment error (TAE) is defined as the average frame timing difference between any two transmissions on different transmit antenna connectors.

For UE(s) with multiple transmit antenna connectors, the Time Alignment Error (TAE) shall not exceed 130 ns.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4D.3.

6.4D.3.4 Test description

6.4D.3.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4D.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4D.3.4.1-1: Test Configuration Table

		Initial Conditions		
Test Environment as specified in TS 38.508-1		Normal		
[5] subclause 4.1				
Test Frequencies as specified in TS 38.508-1		Mid range		
[5] subclause 4.3.1				
Test Channel Bandwidths as specified in TS		Lowest, Mid, Highest		
38.508-1 [5] subclause 4.3.1				
Test SCS as sp	pecified in Table 5.3.5-1	Lowest, Highest		
Test Parameters for Channel Bandwidths				
Test ID	Downlink Configuration	Uplink Con	figuration	
	N/A for Time alignment error	Modulation	RB allocation (NOTE 1)	
	for UL MIMO			
1	test case	CP-OFDM QPSK	Outer Full	
NOTE 1: The	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.			

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4D.3.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4D.3.4.3.

6.4D.3.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4D.3.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with the condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure the timing of one sub-frame at each antenna connector.

6.4D.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO.

6.4D.3.5 Test requirement

For UE(s) with multiple transmit antenna connectors, the Time Alignment Error (TAE) shall not exceed 130 + TT ns.

Table 6.4D.3.5-1: Test Tolerance (Time alignment error for UL MIMO)

25ns	Test Tolerance	
20113	25ns	

6.4D.4 Requirements for coherent UL MIMO

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test config table is still FFS.
- Scheduling pattern within 20ms measurement window is FFS
- The test procedure is FFS.
- MU and TT value are still FFS

6.4D.4.1 Test purpose

To verify that the difference of relative phase error and the difference of relative power error between antenna ports in coherent UL MIMO do not exceed the range prescribed by the specified requirements for coherent UL MIMO and tolerance.

An excess relative phase error or excess relative power error has the possibility to interfere to other channels and decrease UL MIMO performance because of the timing unsynchronization.

6.4D.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support coherent UL MIMO.

6.4D.4.3 Minimum conformance requirements

For coherent UL MIMO, Table 6.4D.4.3-1 lists the maximum allowable difference between the measured relative power and phase errors between different antenna ports in any slot within the specified time window from the last transmitted SRS on the same antenna ports, for the purpose of uplink transmission (codebook or non-codebook usage) and those measured at that last SRS. The requirements in Table 6.4D.4.3-1 apply when the UL transmission power at each antenna port is larger than 0 dBm for SRS transmission and for the duration of time window.

Table 6.4D.4.3-1: Maximum allowable difference of relative phase and power errors in a given slot compared to those measured at last SRS transmitted

Difference of relative phase error	Difference of relative power error	Time window
40 degrees	4 dB	20 msec

The above requirements when all the following conditions are met within the specified time window:

- UE is not signaled with a change in number of SRS ports in SRS-config, or a change in PUSCH-config
- UE remains in DRX active time (UE does not enter DRX OFF time)
- No measurement gap occurs
- No instance of SRS transmission with the usage antenna switching occurs
- Active BWP remains the same

- EN-DC and CA configuration is not changed for the UE (UE is not configured or de-configured with PScell or SCell(s))

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4D.4

- 6.4D.4.4 Test description
- 6.4D.4.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4D.4.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4D.4.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.4D.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4D.4.4.3

6.4D.4.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4D.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE; allow at least 200ms starting from the first TPC command in this step to ensure that the UE reaches the Pumax level of the test point.
- 3. Measure the mean power of the UE on each antenna port on SRS symbol in the SRS channel bandwidth according to the test configuration from table 6.4D.4.4.1-1. Calculate the power difference between antenna ports and save this value as 'Power_ref'.
- 4. On the slots within 20ms following the SRS symbol, measure the mean power of the UE on each antenna port in the channel bandwidth according to the test configuration from table 6.2.4.4.1-1. The period of measurement shall be at least the continuous duration of one active slot and in the uplink symbols. For TDD slots with transient periods are not under test. Calculate the power difference between antenna ports and save this value as 'Power_meas'.

6.4D.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4 ensuring Table 4.6.3-182 with the condition 2TX_UL_MIMO.

6.4D.4.5 Test requirement

Maximum allowable difference of 'power_ref' measured in step 3 and 'power_meas' measured in step 4 shall not exceed the described relative power error in Table 6.4D.4.5-1.

Table 6.4D.4.5-1: Maximum allowable difference of relative phase and power errors in a given slot compared to those measured at last SRS transmitted

Difference of relative phase error Difference of relative power error Time window			
40+TT degrees 4+TT ¹ dB 20 msec			
NOTE 1: TT for relative power for each frequency and channel bandwidth is specified in Table 6.4D.4.5-2.			

Table 6.4D.4.5-2: Test Tolerance

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	FFS	FFS
40MHz < BW ≤ 100MHz	FFS	FFS

6.4E Transmit signal quality for V2X

6.4E.1 Frequency error for V2X

6.4E.2 Transmit modulation quality for V2X

6.4E.2.1 General

The transmit modulation quality requirements in this clause apply to V2X sidelink transmissions.

For NR V2X UE supporting SL MIMO, the transmit modulation quality requirements for single carrier shall apply to each transmit antenna connector.

If V2X UE transmits on one-antenna connector at a time, the requirements specified for single carrier apply to the active antenna connector.

6.4E.2.2 Error Vector Magnitude for V2X

6.4E.2.2.1 Error Vector Magnitude for V2X / non-concurrent operation

Editor's Note:

- The test case is not completed due to the following aspects are not yet determined:
- Test configuration is TBD
- Target power level is TBD

6.4E.2.2.1.1 Test purpose

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the carrier leakage shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further equalised using the channel estimates subjected to the EVM equaliser spectrum flatness requirement specified in sub-clause 6.4E.2.5.1.3. For CP-OFDM waveforms, the EVM result is defined after the front-end FFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %.

6.4E.2.2.1.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR V2X sidelink communication.

6.4E.2.2.1.3 Minimum conformance requirements

For V2X sidelink physical channels PSCCH and PSSCH, the Error Vector Magnitude requirements shall be as specified for PUSCH in Table 6.4.2.1-1 except pi/2-BPSK for NR V2X operating bands in Table 5.2E.1-1. When sidelink transmissions are shortened due to transmission gap of 1 symbol at the end of the slot, the EVM measurement interval is reduced by one symbol, accordingly.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4E.2.2.

6.4E.2.2.1.4 Test description

6.4E.2.2.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.2E.1-1 and Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4E.2.2.1.4.1-1. The details of the V2X reference measurement channels (RMCs) are specified in Annex A.7.5 and the GNSS configuration in TS 38.508-1 [5] subclause 4.11.

Table 6.4E.2.2.1.4.1-1: Test Configuration Table for PSSCH and PSCCH

FFS

- 1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.9.1 for TE diagram and section A.3.2.7 for UE diagram.
- The parameter settings for the V2X sidelink transmission over PC5 are pre-configured according to TS 38.508-1
 [5] subclause 4.10. Message content exceptions are defined in clause 6.4E.2.2.1.4.3.
- 3. The V2X Reference Measurement Channel is set according to Table 6.4E.2.2.1.4.1-1.
- 4. The GNSS simulator is configured for Scenario #1: static in Geographical area #1, as defined in TS38.508-1 [5] Table 4.11.2-2. Geographical area #1 is also pre-configured in the UE.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state Out_of_Coverage with generic procedure parameters Sidelink *On*, Test Loop Function *On* with UE test loop mode E closed for *Transmit Mode* according to TS 38.508-1 [5] clause 4.5.

6.4E.2.2.1.4.2 Test procedure

- 1. The UE starts to perform the V2X sidelink communication according to [SL-V2X-Preconfiguration]. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the V2X RMC.
- 2. Configure the UE to transmit at $P_{\text{UMAX level}}$.
- 3. Measure the EVM and *EVM* _{DMRS} using Global In-Channel Tx-Test (Annex E). The measurement period is [15] subframes. When V2X transmissions are shortened due to transmission gap of 1 symbol at the end of the subframe, the EVM measurement interval is reduced by one symbol, accordingly.
- 4. Modify SL-V2X-Preconfiguration to ensure the UE to transmit at a relative low power, according to Table [TBD].
- 5. Ensure the UE is in State [TBD] in Transmit Mode according to TS 38.508-1 [5] clause [TBD] using the new UL power control setting.

- 888
- 6. The UE starts to perform the V2X sidelink communication according to [SL-V2X-Preconfiguration]. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the V2X RMC.
- 7. Measure EVM and *EVM* _{DMRS} using Global In-Channel Tx-Test (Annex E). The measurement period is [15] subframes. When V2X transmissions are shortened due to transmission gap of 1 symbol at the end of the subframe, the EVM measurement interval is reduced by one symbol, accordingly.

6.4E.2.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4 with the following exceptions:

FFS

6.4E.2.2.1.5 Test requirement

FFS

6.4E.2.2.1D Error Vector Magnitude for V2X / non-concurrent operation / SL-MIMO

Editor's Note:

- No test points are defined since there is no configuration satisfying MPR=0dB requirements in RAN4.
- The test case is not completed due to the following aspects are not yet determined:
- Uplink RMC is TBD in RAN4
- Connection diagram is TBD
- Preconfiguration is TBD in 38.508-1
- Test state and generic procedure are TBD in 38.508-1

6.4E.2.2.1D.1 Test purpose

The Error Vector Magnitude is a measure of the difference between the reference waveform and the measured waveform. This difference is called the error vector. Before calculating the EVM the measured waveform is corrected by the sample timing offset and RF frequency offset. Then the carrier leakage shall be removed from the measured waveform before calculating the EVM.

The measured waveform is further equalised using the channel estimates subjected to the EVM equaliser spectrum flatness requirement specified in sub-clause 6.4E.2.5.1D.3. For CP-OFDM waveforms, the EVM result is defined after the front-end FFT as the square root of the ratio of the mean error vector power to the mean reference power expressed as a %.

6.4E.2.2.1D.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR V2X sidelink MIMO communication with non-concurrent operation.

NOTE: This test case can't be performed due to lack of appropriate test points.

6.4E.2.2.1D.3 Minimum conformance requirements

For NR V2X UE with two transmit antenna connectors, the requirements specified for single carrier described in clause 6.4E.2.2.1.3 shall apply to each transmit antenna connector.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4E.2.2.

6.4E.2.2.1D.4 Test description

6.4E.2.2.1D.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4E.2.2.1D.4.1-1. The details of the V2X reference measurement channels (RMCs) are specified in Annexes TBD.

Table 6.4E.2.2.1D.4.1-1: Test Configuration Table for PSSCH and PSCCH

FFS

NOTE: No test points are defined since there is no configuration satisfying MPR=0dB requirements in RAN4.

- 1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure [TBD] for TE diagram and section [TBD] for UE diagram.
- The parameter settings for the V2X sidelink transmission over PC5 are pre-configured according to TS 38.508-1
 [5] subclause [TBD]. Message content exceptions are defined in clause 6.4E.2.2.1D.4.3.
- 3. The V2X Reference Measurement Channel is set according to Table 6.4E.2.2.1D.4.1-1.
- 4. The GNSS simulator is configured for Scenario #1: static in Geographical area #1, as defined in TS38.508-1 [5] Table [TBD]. Geographical area #1 is also pre-configured in the UE.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state [TBD].

6.4E.2.2.1D.4.2 Test procedure

- 1. The UE starts to perform the V2X sidelink communication according to [SL-V2X-Preconfiguration]. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the V2X RMC.
- 2. Configure the UE to transmit at $P_{\text{UMAX level}}.$
- 3. Measure the EVM and *EVM* _{DMRS} using Global In-Channel Tx-Test (Annex E) for each of transmit antenna. The measurement period is [15] subframes. When V2X transmissions are shortened due to transmission gap of 1 symbol at the end of the subframe, the EVM measurement interval is reduced by one symbol, accordingly.
- 4. Modify SL-V2X-Preconfiguration to ensure the UE to transmit at a relative low power, according to Table [TBD].
- 5. Ensure the UE is in State [TBD] in Transmit Mode according to TS 38.508-1 [5] clause [TBD] using the new UL power control setting.
- 6. The UE starts to perform the V2X sidelink communication according to [SL-V2X-Preconfiguration]. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the V2X RMC.
- 7. Measure EVM and *EVM*_{DMRS} using Global In-Channel Tx-Test (Annex E) for each of transmit antenna. The measurement period is [15] subframes. When V2X transmissions are shortened due to transmission gap of 1 symbol at the end of the subframe, the EVM measurement interval is reduced by one symbol, accordingly.

6.4E.2.2.1D.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4 with the following exceptions:

FFS

3GPP TS 38.521-1 V17.6.1 (2022-10)

890

6.4E.2.2.1D.5 Test requirement

FFS

6.4E.2.4 In-band emissions for V2X

6.4E.2.4.1 In-band emissions for V2X / non-concurrent operation

Editor's Note:

- The test case is not completed due to the following aspects are not yet determined:
- Test configuration is TBD
- Target power level is TBD

6.4E.2.4.1.1 Test purpose

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks, this is to verify that the in-band emissions of V2X sidelink non-concurrent operation satisfy the minimum requirements.

6.4E.2.4.1.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR V2X sidelink communication with non-concurrent operation.

6.4E.2.4.1.3 Minimum conformance requirements

For V2X sidelink physical channels PSCCH, PSSCH and PSBCH, the In-band emissions requirements shall be as specified for PUSCH in subclause 6.4.2.3 for the corresponding modulation and transmission bandwidth. When V2X transmissions are shortened due to transmission gap of one symbol at the end of the subframe, the In-band emissions measurement interval is reduced by one symbol, accordingly.

Consequently, the relative in-band emission of each sidelink physical channel shall not exceed the values specified in Table 6.4E.2.4.1.3-1.

Paramete descriptio			Limit (NOTE 1)	Applicable Frequencies	
General		ma	$ x\{-25-10 \cdot \log_{10}(N_{RB}/L_{CRB}), $	Any non-allocated	
				(NOTE 2)	
			$\cdot \log_{10} EVM - 3 - 5 \cdot (\left \Delta_{RB} \right - 1) / L_{CRB},$,	
		-5	$\left\{7dBm + 10\log_{10}\left(SCS/15kHz\right) - \overline{P_{RB}}\right\}$		
IQ Image	e dB	-28	Image frequencies when output power > 10 dBm	Image	
				frequencies	
		05		(NOTES 2, 3)	
<u> </u>		-25	Image frequencies when output power ≤ 10 dBm		
Carrier	dBc	-28	Output power > 10 dBm	Carrier leakage	
leakage				frequency (NOTES 4, 5)	
		-25	0 dBm ≤ Output power ≤ 10 dBm	(NOTES 4, 5)	
		-20	-30 dBm ≤ Output power < 0 dBm		
		-20	-40 dBm ≤ Output power < -30 dBm		
NOTE 1.	An in-hand emissio	-	nit is evaluated in each non-allocated RB. For each s	uch RB the	
			d as the higher of $\overline{P_{RB}}$ - 30 dB and the power sum of a		
			age) that apply. $\overline{P_{RB}}$ is defined in NOTE 10.		
			RB and the limit is expressed as a ratio of measured		
	allocated RB to the measured average power per allocated RB, where the averaging is done across all				
	allocated RBs. For pi/2 BPSK with Spectrum Shaping, the limit is expressed as a ratio of measured power in one non-allocated RB to the measured power in the allocated RB with highest PSD.				
				ha alla satad	
	TE 3: The applicable frequencies for this limit are those that are enclosed in the reflection of the allocated				
	bandwidth, based on symmetry with respect to the carrier leakage frequency, but excluding any allocated				
	RBs. The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-				
	The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non- allocated RB to the measured total power in all allocated RBs.				
	: The applicable frequencies for this limit depend on the parameter <i>txDirectCurrentLocation</i> in				
	<i>UplinkTxDirectCurrent</i> IE, and are those that are enclosed either in the RB containing the carrier leakage				
	frequency, or in the two RBs immediately adjacent to the carrier leakage frequency but excluding any				
	allocated RB.				
		ssion Bandwidt	h (see clause 5.3).		
	L_{CRB} is the Transmission Bandwidth (see clause 5.3). N_{RB} is the Transmission Bandwidth Configuration (see clause 5.3).				
	<i>EVM</i> is the limit specified in Table 6.4.2.1-1 for the modulation format used in the allocated RBs.				
			acent RB outside of the allocated bandwidth.		
		•	tted power over 10 sub-frames normalized by the nun	nber of allocated	
	RBs, measured in c				
			defined in clause 6.2.2, $L_{CRB} = N_{RB_alloc} + N_{RB_gap}$ with	no in-gan emission	
	requirement.			no m-gap emission	
	requirement.				

Table 6.4E.2.4.1.3-1: Minimum requirements for in-band emissions

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4E.2.4.

6.4E.2.4.1.4 Test description

6.4E.2.4.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.2E.1-1 and Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4E.2.4.1.4.1-1 and 6.4E.2.4.1.4.1-2. The details of the V2X reference measurement channels (RMCs) are specified in Annex A.7.5 and the GNSS configuration in TS 38.508-1 [5] subclause 4.11.

Table 6.4E.2.4.1.4.1-1: Test Configuration Table for PSSCH and PSCCH

FFS

Table 6.4E.2.4.1.4.1-2: Test Configuration Table for PSBCH

FFS

- 1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.9.1 for TE diagram and section A.3.2.7 for UE diagram.
- The parameter settings for the V2X sidelink transmission over PC5 are pre-configured according to TS 38.508-1
 [5] subclause 4.10. Message content exceptions are defined in clause 6.4E.2.4.1.4.3.
- 3. The V2X Reference Measurement Channel is set according to Table 6.4E.2.4.1.4.1-1.
- 4. The GNSS simulator is configured for Scenario #1: static in Geographical area #1, as defined in TS 38.508-1 [5] Table 4.11.2-2. Geographical area #1 is also pre-configured in the UE.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state Out_of_Coverage with generic procedure parameters Sidelink *On*, Test Loop Function *On* with UE test loop mode E closed for *Transmit Mode* according to TS 38.508-1 [5] clause 4.5.

6.4E.2.4.1.4.2 Test procedure

Test procedure for PSCCH+PSSCH:

- 1. Set the V2X sidelink communication parameters for both the V2X sidelink capable UE (hereinafter referred to as V2X UE) and SS according to *SL-PreconfigurationNR* in [TBD].
- 2. V2X UE schedules the V2X RMC according to *SL-PreconfigurationNR* which is in line with the test configuration in Table 6.4E.2.4.1.4.1-1.
- 3. Measure the V2X UE output power to make sure V2X UE transmission power to be [TBD]
- 4. Measure In-band emission using Global In-Channel Tx-Test (Annex E)

[TP2: V2X UE output power within (0 -30) dBm]

Repeat the above steps $1\sim4$ with the exception that making sure V2X UE transmission power to be -25.5dBm+/- 4.5dB for carrier frequency f > 5GHz in step3.

Test procedure for PSBCH:

- 1. Set the V2X sidelink communication parameters for both the V2X sidelink capable UE (hereinafter referred to as V2X UE) and SS according to *SL-PreconfigurationNR* in [TBD].
- 2. V2X UE schedules the V2X RMC according to *SL-PreconfigurationNR* which is in line with the test configuration in Table 6.4E.2.4.1.4.1-2.
- 3. Measure the V2X UE output power to make sure V2X UE transmission power to be [TBD]
- 4. Measure In-band emission using Global In-Channel Tx-Test (Annex E)

[TP2: V2X UE output power within (0 -30) dBm]

Repeat the above steps $1 \sim 4$ with the exception that making sure V2X UE transmission power to be -25.5dBm+/-4.5 dB for carrier frequency f > 5GHz in step3.

6.4E.2.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4 with the following exceptions:

FFS

3GPP TS 38.521-1 V17.6.1 (2022-10)

893

6.4E.2.4.1.5 Test requirement

FFS

6.4E.2.4.1D In-band emissions for V2X / non-concurrent operation / SL-MIMO

Editor's Note:

- The test case is not completed due to the following aspects are not yet determined:
- Uplink RMC is TBD in RAN4
- Connection diagram is TBD
- Preconfiguration is TBD in 38.508-1
- Test state and generic procedure are TBD in 38.508-1

6.4E.2.4.1D.1 Test purpose

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks, this is to verify that the in-band emissions of V2X sidelink non-concurrent operation satisfy the minimum requirements.

6.4E.2.4.1D.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR V2X sidelink MIMO communication with non-concurrent operation.

NOTE: This test case can't be performed due to lack of appropriate test points.

6.4E.2.4.1D.3 Minimum conformance requirements

For NR V2X UE with two transmit antenna connectors, the requirements specified for single carrier described in clause 6.4E.2.4.1.3 shall apply to each transmit antenna connector.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4E.2.4.

6.4E.2.4.1D.4 Test description

6.4E.2.4.1D.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4E.2.4.1D.4.1-1 and 6.4E.2.4.1D.4.1-2. The details of the V2X reference measurement channels (RMCs) are specified in Annexes TBD.

Table 6.4E.2.4.1D.4.1-1: Test Configuration Table for PSSCH and PSCCH

FFS

Table 6.4E.2.4.1D.4.1-2: Test Configuration Table for PSBCH

FFS

- 1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure [TBD] for TE diagram and section [TBD] for UE diagram.
- The parameter settings for the V2X sidelink transmission over PC5 are pre-configured according to TS 38.508-1
 [5] subclause [TBD]. Message content exceptions are defined in clause 6.4E.2.4.1D.4.3.
- 3. The V2X Reference Measurement Channel is set according to Table 6.4E.2.4.1D.4.1-1.

- 4. The GNSS simulator is configured for Scenario #1: static in Geographical area #1, as defined in TS38.508-1 [5] Table [TBD]. Geographical area #1 is also pre-configured in the UE.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state [TBD].

6.4E.2.4.1D.4.2 Test procedure

Test procedure for PSCCH+PSSCH:

- 1. Set the V2X sidelink communication parameters for both the V2X sidelink capable UE (hereinafter referred to as V2X UE) and SS according to *SL-PreconfigurationNR* in [TBD].
- 2. V2X UE schedules the V2X RMC according to *SL-PreconfigurationNR* which is in line with the test configuration in Table 6.4E.2.4.1D.4.1-1.
- 3. Measure the V2X UE output power to make sure V2X UE transmission power to be [TBD].
- 4. Measure In-band emission using Global In-Channel Tx-Test (Annex E) for each of transmit antenna.

Test procedure for PSBCH:

- 1. Set the V2X sidelink communication parameters for both the V2X sidelink capable UE (hereinafter referred to as V2X UE) and SS according to *SL-PreconfigurationNR* in [TBD].
- 2. V2X UE schedules the V2X RMC according to *SL-PreconfigurationNR* which is in line with the test configuration in Table 6.4E.2.4.1D.4.1-2.
- 3. Measure the V2X UE output power to make sure V2X UE transmission power to be [TBD].
- 4. Measure In-band emission using Global In-Channel Tx-Test (Annex E) for each of transmit antenna.

6.4E.2.4.1D.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4 with the following exceptions:

FFS

6.4E.2.4.1D.5 Test requirement

FFS

6.4E.2.4.2 In-band emissions for V2X / con-current operation

Editor's Note:

- The test case is not completed due to the following aspects are not yet determined:
- Uplink RMC is TBD in RAN4
- Connection diagram is TBD
- Preconfiguration is TBD in 38.508-1
- Test state and generic procedure are TBD in 38.508-1

6.4E.2.4.2.1 Test purpose

The in-band emissions are a measure of the interference falling into the non-allocated resources blocks, this is to verify that the in-band emissions of V2X sidelink con-current operation satisfy the minimum requirements.

6.4E.2.4.2.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR V2X sidelink communication with con-current operation.

NOTE: This test case can't be performed due to lack of appropriate test points.

6.4E.2.4.2.3 Minimum conformance requirements

For V2X sidelink physical channels PSCCH, PSSCH and PSBCH, the In-band emissions requirements shall be as specified for PUSCH in subclause 6.4.2.3 for the corresponding modulation and transmission bandwidth. When V2X transmissions are shortened due to transmission gap of one symbol at the end of the subframe, the In-band emissions measurement interval is reduced by one symbol, accordingly.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4E.2.4.

6.4E.2.4.2.4 Test description

6.4E.2.4.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4E.2.4.2.4.1-1 and 6.4E.2.4.2.4.1-2. The details of the V2X reference measurement channels (RMCs) are specified in Annexes TBD.

Table 6.4E.2.4.2.4.1-1: Test Configuration Table for PSSCH and PSCCH

FFS

Table 6.4E.2.4.2.4.1-2: Test Configuration Table for PSBCH

FFS

- 1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure [TBD] for TE diagram and section [TBD] for UE diagram.
- The parameter settings for the V2X sidelink transmission over PC5 are pre-configured according to TS 38.508-1
 [5] subclause [TBD]. Message content exceptions are defined in clause 6.4E.2.4.2.4.3.
- 3. The V2X Reference Measurement Channel is set according to Table 6.4E.2.4.2.4.1-1.
- 4. The GNSS simulator is configured for Scenario #1: static in Geographical area #1, as defined in TS38.508-1 [5] Table [TBD]. Geographical area #1 is also pre-configured in the UE.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state [TBD].

6.4E.2.4.2.4.2 Test procedure

Test procedure for PSCCH+PSSCH:

- 1. Set the V2X sidelink communication parameters for both the V2X sidelink capable UE (hereinafter referred to as V2X UE) and SS according to *SL-PreconfigurationNR* in [TBD].
- 2. V2X UE schedules the V2X RMC according to *SL-PreconfigurationNR* which is in line with the test configuration in Table 6.4E.2.4.2.4.1-1.
- 3. Measure the V2X UE output power to make sure V2X UE transmission power to be [TBD].
- 4. Measure In-band emission using Global In-Channel Tx-Test (Annex E) for each of transmit antenna.

Test procedure for PSBCH:

1. Set the V2X sidelink communication parameters for both the V2X sidelink capable UE (hereinafter referred to as V2X UE) and SS according to *SL-PreconfigurationNR* in [TBD].

- 2. V2X UE schedules the V2X RMC according to *SL-PreconfigurationNR* which is in line with the test configuration in Table 6.4E.2.4.2.4.1-2.
- 3. Measure the V2X UE output power to make sure V2X UE transmission power to be [TBD].
- 4. Measure In-band emission using Global In-Channel Tx-Test (Annex E) for each of transmit antenna.

6.4E.2.4.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4 with the following exceptions:

FFS

6.4E.2.4.2.5 Test requirement

FFS

6.4E.2.5 EVM equalizer spectrum flatness for V2X

6.4E.2.5.1 EVM equalizer spectrum flatness for V2X / non-concurrent operation

Editor's Note:

- The test case is not completed due to the following aspects are not yet determined:
- Test configuration is TBD
- Target power level is TBD

6.4E.2.5.1.1 Test purpose

The zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex E) must meet a spectrum flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the V2X sidelink allocated block variation in dB of the equalizer coefficients generated by the EVM measurement process. The EVM equalizer spectrum flatness requirement does not limit the correction applied to the signal in the EVM measurement process but for the EVM result to be valid, the equalizer correction that was applied must meet the EVM equalizer spectrum flatness minimum requirements. The basic measurement interval is the same as for EVM.

6.4E.2.5.1.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR V2X sidelink communication.

NOTE: This test case can't be performed due to lack of appropriate test points.

6.4E.2.5.1.3 Minimum conformance requirements

The peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the V2X sidelink allocation shall not exceed the maximum ripple. The EVM equalizer spectrum flatness shall not exceed the values specified in Table 6.4E.2.5.1.3-1 for normal conditions. For V2X sidelink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 2 must not be larger than 5 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 7 dB (see Figure 6.4E.2.5.1.3-1).

The EVM equalizer spectrum flatness shall not exceed the values specified in Table 6.4E.2.5.1.3-2 for extreme conditions. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 10 dB (see Figure 6.4E.2.5.1.3-1).

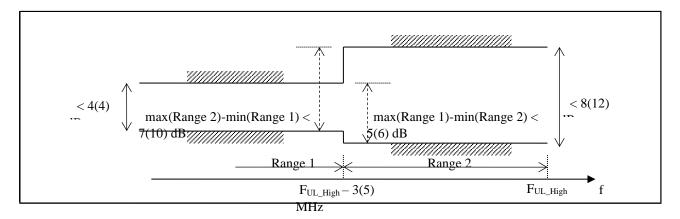

For V2X sidelink physical channels PSCCH, PSSCH and PSBCH, the EVM equalizer spectrum flatness requirements shall be as specified for PUSCH in clause 6.4.2.4 for the corresponding modulation and transmission bandwidth.

Table 6.4E.2.5.1.3-1: Minimum requirements for EVM equalizer spectrum flatness (normal conditions)

Frequency range	Maximum ripple (dB)	
FuL_Meas – FuL_Low ≥ 3 MHz and FuL_High – FuL_Meas ≥ 3 MHz	4 (p-p)	
(Range 1)		
F _{UL_Meas} – F _{UL_Low} < 3 MHz or F _{UL_High} – F _{UL_Meas} < 3 MHz 8 (p-p)		
(Range 2)		
NOTE 1: FUL_Meas refers to the sub-carrier frequency for which the equalizer coefficient is		
evaluated		
NOTE 2: Ful_Low and Ful_High refer to each NR frequency band specified in Table 5.2-1		

Table 6.4E.2.5.1.3-2: Minimum requirements for EVM equalizer spectrum flatness (extreme conditions)

Frequency range	Maximum Ripple (dB)	
$F_{UL_Meas} - F_{UL_Low} \ge 5 \text{ MHz and } F_{UL_High} - F_{UL_Meas} \ge 5 \text{ MHz}$ (Range 1)	4 (p-p)	
Ful_Meas – Ful_Low < 5 MHz or Ful_High – Ful_Meas < 5 MHz (Range 2)	12 (p-p)	
NOTE 1: F _{UL_Meas} refers to the sub-carrier frequency for which the equalizer coefficient is evaluated		
NOTE 2: FUL_Low and FUL_High refer to each NR frequency ba	nd specified in Table 5.2-1	

Figure 6.4E.2.5.1.3-1: The limits for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated (the ETC minimum requirement are within brackets).

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4E.2.5.

6.4E.2.5.1.4 Test description

6.4E.2.5.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.2E.1-1 and Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4E.2.5.1.4.1-1. The details of the V2X reference measurement channels (RMCs) are specified in Annex A.7.5 and the GNSS configuration in TS 38.508-1 [5] subclause 4.11.

Table 6.4E.2.5.1.4.1-1: Test Configuration Table for PSSCH and PSCCH

FFS

- 1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.9.1 for TE diagram and section A.3.2.7 for UE diagram.
- The parameter settings for the V2X sidelink transmission over PC5 are pre-configured according to TS 38.508-1
 [5] subclause 4.10. Message content exceptions are defined in clause 6.4E.2.5.1.4.3.
- 3. The V2X Reference Measurement Channel is set according to Table 6.4E.2.5.1.4.1-1.
- 4. The GNSS simulator is configured for Scenario #1: static in Geographical area #1, as defined in TS38.508-1 [5] Table 4.11.2-2. Geographical area #1 is also pre-configured in the UE.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state Out_of_Coverage with generic procedure parameters Sidelink *On*, Test Loop Function *On* with UE test loop mode E closed for *Transmit Mode* according to TS 38.508-1 [5] clause 4.5.

6.4E.2.5.1.4.2 Test procedure

- 1. The V2X UE schedules the V2X RMC with transmission power at P_{UMAX} level according to *SL*-*PreconfigurationNR* which is in line with the test configuration in Table 6.4E.2.5.1.4.1-1;
- 2. Measure spectrum flatness using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test.

6.4E.2.5.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4 with the following exceptions:

FFS

6.4E.2.5.1.5 Test requirement

FFS

6.4E.2.5.1D EVM equalizer spectrum flatness for V2X / non-concurrent operation / SL-MIMO

Editor's Note:

- The test case is not completed due to the following aspects are not yet determined:
- Uplink RMC is TBD in RAN4
- Connection diagram is TBD
- Preconfiguration is TBD in 38.508-1
- Test state and generic procedure are TBD in 38.508-1

6.4E.2.5.1D.1 Test purpose

The zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex E) must meet a spectrum flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the V2X sidelink allocated block variation in dB of the equalizer coefficients generated by the EVM measurement process. The EVM equalizer spectrum flatness requirement does not limit the correction applied to the signal in the EVM measurement process but for the EVM result to be valid, the equalizer correction that was applied must meet the EVM equalizer spectrum flatness minimum requirements. The basic measurement interval is the same as for EVM.

6.4E.2.5.1D.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR V2X sidelink MIMO communication with non-concurrent operation.

NOTE: This test case can't be performed due to lack of appropriate test points.

6.4E.2.5.1D.3 Minimum conformance requirements

For NR V2X UE with two transmit antenna connectors, the requirements specified for single carrier described in clause 6.4E.2.5.1.3 shall apply to each transmit antenna connector.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4E.2.5.

6.4E.2.5.1D.4 Test description

6.4E.2.5.1D.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4E.2.5.1.4.1-1. The details of the V2X reference measurement channels (RMCs) are specified in Annexes TBD.

Table 6.4E.2.5.1D.4.1-1: Test Configuration Table for PSSCH and PSCCH

FFS

- 1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure [TBD] for TE diagram and section [TBD] for UE diagram.
- 2. The parameter settings for the V2X sidelink transmission over PC5 are pre-configured according to TS 38.508-1 [5] subclause [TBD]. Message content exceptions are defined in clause 6.4E.2.5.1.4.3.
- 3. The V2X Reference Measurement Channel is set according to Table 6.4E.2.5.1.4.1-1.
- 4. The GNSS simulator is configured for Scenario #1: static in Geographical area #1, as defined in TS38.508-1 [5] Table [TBD]. Geographical area #1 is also pre-configured in the UE.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state [TBD].

6.4E.2.5.1D.4.2 Test procedure

- 1. The V2X UE schedules the V2X RMC with transmission power at P_{UMAX} level according to *SL*-*PreconfigurationNR* which is in line with the test configuration in Table 6.4E.2.5.1D.4.1-1;
- 2. Measure spectrum flatness using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test.

6.4E.2.5.1D.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4 with the following exceptions:

FFS

6.4E.2.5.1D.5 Test requirement

FFS

6.4E.2.5.2 EVM equalizer spectrum flatness for V2X / con-current operation

Editor's Note:

- The test case is not completed due to the following aspects are not yet determined:
- Uplink RMC is TBD in RAN4
- Connection diagram is TBD
- Preconfiguration is TBD in 38.508-1
- Test state and generic procedure are TBD in 38.508-1

6.4E.2.5.2.1 Test purpose

The zero-forcing equalizer correction applied in the EVM measurement process (as described in Annex E) must meet a spectrum flatness requirement for the EVM measurement to be valid. The EVM equalizer spectrum flatness is defined in terms of the maximum peak-to-peak ripple of the equalizer coefficients (dB) across the V2X sidelink allocated block variation in dB of the equalizer coefficients generated by the EVM measurement process. The EVM equalizer spectrum flatness requirement does not limit the correction applied to the signal in the EVM measurement process but for the EVM result to be valid, the equalizer correction that was applied must meet the EVM equalizer spectrum flatness minimum requirements. The basic measurement interval is the same as for EVM.

6.4E.2.5.2.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR V2X sidelink communication with con-current operation.

NOTE: This test case can't be performed due to lack of appropriate test points.

6.4E.2.5.2.3 Minimum conformance requirements

For V2X sidelink physical channels PSCCH, PSSCH and PSBCH, the EVM equalizer spectrum flatness requirements shall be as specified for PUSCH in clause 6.4.2.4 for the corresponding modulation and transmission bandwidth.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4E.2.5.

6.4E.2.5.2.4 Test description

6.4E.2.5.2.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.4E.2.5.1.4.1-1. The details of the V2X reference measurement channels (RMCs) are specified in Annexes TBD.

Table 6.4E.2.5.2.4.1-1: Test Configuration Table for PSSCH and PSCCH

FFS

- 1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure [TBD] for TE diagram and section [TBD] for UE diagram.
- The parameter settings for the V2X sidelink transmission over PC5 are pre-configured according to TS 38.508-1
 [5] subclause [TBD]. Message content exceptions are defined in clause 6.4E.2.5.2.4.3.
- 3. The V2X Reference Measurement Channel is set according to Table 6.4E.2.5.2.4.1-1.
- 4. The GNSS simulator is configured for Scenario #1: static in Geographical area #1, as defined in TS38.508-1 [5] Table [TBD]. Geographical area #1 is also pre-configured in the UE.

- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state [TBD].

6.4E.2.5.2.4.2 Test procedure

- 1. The V2X UE schedules the V2X RMC with transmission power at P_{UMAX} level according to *SL*-*PreconfigurationNR* which is in line with the test configuration in Table 6.4E.2.5.2.4.1-1;
- 2. Measure spectrum flatness using Global In-Channel Tx-Test (Annex E). For TDD slots with transient periods are not under test.

6.4E.2.5.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4 with the following exceptions:

FFS

6.4E.2.5.2.5 Test requirement

FFS

6.4F Transmit signal quality for shared spectrum channel access

6.4F.1 Frequency error

Editor's Note: This test is incomplete. The following aspects are not yet determined:

- Test configuration table is FFS
- Test state and generic procedure are TBD in 38.508-1

6.4F.1.1 Test purpose

This test verifies the ability of both, the receiver and the transmitter, to process frequency correctly.

Receiver: to extract the correct frequency from the stimulus signal, offered by the System simulator, under ideal propagation conditions and low level.

Transmitter: to derive the correct modulated carrier frequency from the results, gained by the receiver.

6.4F.1.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR standalone shared spectrum channel access.

6.4F.1.3 Minimum conformance requirements

The requirements for frequency error requirements in clause 6.4.1 apply.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4F.1

6.4F.1.4 Test description

6.4F.1.4.1 Initial condition

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.4F.1.4.1-1. The details of the uplink and downlink reference measurement channels (RMCs) are specified in Annexes A.2 and A.3. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.4F.1.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The DL and UL Reference Measurement channels are set according to Table 6.4F.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.4F.1.4.3

6.4F.1.4.2 Test procedure

- 1. SS transmits PDSCH via PDCCH DCI format 1_1 for C_RNTI to transmit the DL RMC according to Table 6.4F.1.4.1-1. The SS sends downlink MAC padding bits on the DL RMC.
- 2. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.4F.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 3. Set the Downlink signal level to the appropriate REFSENS value defined in Table 7.3.2.5-1. Send continuously uplink power control "up" commands to the UE in every uplink scheduling information to the UE so that the UE transmits at P_{UMAX} level for the duration of the test. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 4. Measure the Frequency Error using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- 5. For UEs supporting DSS, repeat steps 1~4 on the applicable bands as specified in Section 5.4.2.1 with message contents being according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-61 and Table 4.6.3-62 with condition DSS.

6.4F.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.4F.1.5 Test requirement

The 10 frequency error Δf results must fulfil the test requirement:

 $\left|\Delta f\right| \leq \left(0.1 \text{ PPM} + 15 \text{ Hz}\right)$

6.4G Transmit signal quality for Tx Diversity

In this clause a multitude of results are derived, all using one common algorithm returning these results: Global In-Channels TX-Test Annex E. Each sub clause of this clause contains a procedure and test requirements described for a specific measurement. If all relevant test parameters in different sub clauses are the same, then the results, returned by the Global In-Channel TX-Test, may be used across the applicable sub clauses.

6.4G.1 Frequency error for Tx Diversity

Editor's Note: The following aspects are either missing or not yet determined:

- Tests for Power Class 3 are FFS.

6.4G.1.1 Test purpose

Same test purpose as in 6.4.1.1.

6.4G.1.2 Test applicability

This test case applies to all types of NR Power Class 1.5 UE, Power Class 2 UE reporting Tx diversity release 15 and forward.

6.4G.1.3 Minimum conformance requirements

For UE(s) supporting Tx diversity, the basic measurement interval of modulated carrier frequency is 1 UL slot. The mean value of basic measurements of UE modulated carrier frequency at each transmit antenna connector shall be accurate to within \pm 0.1 PPM observed over a period of 1 ms of cumulated measurement intervals compared to the carrier frequency received from the NR Node B.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4G.1

6.4G.1.4 Test description

Same test description as in clause 6.4.1.4 with the measurement performed at each transmit antenna connector.

6.4G.1.5 Test requirement

For each transmit antenna connector, the 10 frequency error Δf results must fulfil the test requirement:

$|\Delta f| \le (0.1 \text{ PPM} + 15 \text{ Hz})6.4\text{G.2}$ Transmit modulation quality for Tx Diversity

For UE supporting Tx diversity, the transmit modulation quality requirements are specified at each transmit antenna connector. The transmit modulation quality is specified in terms of:

- Error Vector Magnitude (EVM) for the allocated resource blocks (RBs)
- EVM equalizer spectrum flatness derived from the equalizer coefficients generated by the EVM measurement process
- Carrier leakage (caused by IQ offset)
- In-band emissions for the non-allocated RB

In case the parameter 3300 or 3301 is reported from UE via *txDirectCurrentLocation* IE (as defined in TS 38.331 [6]), carrier leakage measurement requirement in clause 6.4G.2.2 and 6.4G.2.3 shall be waived, and the RF correction with regard to the carrier leakage and IQ image shall be omitted during the calculation of transmit modulation quality.

6.4G.2.1 Error Vector Magnitude for Tx Diversity

FFS

6.4G.2.2 Carrier leakage for Tx Diversity

Editor's Note: The following aspects are either missing or not yet determined:

- Tests for Power Class 3 are FFS.

6.4G.2.2.1 Test purpose

Same test purpose as in 6.4.2.2.1.

6.4G.2.2.2 Test applicability

This test case applies to all types of NR Power Class 1.5 UE, Power Class 2 UE reporting Tx diversity release 15 and forward.

6.4G.2.2.3 Minimum conformance requirements

For UE supporting Tx diversity, the Relative Carrier Leakage Power requirements specified in Table 6.4.2.2.3-1 which is defined in clause 6.4.2.2.3 apply at each transmit antenna connector.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4G.2.2.

6.4G.2.2.4 Test description

Same test description as in clause 6.4.2.2.4 with the measurement performed at each transmit antenna connector.

6.4G.2.2.5 Test requirement

For each transmit antenna connector, each of the *n* carrier leakage results, derived in Annex E.3.1, shall not exceed the values in Table 6.4G.2.2.5-1. Allocated RBs are not under test. n is 10 for 15kHz SCS, 20 for 30kHz SCS and 30 for 60kHz SCS.

Table 6.4G.2.2.5-1: Test rec	wiromonts for Polativo	Carrier Leakage Power
Table 0.46.2.2.3-1. Test rec	unements for Relative	Carrier Leakaye Power

	Parameters	Relative limit						
	UE output power	(dBc)						
10 + N	1U to 10 + (MU + Uplink power control	-28 + TT						
	window size) dBm							
0 + MU to 0 + (MU + Uplink power control window -25 + TT								
size) dBm								
-30 + MU to -30 + (MU + Uplink power control -20 + TT								
	window size) dBm							
Pmin + N	IU to Pmin + (MU + Uplink power control	-10 + TT						
NOTE	window size) dBm							
NOTE 1:	The measurement bandwidth is 1 RB and							
	expressed as a ratio of measured power i							
	allocated RB to the measured total power RBs.	In all allocated						
NOTE 2:	The applicable frequencies for this limit de	enend on the						
110122.	parameter <i>txDirectCurrentLocation</i> in <i>Upl</i>							
	IE, and are those that are enclosed either							
	containing the carrier leakage frequency,							
	immediately adjacent to the carrier leakage							
	excluding any allocated RB.							
NOTE 3:	$N_{\scriptscriptstyle RB}$ is the Transmission Bandwidth Con	figuration (see						
	Section 5.3).	J						
NOTE 4:	MU is the test system uplink power measured	urement uncertainty						
	and is specified in Table F.1.2-1 for the ca							
	and the channel bandwidth BW.							
NOTE 5:	Uplink power control window size = 1dB (UE power step						
size) + 0.7dB (UE power step tolerance) + (Test system								
	relative power measurement uncertainty),	where, the UE						
	power step tolerance is specified in TS 38	3.101-1 [2], Table						
	6.3.4.3-1 and is 0.7dB for 1dB power step							
	system relative power measurement unce	ertainty is specified						
	in Table F.1.2-1.							
	Test tolerance $TT = 0.8 \text{ dB}.$							
NOTE 7:	Pmin is the minimum output power accord	ding to Table						
	6.3.1.3-1.							

6.4G.2.3 In-band emissions for Tx Diversity

Editor's Note: The following aspects are either missing or not yet determined:

- Tests for Power Class 3 are FFS.

6.4G.2.3.1 Test purpose

Same test purpose as in 6.4.2.3.1.

6.4G.2.3.2 Test applicability

This test case applies to all types of NR Power Class 1.5 UE, Power Class 2 UE reporting Tx diversity release 15 and forward.

6.4G.2.3.3 Minimum conformance requirements

For UE supporting Tx diversity, the In-band Emission requirements specified in Table 6.4.2.3.3-1 which is defined in clause 6.4.2.3.3 apply at each transmit antenna connector.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4G.2.3.

6.4G.2.3.4 Test description

Same test description as in clause 6.4.2.3.4 with the measurement performed at each transmit antenna connector.

6.4G.2.3.5 Test requirement

For each transmit antenna connector, the averaged In-band emission result, derived in Annex E.4.3 shall not exceed the corresponding values in Table 6.4G.2.3.5-1.

Parameter description	Unit		Applicable Frequencies			
General (NOTE 12)	dB	20 · le	$\max\{ -25 - 10 \cdot \log_{10} (N_{RB} / L_{CRB}), \\ 20 \cdot \log_{10} EVM - 3 - 5 \cdot (\Delta_{RB} - 1) / L_{CRB}, \\ -57 dBm + 10 \log_{10} (SCS / 15kHz) - \overline{P_{RB}} \} + TT$			
IQ Image (NOTE 12) dB		-28 + TT	Image frequencies when output power > 10 dBm	Image		
		-25 + TT	Image frequencies when output power \leq 10 dBm	frequencies (NOTES 2, 3)		
Carrier		-28 + TT	Output power > 10 dBm	Corrier lookogo		
leakage	dBc	-25 + TT	Carrier leakage			
(NOTE 12)	UDC	-20 + TT	-30 dBm ≤ Output power < 0 dBm	frequency		
		-10 + TT	-40 dBm ≤ Output power < -30 dBm	(NOTES 4, 5)		

Table 6.4G.2.3.5-1: Test requirements for in-band emissions

In in-band emissions combined limit is evaluated in each non-allocated RB. For each such RB, the ninimum requirement is calculated as the higher of P_{RB} - 30 dB and the power sum of all limit values
General, IQ Image or Carrier leakage) that apply. P_{RB} is defined in NOTE 10.
he measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non-
Ilocated RB to the measured average power per allocated RB, where the averaging is done across all Ilocated RBs.
he applicable frequencies for this limit are those that are enclosed in the reflection of the allocated
andwidth, based on symmetry with respect to the carrier leakage frequency, but excluding any allocated RBs.
The measurement bandwidth is 1 RB and the limit is expressed as a ratio of measured power in one non- Illocated RB to the measured total power in all allocated RBs.
he applicable frequencies for this limit depend on the parameter txDirectCurrentLocation in
<i>JplinkTxDirectCurrent</i> IE, and are those that are enclosed either in the RBs containing the carrier leakage requency, or in the two RBs immediately adjacent to the carrier leakage frequency, but excluding any illocated RB.
L_{CRB} is the Transmission Bandwidth (see Section 5.3).
$N_{_{RB}}$ is the Transmission Bandwidth Configuration (see Section 5.3).
EVM is the limit specified in Table 6.4G.2.1.3-1 for the modulation format used in the allocated RBs.
Δ_{RB} is the starting frequency offset between the allocated RB and the measured non-allocated RB (e.g.
$\Delta_{_{RB}}=1$ or $\Delta_{_{RB}}=-1$ for the first adjacent RB outside of the allocated bandwidth.
$\overline{P_{RB}^{-}}$ is an average of the transmitted power over 10 sub-frames normalized by the number of allocated
RBs, measured in dBm.
Test tolerance $TT = 0.8 \text{ dB}$.
n case the parameter 3300 or 3301 is reported from UE via <i>txDirectCurrentLocation</i> IE, IQ Image and Carrier leakage limit do not apply and General limit applies for all non-allocated frequencies.

6.4G.2.4 EVM equalizer spectrum flatness for Tx Diversity

Editor's Note: The test case is not completed. The following aspects are either missing or not yet determined:

- Tests for Power Class 3 are FFS.

- Update to Annex E is FFS.

6.4G.2.4.1 Test purpose

Same test purpose as in 6.4.2.4.1.

6.4G.2.4.2 Test applicability

This test case applies to all types of NR Power Class 1.5 UE, Power Class 2 UE reporting Tx diversity release 15 and forward.

6.4G.2.4.3 Minimum conformance requirements

For UE supporting Tx diversity, the EVM Equalizer Spectrum Flatness requirements specified in Table 6.4.2.4.3-1 and Table 6.4.2.4.3-2 which are defined in clause 6.4.2.4.3. The composite EVM equalizer equalizer EC(f) is defined as

$$EC(f) = \frac{P_1 \cdot |EC_1(f)| + P_2 \cdot |EC_2(f)|}{P_1 + P_2}$$

where

 $EC_n(f)$ represents equalizer coefficient for each antenna connector, $f \in F$, f is the allocated subcarriers within the transmission bandwidth (($|F|=12*L_{CRBs}$);

 P_1 and P_2 denote the linear power measured at each antenna connector respectively.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.4G.2.4.

6.4G.2.4.4 Test description

Same test description as specified in clause 6.4.2.4.4 with following exceptions:

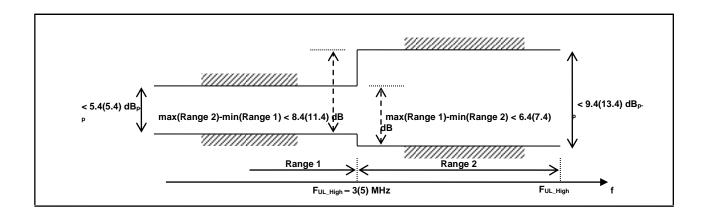
Step 3 of Test procedure as in 6.4.2.4.4.2 is replaced by:

- 3. Measure spectrum flatness for each antenna connector using Global In-Channel Tx-Test (Annex E). For TDD, only slots consisting of only UL symbols are under test.
- 4. Measure the mean power at each antenna connector in the channel bandwidth of the radio access mode. The period of measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD symbols with transient periods are not under test.
- 5. Calculate the composite EVM using the values measured in step 3 and step 4 as in Annex TBD.

6.4G.2.4.5 Test requirement

Each of the *n* spectrum flatness functions, shall derive four ripple results in Annex E.4.4.1. The derived results shall not exceed the values in Figure 6.4G.2.4.5-1:

For normal conditions, the peak-to-peak variation of the EVM equalizer coefficients contained within the frequency range of the uplink allocation shall not exceed the maximum ripple specified in Table 6.4G.2.4.5-1. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 6.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 8.4 dB (see Figure 6.4G.2.4.5-1).


For extreme conditions, the EVM equalizer spectral flatness shall not exceed the values specified in Table 6.4G.2.4.5-2. For uplink allocations contained within both Range 1 and Range 2, the coefficients evaluated within each of these frequency ranges shall meet the corresponding ripple requirement and the following additional requirement: the relative difference between the maximum coefficient in Range 1 and the minimum coefficient in Range 2 must not be larger than 7.4 dB, and the relative difference between the maximum coefficient in Range 2 and the minimum coefficient in Range 1 must not be larger than 11.4 dB (see Figure 6.4G.2.4.5-1).

Frequency range	Maximum ripple [dB]
$F_{UL_Meas} - F_{UL_Low} \ge 3 \text{ MHz} \text{ and } F_{UL_High} - F_{UL_Meas} \ge 3 \text{ MHz}$	4 + TT (p-p)
(Range 1)	
FUL_Meas - FUL_Low < 3 MHz or FUL_High - FUL_Meas < 3 MHz	8 + TT (p-p)
(Range 2)	
NOTE 1: FUL_Meas refers to the sub-carrier frequency for which evaluated	the equalizer coefficient is
NOTE 2: F _{UL_Low} and F _{UL_High} refer to each E-UTRA frequency 5.5-1	band specified in Table
NOTE 3: Test tolerance TT = 1.4 dB.	

Table 6.4G.2.4.5-1: Requirements for EVM equalize	er spectrum flatness (normal conditions)
---	--

Table 6.4G.2.4.5-2: Minimum requirements for EVM equalizer spectrum flatness (extreme conditions)

Frequency range	Maximum Ripple [dB]
$F_{UL_Meas} - F_{UL_Low} \ge 5 \text{ MHz} \text{ and } F_{UL_High} - F_{UL_Meas} \ge 5 \text{ MHz}$	4 + TT (p-p)
(Range 1)	
FUL_Meas – FUL_Low < 5 MHz or FUL_High – FUL_Meas < 5 MHz	12 + TT (p-p)
(Range 2)	
NOTE 1: Ful_Meas refers to the sub-carrier frequency for which evaluated	the equalizer coefficient is
NOTE 2: FUL_Low and FUL_High refer to each E-UTRA frequency 5.5-1	band specified in Table
NOTE 3: Test tolerance TT = 1.4 dB.	

Figure 6.4G.2.4.5-1: The test requirements for EVM equalizer spectral flatness with the maximum allowed variation of the coefficients indicated for unshaped modulations (the ETC test requirements are within brackets)

6.5 Output RF spectrum emissions

6.5.0 General

Unwanted emissions are divided into "Out-of-band emission" and "Spurious emissions" in 3GPP RF specifications. This notation is in line with ITU-R recommendations such as SM.329-10 and the Radio Regulations [22].

ITU defines:

Out-of-band emission = Emission on a frequency or frequencies immediately outside the necessary bandwidth which results from the modulation process, but excluding spurious emissions.

Spurious emission = Emission on a frequency, or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products but exclude out-of-band emissions.

Unwanted emissions = Consist of spurious emissions and out-of-band emissions.

The UE transmitter spectrum emission consists of the three components; the occupied bandwidth (channel bandwidth), the Out Of Band (OOB) emissions and the far out spurious emission domain.

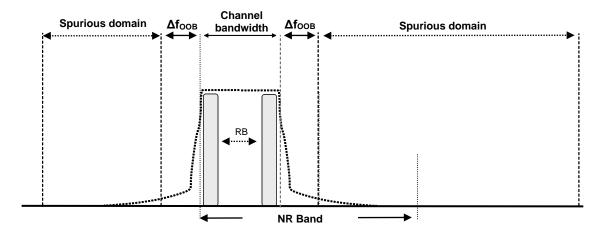


Figure 6.5.0-1: Transmitter RF spectrum

6.5.1 Occupied bandwidth

6.5.1.1 Test purpose

To verify that the UE occupied bandwidth for all transmission bandwidth configurations supported by the UE are less than their specific limits.

6.5.1.2 Test applicability

This test applies to all types of NR UE release 15 and forward.

6.5.1.3 Minimum conformance requirements

Occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel. The occupied bandwidth for all transmission bandwidth configurations (Resources Blocks) shall be less than the channel bandwidth specified in Table 6.5.1.3-1.

		NR channel bandwidth												
	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	45 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
Occupied channel bandwidth (MHz)	5	10	15	20	25	30	40	45	50	60	70	80	90	100

Table 6.5.1.3-1: Occupied channel bandwidth

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.1.

6.5.1.4 Test description

6.5.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

	Initial Conditions				
Test Environment as specified in TS 38.508-1 [5 subclause 4.1] Normal				
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1] Mid range by default, exce	Mid range by default, exceptions listed in Table 6.5.1.4.1-2			
Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1	All				
Test SCS as specified in Table 5.3.5-1	Lowest				
	Test Parameters				
Test ID Downlink Configuration	Uplin	k Configuration			
N/A for occupied bandwidth test	Modulation	RB allocation (NOTE 1)			
1 case	CP-OFDM QPSK Outer_full				
NOTE 1: The specific configuration of each RB	allocation is defined in Table 6	5.1-1.			

Table 6.5.1.4.1-1: Test Configuration Table

5G NR Band	Test Frequency						
n77	Low Range, Mid Range, High Range						
n78	Low Range, Mid Range, High Range						
n79	Low Range, Mid Range, High Range						
n28	Low Range for 30MHz channel bandwidth						

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0 -
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.1.4.3

6.5.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously power control "up" commands to the UE until the UE transmits at PUMAX level. Allow at least 200ms for the UE to reach PUMAX level.
- 3. Measure the power spectrum distribution within two times or more range over the requirement for Occupied Bandwidth specification centring on the current carrier frequency. The characteristics of the filter shall be approximately Gaussian (typical spectrum analyser filter). Other methods to measure the power spectrum distribution are allowed. The measuring duration is at least 1ms over consecutive active uplink slots.
- 4. Calculate the total power within the range of all frequencies measured in step 3 and save this value as "Total power".

- 5. Identify the measurement window whose centre is aligned on the centre of the channel for which the sum of the power measured is 99% of the "Total power".
- 6. The "Occupied Bandwidth" is the width of the measurement window obtained in step 5.

6.5.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5.1.5 Test requirement

The measured Occupied Bandwidth shall not exceed values in Table 6.5.1.5-1.

Table 6.5.1.5-1: Occupied channel bandwidth

	NR channel bandwidth													
	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	45 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
Occupied channel bandwidth (MHz)	5	10	15	20	25	30	40	45	50	60	70	80	90	100

6.5.2 Out of band emission

6.5.2.1 General

The Out of band emissions are unwanted emissions immediately outside the assigned channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a spectrum emission mask and an adjacent channel leakage power ratio.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5.2.2 Spectrum emission mask

Editor's Note: The following aspects are either missing or not yet determined:

- PC1 requirements for NR operating bands other than Band n14 are not defined in RAN4 Rel-15 and Rel-16 specifications.

6.5.2.2.1 Test purpose

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth.

6.5.2.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.2.2.3 Minimum conformance requirements

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the ± edge of the assigned NR channel bandwidth. For frequencies offset greater than Δf_{OOB} , the spurious requirements in subclause 6.5.3 are applicable.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

The power of any UE emission shall not exceed the levels specified in Table 6.5.2.2.3-1 for the specified channel bandwidth.

Δf _{OOB} (MHz)	Chan	nel bandwidth (MHz) / Spectrum	Measurement bandwidth	
	5	10, 15, 20, 25, 30, 40, 45		
± 0-1	-13	-13		1 % of channel BW
± 0-1			-24	30 kHz
± 1-5	-10	-10		
± 5-6	-13			
± 6-10	-25			1 MHz
± 5-BW _{Channel}		-13		
\pm BW _{Channel} -(BW _{Channel} +5)		-25		

Table 6.5.2.2.3-1: General NR spectrum emission mask

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.2

6.5.2.2.4 Test description

6.5.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5.2.2.4.1-1, 6.5.2.2.4.1-2, 6.5.2.2.4.1-2a and Table 6.5.2.2.4.1-3. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2 Table 6.5.2.2.4.1-1: Test Configuration Table for power class 3 (contiguous allocation)

	Default Conditions							
Test E	Invironme	nt as spec	ified in TS	Normal				
Test Environment as specified in TS 38.508-1 [5] subclause 4.1								
Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1					Low range, High range			
	Channel Ba	andwidths	as specifi	ed in TS	Lowest, Highest			
	8-1 [5] sub			,				
	SCS as sp			5-1	Lowest, Highest			
	-							
Test	Freq	ChBw	SCS	Downlink	Uplink Configuration			
ID				Configuration				
		Default	Default	N/A for	Modulation	RB allocation (NOTE		
				Spectrum	(NOTE 2)	1)		
1 ³	Low			Emission	DFT-s-OFDM	Edge_1RB_Left		
2 ³	Lliab			Mask test case	PI/2 BPSK DFT-s-OFDM	Edge 1DD Dight		
20	High				PI/2 BPSK	Edge_1RB_Right		
3 ³	Default				DFT-s-OFDM	Outer_Full		
0	Delaun				PI/2 BPSK			
44	Low				DFT-s-OFDM	Edge_1RB_Left		
-					PI/2 BPSK			
54	High				DFT-s-OFDM	Edge_1RB_Right		
	Ū				PI/2 BPSK			
64	Default				DFT-s-OFDM	Outer_Full		
					PI/2 BPSK			
7	Low				DFT-s-OFDM	Edger_1RB_Left		
					QPSK			
8	High				DFT-s-OFDM	Edge_1RB_Right		
					QPSK			
9	Default				DFT-s-OFDM	Outer_Full		
10	Law				QPSK DFT-s-OFDM 16			
10	Low				QAM	Edge_1RB_Left		
11	High				DFT-s-OFDM 16	Edge_1RB_Right		
	riigii				QAM	Edgo_IIID_Right		
12	Default				DFT-s-OFDM 16	Outer_Full		
					QAM			
13	Low				DFT-s-OFDM 64	Edge_1RB_Left		
					QAM	-		
14	High				DFT-s-OFDM 64	Edge_1RB_Right		
					QAM			
15	Default				DFT-s-OFDM 64	Outer_Full		
40								
16	Low				DFT-s-OFDM 256 QAM	Edge_1RB_Left		
17	High				DFT-s-OFDM	Edge_1RB_Right		
	riigii				256 QAM			
18	Default				DFT-s-OFDM	Outer_Full		
					256 QAM	- #to Mil		
19	Low				CP-OFDM	Edge_1RB_Left		
					QPSK	u = -		
20	High				CP-OFDM	Edge_1RB_Right		
					QPSK			
21	Default				CP-OFDM	Outer_Full		
					QPSK			
22	Low				CP-OFDM 16	Edge_1RB_Left		
	- ان ما -							
23	High				CP-OFDM 16	Edge_1RB_Right		
		l	l		QAM			

24	Default				CP-OFDM 16 QAM	Outer_Full	
25	Low				CP-OFDM 64	Edge_1RB_Left	
25	LOW				QAM	Euge_IND_Len	
26	High				CP-OFDM 64	Edge_1RB_Right	
20	riigii				QAM	Eugo_IND_Night	
27	Default				CP-OFDM 64	Outer_Full	
	2 of a diff				QAM	• • • • • • • • •	
28	Low				CP-OFDM 256	Edge_1RB_Left	
					QAM	0	
29	High				CP-OFDM 256	Edge_1RB_Right	
					QAM		
30	Default				CP-OFDM 256	Outer_Full	
					QAM		
31 ^{5,6}	Low				DFT-s-OFDM	Edge_1RB_Left	
					Pi/2 BPSK w		
					Pi/2 BPSK		
					DMRS		
32 ^{5,6}	High				DFT-s-OFDM	Edge_1RB_Right	
					Pi/2 BPSK w		
					Pi/2 BPSK		
0.05.6					DMRS		
33 ^{5,6}	Default				DFT-s-OFDM	Outer Full	
					Pi/2 BPSK w		
					Pi/2 BPSK DMRS		
NOTE	1. The c	nonifia an	figuration	of each RE allos	ation is defined in Ta		
NOTE					for UEs which suppo		
	FR1.			test applies only			
NOTE		perating in		de with Pi/2 BPSI	C modulation and U	E indicates support for	
						Pi2BPSK is set to 1 for	
		s n40, n41					
NOTE					le in bands other tha	an n40, n41, n77, n78	
	NOTE 4: UE operating in FDD mode, or in TDD mode in bands other than n40, n41, n77, n78 and n79, or in TDD mode the IE <i>powerBoostPi2BPSK</i> is set to 0 for bands n40, n41,						
	n77, n78 and n79.						
NOTE	NOTE 5: For Power Class 3 testing, UE operating in FDD mode, or in TDD mode in bands						
	other than n40, n41, n77, n78 and n79, or in TDD mode the IE powerBoostPi2BPSK						
				n77, n78 and n79			
NOTE					capability IowPAPI	R-DMRS-	
	PUS	CHwithPre	coding-r1	6.			

			Initial Conditions							
Test Env	ironment a	as specified in TS 38.508-1	Normal							
[5] subclause 4.1		•								
Test Frequencies as specified in TS 38.508-1		s specified in TS 38.508-1	Low range, High range							
[5] subclause 4.3.1		·								
Test Cha	nnel Band	widths as specified in TS	Lowest, Highest							
38.508-1	[5] subcla	use 4.3.1								
		ied in Table 5.3.5-1	Lowest, Highest							
		Test Paran	neters for Channel Bandwidths							
Test	Freq	Downlink Configuration	Uplink Config	uration						
ID										
		N/A	Modulation (NOTE 2)	RB allocation (NOTE 1)						
1	Low		DFT-s-OFDM Pi/2 BPSK	Edge_1RB_Left						
2	High		DFT-s-OFDM Pi/2 BPSK	Edge_1RB_Right						
3	Default		DFT-s-OFDM Pi/2 BPSK	Outer Full						
4	Low		DFT-s-OFDM QPSK	Edge_1RB_Left						
5	High		DFT-s-OFDM QPSK	Edge_1RB_Right						
6	Default		DFT-s-OFDM QPSK	Outer Full						
7	Low		DFT-s-OFDM 16 QAM	Edge_1RB_Left						
8	High		DFT-s-OFDM 16 QAM	Edge_1RB_Right						
9	Default		DFT-s-OFDM 16 QAM	Outer Full						
10	Low		DFT-s-OFDM 64 QAM	Edge_1RB_Left						
11	High		DFT-s-OFDM 64 QAM	Edge_1RB_Right						
12	Default		DFT-s-OFDM 64 QAM	Outer Full						
13	Low		DFT-s-OFDM 256 QAM	Edge_1RB_Left						
14	High		DFT-s-OFDM 256 QAM	Edge_1RB_Right						
15	Default		DFT-s-OFDM 256 QAM	Outer Full						
16	Low		CP-OFDM QPSK	Edge_1RB_Left						
17	High		CP-OFDM QPSK	Edge_1RB_Right						
18	Default		CP-OFDM QPSK	Outer Full						
19	Low		CP-OFDM 16 QAM	Edge_1RB_Left						
20	High		CP-OFDM 16 QAM	Edge_1RB_Right						
21	Default		CP-OFDM 16 QAM	Outer Full						
22	Low		CP-OFDM 64 QAM	Edge_1RB_Left						
23	High		CP-OFDM 64 QAM	Edge_1RB_Right						
24	Default		CP-OFDM 64 QAM	Outer Full						
25	Low		CP-OFDM 256 QAM	Edge_1RB_Left						
26	High		CP-OFDM 256 QAM	Edge_1RB_Right						
27	Default		CP-OFDM 256 QAM	Outer Full						
NOTE 1:	The spe	cific configuration of each RB	allocation is defined in Table 6.1-1.							
			only for UEs which supports half Pi BPS	SK in FR1.						
NOTE 3:	It is esse	ential that all test points in this	table also exist in table 6.2.2.4.1-2.							

Table 6.5.2.2.4.1-2: Test Configuration Table for power class 2 (contiguous allocation)

916

Initial Conditions Test Environment as specified in TS 38.508-1 Normal [5] subclause 4.1 Test Frequencies as specified in TS 38.508-1 Low range, High range [5] subclause 4.3.1 Test Channel Bandwidths as specified in TS Lowest, Highest 38.508-1 [5] subclause 4.3.1 Test SCS as specified in Table 5.3.5-1 Lowest, Highest **Test Parameters for Channel Bandwidths** Test ID Freq **Downlink Configuration** Uplink Configuration N/A for Spectrum Modulation (NOTE 2) **RB allocation (NOTE 1)** Default Emission Mask test case DFT-s-OFDM Pi/2 BPSK 1 Inner Full 2 DFT-s-OFDM Pi/2 BPSK Edge_1RB_Left Low 3 High DFT-s-OFDM Pi/2 BPSK Edge_1RB_Right 4 Default DFT-s-OFDM Pi/2 BPSK Outer Full Default DFT-s-OFDM QPSK Inner Full 5 6 Low DFT-s-OFDM QPSK Edge_1RB_Left 7 High DFT-s-OFDM QPSK Edge_1RB_Right 8 Default DFT-s-OFDM QPSK Outer Full 9 Default DFT-s-OFDM 16 QAM Inner Full 10 DFT-s-OFDM 16 QAM Edge_1RB_Left Low 11 High DFT-s-OFDM 16 QAM Edge_1RB_Right 12 DFT-s-OFDM 16 QAM Outer Full Default Edge_1RB_Left 13 DFT-s-OFDM 64 QAM Low Edge_1RB_Right 14 High DFT-s-OFDM 64 QAM 15 Default DFT-s-OFDM 64 QAM Outer Full 16 Low DFT-s-OFDM 256 QAM Edge_1RB_Left 17 High DFT-s-OFDM 256 QAM Edge_1RB_Right 18 DFT-s-OFDM 256 QAM Default Outer Full 19 **CP-OFDM QPSK** Default Inner Full **CP-OFDM QPSK** Edge_1RB_Left 20 Low 21 High **CP-OFDM QPSK** Edge_1RB_Right 22 Default **CP-OFDM QPSK** Outer Full CP-OFDM 16 QAM 23 Default Inner Full 24 Low CP-OFDM 16 QAM Edge_1RB_Left 25 High CP-OFDM 16 QAM Edge_1RB_Right 26 Default CP-OFDM 16 QAM Outer Full 27 CP-OFDM 64 QAM Edge_1RB_Left Low 28 High CP-OFDM 64 QAM Edge_1RB_Right 29 Default CP-OFDM 64 QAM Outer Full 30 Low CP-OFDM 256 QAM Edge_1RB_Left 31 High CP-OFDM 256 QAM Edge_1RB_Right Default CP-OFDM 256 QAM 32 Outer Full 33³ Low DFT-s-OFDM Pi/2 BPSK w Pi/2 BPSK Edge_1RB_Left DMRS 34³ High DFT-s-OFDM Pi/2 BPSK w Pi/2 BPSK Edge_1RB_Right DMRS 35³ Default DFT-s-OFDM Pi/2 BPSK w Pi/2 BPSK Outer Full DMRS NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1. NOTE 2: DFT-s-OFDM Pi/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1. NOTE 3: Applicable to UEs indicating support for UE capability IowPAPR-DMRS-PUSCHwithPrecoding-r16. NOTE 4: It is essential that all test points in this table also exist in table 6.2.2.4.1-2.

Table 6.5.2.2.4.1-2a: Test Configuration Table for power class 1 for Band n14 (contiguous allocation)

917

3GPP

Initial Conditions Test Environment as specified in TS 38.508-1 Normal [5] subclause 4.1 Test Frequencies as specified in TS 38.508-1 Low range, High range [5] subclause 4.3.1 Test Channel Bandwidths as specified in TS Highest 38.508-1 [5] subclause 4.3.1 Test SCS as specified in Table 5.3.5-1 Lowest, Highest Test Parameters for Channel Bandwidths **Downlink Configuration** Test Freq Uplink Configuration ID N/A Modulation **RB allocation (NOTE 1)** 1 Default **CP-OFDM QPSK** Inner Full 2 Default **CP-OFDM QPSK** Outer Full 3 Default CP-OFDM 16 QAM Inner Full 4 Default Outer Full CP-OFDM 16 QAM 5 Default CP-OFDM 64 QAM Outer Full Outer Full 6 Default CP-OFDM 256 QAM NOTE 1: The specific configuration of each RB allocation is defined in Table 6.5.2.2.4.1-4. NOTE 2: It is essential that all test points in this table also exist in table 6.2.2.4.1-3. NOTE 3: Test applies only for UEs which support almost contiguous UL CP-OFDM transmissions. For PC2 UE which support almost contiguous UL CP-OFDM transmissions, test is only applicable for Release 16 and forward.

Table 6.5.2.2.4.1-3: Test Configuration Table for power class 2&3 (almost contiguous allocation)

Г

1

				iter Full	Inne	r Full
Channel Bandwidth(MHz)	SCS(kHz)	OFDM	Cluster1 RB allocations (L _{CRB} @ RB _{start})	Cluster2 RB allocations (L _{CRB} @ RB _{start})	Cluster1 RB allocations (L _{CRB} @ RB _{start})	Cluster2 RB allocations (L _{CRB} @ RB _{start})
	15	CP	48@0	53@80	N/A	N/A
25	30	CP	24@0	25@40	N/A	N/A
	60	CP	12@0	13@18	N/A	N/A
	15	CP	64@0	64@96	N/A	N/A
30	30	CP	32@0	30@48	N/A	N/A
	60	CP	16@0	14@24	N/A	N/A
	15	CP	80@0	88@128	N/A	N/A
40	30	CP	40@0	42@64	N/A	N/A
	60	CP	20@0	19@32	12@12	8@28
	15	CP	96@0	110@160	48@64	48@144
50	30	CP	48@0	53@80	24@32	24@72
	60	CP	24@0	25@40	12@16	12@36
	15	CP	N/A	N/A	N/A	N/A
60	30	CP	64@0	66@96	32@32	16@80
	60	CP	32@0	31@48	16@16	8@40
	15	CP	N/A	N/A	N/A	N/A
70	30	CP	80@0	77@112	32@32	16@80
	60	CP	40@0	37@56	16@16	8@40
	15	CP	N/A	N/A	N/A	N/A
80	30	CP	80@0	89@128	32@32	16@80
	60	CP	40@0	43@64	16@16	8@40
	15	CP	N/A	N/A	N/A	N/A
90	30	CP	96@0	101@144	32@32	16@80
	60	CP	48@0	49@72	16@16	8@40
	15	CP	N/A	N/A	N/A	N/A
100	30	CP	112@0	97@176	48@64	48@144
	60	CP	48@0	55@80	24@32	24@72

Table 6.5.2.2.4.1-4: Uplink configuration for almost contiguous allocation

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.2.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.2.2.4.3.

6.5.2.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.2.2.4.1-1, Table 6.5.2.2.4.1-2, Table 6.5.2.2.4.1-2a and Table 6.5.2.2.4.1-3. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously power control "up" commands to the UE until the UE transmits at PUMAX level. Allow at least 200ms for the UE to reach PUMAX level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.2.2.5-1 to 6.2.2.5-9. The period of the measurement shall be at least the continuous duration of 1ms over consecutive active uplink slots. For TDD, only slots consisting of only UL symbols are under test.
- 4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.5.2.2.5-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, table 6.5.2.2.4.1-2, and table 6.5.2.2.4.1-2a, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions:

Derivation Path: TS 38.508-1 [5] subclause 4.6.3 Table 4.6.3-118 PUSCH-Config											
Information Element	Value/remark	Comment	Condition								
PUSCH-Config ::= SEQUENCE {											
resourceAllocation	resourceAllocationType0		Almost contiguous allocation								
	resourceAllocationType1		Contiguous allocation								
}											

Table 6.5.2.2.4.3-1: PUSCH-Config

Table 6.5.2.2.4.3-2: DMRS-UplinkConfig (Test ID 28 – 30 in Table 6.5.2.2.4.1-1)

Derivation Path: TS 38.508-1 [5], Table 4.6.3-51											
Information Element	Value/remark	Comment	Condition								
DMRS-UplinkConfig ::= SEQUENCE {											
transformPrecodingEnabled SEQUENCE											
{											
dmrs-UplinkTransformPrecoding-r16											
SEQUENCE {											
pi2BPSK-ScramblingID0	Not present										
pi2BPSK-ScramblingID1	Not present										
}											
}											
}											

6.5.2.2.5 Test requirement

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Tables 6.2.2.5-1 to 6.2.2.5-9 as appropriate, and the power of any UE emission shall fulfil requirements in Table 6.5.2.2.5-1.

Δ	f _{ooв}	CI	nannel bandwidth (MHz) / Spect	Magguromant handwidth	
(M	/IHz)	5	10, 15, 20, 25, 30, 40, 45	Measurement bandwidth	
±	0-1	-13 + TT	-13 + TT		1 % of channel BW
±	0-1			-24 + TT	30 kHz
±	1-5	-10 + TT	-10 +	Π	
±	5-6	-13 + TT			
±	6-10	-25 + TT			1 MHz
± 5-B	WChannel		-13 +	TT	
BWChannel	-(BW _{Channel} +5)		-25 +	ТТ	
ote 1: T	ne first and last	measurer	ment position with a 30 kHz filter is	s at Δf_{OOB} equals to 0.015 MHz a	ind 0.985 MHz.
	the boundary of the boundary of the boundary of the bound		m emission limit, the first and last spectively.	measurement position with a 1 M	/Hz filter is the inside of
ote 3: T	ne measuremer	nts are to	be performed above the upper ed	ge of the channel and below the	lower edge of the channel.

Table 6.5.2.2.5-1: General NR spectrum emission mask

921

Note 4: TT for each frequency and channel bandwidth is specified in Table 6.5.2.2.5-2.

Table 6.5.2.2.5-2: Test Tolerance (Spectrum Emission Mask)

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 100MHz	1.5 dB	1.8 dB	1.8 dB

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5.2.3 Additional spectrum emission mask

Editor's Note: The following aspects are either missing or not yet determined:

- NS_07 test requirements is not complete.

6.5.2.3.1 Test purpose

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth under the deployment scenarios where additional requirements are specified.

6.5.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

- 6.5.2.3.3 Minimum conformance requirements
- 6.5.2.3.3.1 Minimum requirement for "NS_35"

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_35" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.2.2.3.3.1-1.

Spec	Spectrum emission limit (dBm) / Channel bandwidth													
Δf _{оов} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth (unless otherwise stated)									
± 0-0.1	-15	-18	-20	-21	30 kHz									
± 0.1-6	-13	-13	-13	-13	100 kHz									
± 6-10	-25 ¹	-13	-13	-13	100 kHz									
± 10-15		-25 ¹	-13	-13	100 kHz									
± 15-20			-25 ¹	-13	100 kHz									
± 20-25				-25	1 MHz									
NOTE 1: T	he measur	ement ban	dwidth sh	all be 1 MI	Hz									

Table 6.5.2.2.3.3.1-1: Additional requirements for "NS_35"

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.3.1.

6.5.2.3.3.2 Requirements for network signalling value "NS_04"

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

The n41 SEM transition point from -13 dBm/MHz to -25 dBm/MHz is based on the emission bandwidth. The emission bandwidth is defined as the width of the signal between two points, one below the carrier centre frequency and one above the carrier c frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power. Since the 26-dB emission bandwidth is implementation dependent, the maximum transmission bandwidths in MHz (N_{RB} * SCS * 12 / 1,000,000) is used for the SEM.

SCS		Channel bandwidths (MHz)												
(kHz)	10	10 15 20 30 40 50 60 70 80 9									100			
15	9.36	14.22	19.08	28.80	38.88	48.6	N/A	N/A	N/A	N/A	N/A			
30	8.64	13.68	18.36	28.08	38.16	47.88	58.32	68.04	78.12	88.02	98.28			
60	7.92	12.96	17.28	27.36	36.72	46.8	56.88	66.96	77.04	87.12	97.20			

Table 6.5.2.3.3.2-1: n41 maximum transmission bandwidths (MHz) for CP-OFDM

SCS		Channel bandwidths (MHz)													
(kHz)	10	10 15 20 30 40 50 60 70 80 90													
15	9.00	13.50	18.00	28.80	38.88	48.60	N/A	N/A	N/A	N/A	N/A				
30	8.64	12.96	18.00	27.00	36.00	46.08	58.32	64.80	77.76	87.48	97.20				
60	7.20	12.96	17.28	25.92	36.00	46.08	54.00	64.80	72.00	86.40	97.20				

When "NS_04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.2.3.3.2-3.

Δf _{oob} MHz			Spec	Measurement bandwidth								
	10	15	20	30	40	50	60	70	80	90	100	
± 0 - 1	-10	-10	-10	-10	-10							2 % channel bandwidth
									-10			1 MHz
± 1 - 5						-1	0					
± 5 - X						-1	3					1 MHz
± X - (BW _{Channel} + 5 MHz)		-25										
,												

Table 6.5.2.3.3.2-3: n41 SEM with "NS_04"

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.3.2.

6.5.2.3.3.3 Requirements for network signalling value "NS_03", "NS_03U" and "NS_21"

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_03" or "NS_03U", or "NS_21", is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.2.3.3.-1.

∆f _{оов} MHz	Cha	annel band	Measurement bandwidth					
	5	10	15	20	25	30	40	
± 0-1	-13	-13	-13	-13	-13	-13	-13	1 % of channel BW
± 1-6	-13	-13	-13	-13	-13	-13	-13	1 MHz
± 6-10	-25	-13	-13	-13	-13	-13	-13	1 MHz
± 10-15		-25	-13	-13	-13	-13	-13	1 MHz
± 15-20			-25	-13	-13	-13	-13	1 MHz
± 20-25				-25	-13	-13	-13	1 MHz
± 25-30					-25	-13	-13	1 MHz
\pm 30-35						-25	-13	1 MHz
± 35-40							-13	1 MHz
± 40-45							-25	1 MHz

Table 6.5.2.3.3.3-1: Additional requirements for "NS_03", "NS_03U" and "NS_21"

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.3.3.

6.5.2.3.3.4 Requirements for network signalling value "NS_06"

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_06" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.2.3.3.4-1.

Spectrum emission limit (dBm) / Channel bandwidth								
Δfoob	5	10	15	Measurement				
(MHz)	MHz	MHz	MHz	bandwidth				
± 0 – 0.1	-15	-18	-20	30 kHz				
± 0.1 – 1	-13	-13	-13	100 kHz				
±1-6	-13	-13						
± 6 – 10	-25	-13	-13	1 MHz				
± 10 – 15		-25						
± 15 – 20			-25					

Table 6.5.2.3.3.4-1: Additional requirements for "NS_06"

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.3.4.

6.5.2.3.3.5	Void
6.5.2.3.3.6	Void
6.5.2.3.3.7	Void
6.5.2.3.3.8	Requirements for network signalling value "NS_27"

Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional

requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_27" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.2.3.3.8-1.

Table 6.5.2.3.3.8-1:	Additional re	auirements for	"NS 27"
	Additionalie	quil chilonito i or	

Δf _{OOB}	Chann	imit (dBm)	Measurement					
MHz	5	bandwidth						
±0-1	±0-1 -13							
± 1 - X				-13			1 MHz	
< – X or > X								
NOTE 1: X is occupied channel bandwidth as defined in Table 6.5.1.3-1. NOTE 2: The requirements apply only at the frequency range from 3540 MHz to 3710 MHz.								

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.3.8.

6.5.2.3.4 Test description

6.5.2.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement.

3GPP TS 38.521-1 V17.6.1 (2022-10)

925

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in clause 6.2.3.4.1. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2 and uplink signals according Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to the applicable test configuration table in clause 6.2.3.4.1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.2.3.4.3.

6.5.2.3.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to the applicable test configuration table in clause 6.2.3.4.1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE. Allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in applicable table from Table 6.2.3.5-1 to Table 6.2.3.5-35. The period of measurement shall be at least the continuous duration one sub-frame (1ms). For TDD slots with transient periods are not under test.
- 4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to applicable test configuration tables in subclause 6.5.2.3.5. The centre frequency of the filter shall be stepped in continuous steps according to the applicable test requirement table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration Table 6.2.3.4.1-1 through 6.2.3.4.1-2, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5.2.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions for each network signalling value.

6.5.2.3.4.3.1 Message contents exceptions (network signalling value "NS_35")

For "NS_35" see A-MPR test case in table 6.2.3.4.3.2-1.

6.5.2.3.4.3.2 Message contents exceptions (network signalling value "NS_04")

For "NS_04" see A-MPR test case in table 6.2.3.4.3.4-1.

6.5.2.3.4.3.3 Message contents exceptions (network signalling value "NS_03")

For "NS_03" see A-MPR test case in table 6.2.3.4.3.1-1.

6.5.2.3.4.3.4 Message contents exceptions (network signalling value "NS_03U")

For "NS_03U" see A-MPR test case in table 6.2.3.4.3.3-1.

6.5.2.3.4.3.5 Message contents exceptions (network signalling value "NS_06")

For "NS_06" see A-MPR test case in table 6.2.3.4.3.7-1.

6.5.2.3.4.3.6 Message contents exceptions (network signalling value "NS_21")

For "NS_21" see A-MPR test case in table 6.2.3.4.3.20-1.

6.5.2.3.4.3.7 Message contents exceptions (network signalling value "NS_27")

For "NS_27" see A-MPR test case in table 6.2.3.4.3.22-1.

6.5.2.3.5 Test requirement

Table 6.5.2.3.5-1: Test Tolerance (Additional spectrum emission mask)

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 100MHz	1.5 dB	1.8 dB	1.8 dB

6.5.2.3.5.1 Test requirements (network signalling value "NS_35")

When "NS_35" is indicated in the cell:

- the measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in table 6.2.3.5-1 as appropriate for a NR UE.

and

- the power of any UE emission shall fulfil requirements in table 6.5.2.3.5.1-1, as applicable.

Table 6.5.2.3.5.1-1: Additional test requirements "NS_35"

	Spectrum emission limit (dBm) / Channel bandwidth										
Δf _{00в} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth (unless otherwise stated)						
± 0-0.1	-15.0 + TT	-18.0 + TT	-20.0 + TT	-21.0 + TT	30 kHz						
± 0.1-6	-13.0 + TT-	-13.0 + TT	-13.0 + TT	-13.0 + TT	100 kHz						
± 6-10	-25 ¹ + TT	-13.0 + TT	-13.0 + TT	-13.0 + TT	100 kHz						
± 10-15		-25 ¹ 0 + TT	-13.0 + TT	-13.0 + TT	100 kHz						
± 15-20			-25 ¹ 0 + TT	-13.0 + TT	100 kHz						
± 20-25	± 20-25 -25 + TT 1 MHz										
NOTE 1: The measurement bandwidth shall be 1 MHz. NOTE 2: TT for each frequency and channel bandwidth is specified in Table 6.5.2.3.5-1.											

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5.2.3.5.2 Test requirements (network signalling value "NS_04")

When "NS_04" is indicated in the cell:

- the measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Table 6.2.3.5-2 for UE power class 2 or Table 6.2.3.5-3 UE power class 3.

and

- the power of any UE emission shall fulfil requirements in table 6.5.2.3.5.2-1.

Δf _{оов} MHz	Spectrum emission limit (dBm) / measurement bandwidth for each channel bandwidth (MHz)									Measurement bandwidth		
	10	15	20	30	40	50	60	70	80	90	100	
±0-1	-10+TT	-10+TT	-10+TT	-10+TT	-10+TT							2 % channel
												bandwidth
		-10 1 N								1 MHz		
±1-5	-10 + TT											
± 5 - X						-13 + TT						
± X -						-25 + TT						1 MHz
(BW _{Channel}												
+ 5 MHz)												
NOTE 1: X	NOTE 1: X is defined in Table 6.5.2.3.3.2-1 for CP-OFDM and 6.5.2.3.3.2-2 for DFT-S-OFDM.											
NOTE 2: TT	NOTE 2: TT for each frequency and channel bandwidth is specified in Table 6.5.2.3.5-1.											

Table 6.5.2.3.5.2-1: Additional test requirements for "NS_04"

6.5.2.3.5.3 Test requirements (network signalling value "NS_03", "NS_03U" and "NS_21")

When "NS_03" or "NS_03U" or "NS_21" is indicated in the cell:

- the measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in table 6.2.3.5-4 or 6.2.3.5-5 as appropriate for a NR UE.

and

- the power of any UE emission shall fulfil requirements in table 6.5.2.3.5.3-1, as applicable.

∆f _{оов} MHz	Char	Measurement bandwidth						
	5	10	15	20	25	30	40	
± 0-1	-13 +	-13 +	-13 +	-13 +	-13 +	-13 +	-13 +	1 % of channel BW
	TT	TT	TT	TT	TT	TT	TT	
± 1-6	-13 +	-13 +	-13 +	-13 +	-13 +	-13 +	-13 +	1 MHz
	TT	TT	TT	TT	TT	TT	TT	
± 6-10	-25 +	-13 +	-13 +	-13 +	-13 +	-13 +	-13 +	1 MHz
	TT	TT	TT	TT	TT	TT	TT	
± 10-15		-25 +	-13 +	-13 +	-13 +	-13 +	-13 +	1 MHz
		TT	TT	TT	TT	TT	TT	
± 15-20			-25 +	-13 +	-13 +	-13 +	-13 +	1 MHz
			TT	TT	TT	TT	TT	
± 20-25				-25 +	-13 +	-13 +	-13 +	1 MHz
				TT	TT	TT	TT	
± 25-30					-25 +	-13 +	-13 +	1 MHz
					TT	TT	TT	
± 30-35						-25 +	-13 +	1 MHz
						TT	TT	
± 35-40							-13 +	1 MHz
							TT	
± 40-45							-25 +	1 MHz
							TT	
NOTE 1: T	T for each f	requency a	nd channel	bandwidth	is specifie	d in Table	6.5.2.3.5-	1.

Table 6.5.2.3.5.3-1: Additional requirements for "NS_03", "NS_03U" and "NS_21"

- 928
- NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5.2.3.5.4 Test requirements (network signalling value "NS_06")

When "NS_06" is indicated in the cell:

- the measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in table 6.2.3.5-34 as appropriate for a NR UE

and

- the power of any UE emission shall fulfil requirements in table 6.5.2.3.5.4-1, as applicable.

	Spectrum emission limit (dBm) / Channel bandwidth								
Δf _{OOB} (MHz)	5 MHz	10 MHz	15 MHz	Measurement bandwidth					
± 0 – 0.1	-15 + TT	-18 + TT	-20 + TT	30 kHz					
± 0.1 – 1	-13 + TT	-13 + TT	-13 + TT	100 kHz					
± 1 – 6	-13 + TT	-13 + TT	-13 + TT	1 MHz					
± 6 – 10	-25 + TT	-13 + TT	-13 + TT	1 MHz					
± 10 – 15		-25 + TT	-13 + TT	1 MHz					
± 15 – 20			-25 + TT	1 MHz					
NOTE 1: TT fo	r each frequency a	nd channel bandwidt	h is specified in T	able 6.5.2.3.5-1.					

Table 6.5.2.3.5.4-1:	Additional re	quirements for	"NS	06"
	Additional IC	quil cilicilità i or		00

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5.2.4 Adjacent channel leakage ratio

Adjacent channel leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

6.5.2.4.1 NR ACLR

6.5.2.4.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5.2.4.1.2 Test applicability

This test case applies to all types of NR Power Class 3 UE release 15 and forward and NR Power Class 1 UE release 15 and forward in NR Band n14.

This test case applies to all types of NR Power Class 2 UE not supporting txDiversity-r16 release 15 and forward.

6.5.2.4.1.3 Minimum conformance requirements

NR adjacent channel leakage power ratio (NR_{ACLR}) is the ratio of the filtered mean power centred on the assigned NR channel frequency to the filtered mean power centred on an adjacent NR channel frequency at nominal channel spacing.

The assigned NR channel power and adjacent NR channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.5.2.4.1.3-1.

If the measured adjacent channel power is greater than -50 dBm then the NR_{ACLR} shall be higher than the value specified in Table 6.5.2.4.1.3-2.

Table 6.5.2.4.1.3-1: NR ACLR measurement bandwidth

Channel bandwidth	(MHz)	5,10,15,20,25,30,35,40,45,50	60,70,80,90,100
REF_SCS	(kHz)	15	30
NR ACLR measurement bandwidth	(MHz)	MBW=REF_SCS*(12*NF	ав+1)/1000

Table 6.5.2.4.1.3-2: NR ACLR requirement

	Power class 1 ¹	Power class 1.5	Power class 2	Power class 3
NR ACLR	37 dB1	31 dB	31 dB	30 dB
NOTE 1: A	oplicable for power	class 1 UE operating	g in Band n14.	

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.4.1.

6.5.2.4.1.4 Test description

6.5.2.4.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in the test configuration tables in clause 6.2.2.4.1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

> Table 6.5.2.4.1.4.1-1: Void Table 6.5.2.4.1.4.1-2: Void Table 6.5.2.4.1.4.1-2a: Void Table 6.5.2.4.1.4.1-3: Void Table 6.5.2.4.1.4.1-4: Void

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to the test configuration tables in clause 6.2.2.4.1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.2.4.1.4.3.

6.5.2.4.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to the test configuration tables in clause 6.2.2.4.1T. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously power control "up" commands to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, as measured in step 3of 6.2.2.4.2, which shall meet the requirements described in clause 6.2.2.5 as appropriate.
- 4. Measure the rectangular filtered mean power for the assigned NR channel.
- 5. Measure the rectangular filtered mean power of the first NR adjacent channel on both lower and upper side of the assigned NR channel, respectively.
- 6. Calculate the ratios of the power between the values measured in step 4 over step 5 for lower and upper NR ACLR, respectively.
- 7. For UEs supporting Power Class 1 in Band n14 and Power Class 2, repeat steps 1~6 for Test ID 22 and 36 in Table 6.2.2.4.1-1 on the applicable bands with message exception of P-Max defined in Table 6.5.2.4.1.4.3-1.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration tables in clause 6.2.2.4.1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5.2.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4 with the following exceptions:

Table 6.5.2.4.1.4.3-1: *P-Max* (Step 7)

Derivation Path: TS 38.508-1 [5], Table 4.6.3-89							
Information Element Value/remark Comment Condition							
P-Max	23		PC2 UE or PC1 UE				

Table 6.5.2.4.1.4.3-1a: Void

Table 6.5.2.4.1.4.3-2: PUSCH-Config

Derivation Path: TS 38.508-1 [5] subclause 4.6.3 Table 4.6.3-118 PUSCH-Config					
Information Element	Value/remark	Comment	Condition		
PUSCH-Config ::= SEQUENCE {					
resourceAllocation	resourceAllocationType0		Almost contiguous allocation		
	resourceAllocationType1		Contiguous allocation		
}					

Table 6.5.2.4.1.4.3-3: DMRS-UplinkConfig (Test ID 37 – 39 in Table 6.2.2.4.1-1)

Derivation Path: TS 38.508-1 [5], Table 4.6.3-51					
Information Element	Value/remark	Comment	Condition		
DMRS-UplinkConfig ::= SEQUENCE {					
transformPrecodingEnabled SEQUENCE					
{					
dmrs-UplinkTransformPrecoding-r16 {					
Setup SEQUENCE {					
pi2BPSK-ScramblingID0	Not present				
pi2BPSK-ScramblingID1	Not present				
}					
}					
}					
}					

Table 6.5.2.4.1.4.3-4: ServingCellConfig

Derivation Path: TS 38.508-1 [5] Table 4.6.3-167					
Information Element	Value/remark	Comment	Condition		
ServingCellConfig ::= SEQUENCE {					
uplinkConfig SEQUENCE {					
powerBoostPi2BPSK	1		Test IDs where NOTE 3 in Table 6.2.2.4.1-1 applies.		
	0		Test IDs where NOTE 4 in Table 6.2.2.4.1-1 applies.		
}					
}					

6.5.2.4.1.5 Test requirement

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in clause 6.2.2.5 as appropriate, and if the measured adjacent channel power is greater than -50 dBm then the measured NR ACLR, derived in step 6, shall be higher than the limits in Table 6.5.2.4.1.5-2.

The measured UE mean power in the channel bandwidth, derived in step 7, shall fulfil power class 3 requirements in Tables 6.2.2.5-1 and 6.2.2.5-3 as appropriate, and if the measured adjacent channel power is greater than -50 dBm then the measured NR ACLR, derived in step 7, shall be higher than the power class 3 limits in Table 6.5.2.4.1.5-2.

	NR channel bandwidth / NR ACLR measurement bandwidth													
	5	10	15	20	25	30	40	45	50	60	70	80	90	100
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
NR ACLR measurement bandwidth (MHz)	4.515	9.375	14.23 5	19.09 5	23.95 5	28.81 5	38.89 5	43.57 5	48.61 5	58.35	68.07	78.15	88.23	98.31

Table 6.5.2.4.1.5-2: NR ACLR requirement

	Power class 1 ²	Power class 1.5	Power class 2	Power class 3		
NR ACLR	37 - TT dB ²	31 - TT dB	31 - TT dB	30 - TT dB		
NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5.2.4.1.5-3.						
NOTE 2: Applicable for power class 1 UE operating in Band n14.						

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 100MHz	0.8 dB	0.8 dB	0.8 dB

Table 6.5.2.4.1.5-3: Test Tolerance (NR ACLR)

6.5.2.4.2 UTRA ACLR

6.5.2.4.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5.2.4.2.2 Test applicability

This test case applies for network signalling values NS_03U, NS_05U, NS_43U, and NS_100 to all types of NR Power Class 3 UE release 15 and forward.

6.5.2.4.2.3 Minimum conformance requirements

UTRA adjacent channel leakage power ratio (UTRA_{ACLR}) is the ratio of the filtered mean power centred on the assigned NR channel frequency to the filtered mean power centred on an adjacent(s) UTRA channel frequency.

UTRA_{ACLR} is specified for the first adjacent UTRA channel (UTRA_{ACLR1}) which centre frequency is \pm 2.5 MHz from NR channel edge and for the 2nd adjacent UTRA channel (UTRA_{ACLR2}) which centre frequency is \pm 7.5 MHz from NR channel edge.

The UTRA channel power is measured with an RRC filter with roll-off factor $\alpha = 0.22$ and bandwidth of 3.84 MHz. The assigned NR channel power is measured with a rectangular filter with measurement bandwidth specified in Table 6.5.2.4.1.3-1.

If the measured adjacent channel power is greater than - 50dBm then the $UTRA_{ACLR1}$ and $UTRA_{ACLR2}$ shall be higher than the value specified in Table 6.5.2.4.2.3-1.

UTRA_{ACLR} is not applicable to the power class 3 UE operating in Band n12, n14, n17, and n30.

UTRA_{ACLR} is not applicable to the power class 1 UE operating in Band n14.

Table 6.5.2.4.2.3-1: UTRA ACLR requirement

	Power class 3
UTRA _{ACLR1}	33 dB
UTRA _{ACLR2}	36 dB

UTRA ACLR requirement is applicable when signalled by the network with network signalling value indicated by the field *additionalSpectrumEmission*.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.2.4.2.

6.5.2.4.2.4 Test description

6.5.2.4.2.4.1 Initial conditions

Same as in subclause 6.2.3.4.1 with the following exception;

- Only network signalling values NS_03U, NS_05U, NS_43U, and NS_100 with the corresponding band defined in Table 6.2.3.3.1-1 need to perform UTRA ACLR test.
- Message contents in step 6 are defined in clause 6.5.2.4.2.4.3.

6.5.2.4.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to the applicable test configuration table in clause 6.2.3.4.1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously power control "up" commands to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in 6.2.3.5 as appropriate. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.
- 4. Measure the rectangular filtered mean power for the assigned NR channel.
- 5. Measure the RRC filtered mean power of the first and the second UTRA adjacent channel on both lower and upper side of the NR channel, respectively.
- 6. Calculate the ratios of the power between the values measured in step 4 over step 5 for lower and upper UTRA ACLR, respectively.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration tables in 6.2.3.4.1 as appropriate, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5.2.4.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions:

Information Element	Value/remark	Comment	Condition
AdditionalSpectrumEmission	3 (NS_03U)	for band n2, n25, n66, n86	
	3 (NS_05U)	for band n1, n84	
	3 (NS_43U)	for band n8, n81	
	1 (NS_100)	for band n1, n2, n3, n5, n8,	
		n25, n66 (NOTE1)	

6.5.2.4.2.5 Test requirement

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements described in 6.2.3.5 as appropriate, and if the measured adjacent channel power is greater than -50 dBm then the measured UTRA ACLR, derived in step 6, shall be higher than the limits in table 6.5.2.4.2.5-2.

Table 6.5.2.4.2.5-1: Void

Table 6.5.2.4.2.5-2: UTRA ACLR requirement

	Power class 3
UTRA _{ACLR1}	33 dB -TT
UTRA _{ACLR2}	36 dB - TT
NOTE 1: T	T = 0.8 dB

6.5.3 Spurious emissions

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions unless otherwise stated. The spurious emission limits are specified in terms of general requirements in line with SM.329 [22] and NR operating band requirement to address UE co-existence.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5.3.1 General spurious emissions

6.5.3.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.3.1.3 Minimum conformance requirements

This clause specifies the requirements for the specified NR band for Transmitter Spurious emissions requirement with frequency range as indicated in Table 6.5.3.1.3-2.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.5.3.1.3-2 apply for all transmitter band configurations (N_{RB}) and channel bandwidths.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.5.3.1.3-1: Boundary between NR out of band and general spurious emission domain

Channel bandwidth	ООВ boundary F _{оов} (MHz)
BW _{Channel}	BW _{Channel} + 5

Frequency Range	Maximum Level	Measurement bandwidth	NOTE
$9 \text{ kHz} \le f < 150 \text{ kHz}$	-36 dBm	1 kHz	
$150 \text{ kHz} \le f < 30 \text{ MHz}$	-36 dBm	10 kHz	
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz	
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz	4
	-25 dBm	1 MHz	3
12.75 GHz ≤ f < 5th harmonic of the upper frequency edge of the UL operating band in GHz	armonic of the upper equency edge of the -30 dBm 1 MHz L operating band in		1
12.75 GHz < f < 26 GHz	-30 dBm	1 MHz	2
 NOTE 1: Applies for Band for which the upper frequency edge of the UL Band is greater than 2.55 GHz and less than or equal to 5.2 GHz NOTE 2: Applies for Band that the upper frequency edge of the UL Band more than 5.2 GHz 			
 NOTE 3: Applies for Band n41, CA configurations including Band n41, and EN-DC configurations that include n41 specified in sub-clause 5.2B of [4] when NS_04 is signalled. NOTE 4: Does not apply for Band n41, CA configurations including Band n41, and EN-DC configurations that include n41 specified in subclause 5.2B of TS 38.101-3 [4] when NS_04 is signalled. 			

Table 6.5.3.1.3-2: Requirement for general spurious emissions limits

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.1

- 6.5.3.1.4 Test description
- 6.5.3.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 6.5.3.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

	Initial Conditions					
Test Enviro	nment as specified in TS	Normal				
38.508-1 [5]] subclause 4.1.					
Test Freque	encies as specified in TS	Low range, Mid range, High range (NO	TE 2)			
38.508-1 [5]] subclause 4.3.1.					
Test Chann	el Bandwidths as specified in	Lowest, Mid, Highest				
TS 38.508-1 [5] subclause 4.3.1.						
Test SCS a	s specified in Table 5.3.5-1	Lowest				
		T. (D				
	a	Test Parameters				
Test ID	Downlink Configuration	Uplink Configu	ration			
		Modulation	RB allocation (NOTE 1)			
1	N/A for Spurious Emissions	CP-OFDM QPSK	OuterFull			
2	testing	CP-OFDM QPSK	Edge_1RB_Left			
3		CP-OFDM QPSK Edge_1RB_Right				
NOTE 1: T	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration.					
NOTE 2: For NR band n28, 30MHz test channel bandwidth is tested with Low range and High range test						
frequencies.						

Table 6.5.3.1.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.3.1.4.3 with no exceptions.

6.5.3.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.3.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the power of the transmitted signal with a measurement filter of bandwidths according to Table 6.5.3.1.5-1. The centre frequency of the filter shall be stepped in contiguous steps according to Table 6.5.3.1.5-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.
- 4. For UE operating on Band n41, redo the test for frequency range 1 GHz \leq f < 12.75 GHz with the message content in step 6 of initial conditions with exceptions defined in clause 6.5.3.1.4.3.

6.5.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

Exception for step 4 in test procedure:

Derivation Path: TS 38.508-1 [5], Table 4.6.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_04)		

Table 6.5.3.1.4.3-1: Message contents

6.5.3.1.5 Test requirement

This clause specifies the requirements for the specified NR band for Transmitter Spurious emissions requirement with frequency range as indicated in Table 6.5.3.1.5-1.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.5.3.1.5-1 apply for all transmitter band configurations (NRB) and channel bandwidths.

The measured average power of spurious emission, derived in step 3, shall not exceed the described value in Table 6.5.3.1.5-1.

Frequency Range	Maximum	Measurement	NOTE		
	Level	bandwidth			
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz			
150 kHz \leq f < 30 MHz	-36 dBm	10 kHz			
$30 \text{ MHz} \le f < 1000 \text{ MHz}$	-36 dBm	100 kHz			
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz	4		
	-25 dBm	1 MHz	3		
12.75 GHz ≤ f < 5th					
harmonic of the upper					
frequency edge of the	-30 dBm	1 MHz	1		
UL operating band in					
GHz					
12.75 GHz < f < 26 GHz		1 MHz	2		
	••	per frequency edge of the UL	Band is		
•		an or equal to 5.2 GHz			
	nd that the upper fre	equency edge of the UL Band	d more		
	than 5.2 GHz				
	NOTE 3: Applies for Band n41, CA configurations including Band n41, and EN-				
DC configurations that include n41 specified in sub-clause 5.2B of					
38.101-3 [4] when NS_04 is signalled.					
	NOTE 4: Does not apply for Band n41, CA configurations including Band n41,				
and EN-DC configurations that include n41 specified in subclause 5.2B					
of TS 38.101-3	[4] when NS_04 is	signalled.			

6.5.3.2 Spurious emissions for UE co-existence

6.5.3.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to co-existing systems for the specified bands which has specific requirements in terms of transmitter spurious emissions.

6.5.3.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.3.2.3 Minimum conformance requirements

This clause specifies the requirements for the specified NR band for coexistence with protected bands as indicated in Tables 6.5.3.2.3-1 to 6.5.3.2.3-3.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

Table 6.5.3.2.3-1: Requirements for spurious emissions for UE co-existence Rel-15

	Spurio	ous emissio	on foi	UE co-exist	ence		
NR Band	Protected band	Frequency range (MHz)			Maxim um Level (dBm)	MBW (MHz)	NOTE
n1, n84	E-UTRA Band 1, 5, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 32, 38, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 68, 69, 72, 73, 74, 75, 76 NR Band n78, n79	F _{DL_low}		F_{DL_high}	-50	1	
	NR Band n77	F _{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA Band 3, 34	FDL_low	-	FDL_high	-50	1	15
	Frequency range	1880	-	1895	-40	1	15, 27
	Frequency range	1895	-	1915	-15.5	5	15, 26, 27
	Frequency range	1915	-	1920	+1.6	5	15, 26, 27
n2	E-UTRA Band 4, 5, 12, 13, 14, 17, 24, 26, 27, 28, 29, 30, 41, 42, 48, 50, 51, 53, 66, 70, 71, 74, 85	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	E-UTRA Band 2, 25	F_{DL_low}	-	F_{DL_high}	-50	1	15
	E-UTRA Band 43	F_{DL_low}	-	F_{DL_high}	-50	1	2
n3, n80	E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 40, 41, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73,74, 75, 76 NR Band n79	F _{DL_low}	-	$F_{DL_{high}}$	-50	1	
	E-UTRA Band 3	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	15
	E-UTRA Band 11, 18, 19, 21	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	E-UTRA Band 22, 42, 52 NR Band n77, n78	FDL_low	-	FDL_high	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n5	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 12, 13, 14, 17, 18, 19, 24, 25, 26, 28, 29, 30, 31, 34, 38, 40, 42, 43, 45, 48, 50, 51, 65, 66, 70, 71, 73, 74, 85 NR Band n79	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 41, 52, 53 NR Band n77, n78	F_{DL_low}	-	$F_{DL_{high}}$	-50	1	2
	E-UTRA Band 11, 21	F_{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n7	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 12, 13, 14, 17, 20, 22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68, 72, 74, 75, 76, 85, NR Band n77, n78	FDL_low	-	F _{DL_high}	-50	1	
	NR Band n79	F_{DL_low}	-	F_{DL_high}	-50	1	2
	Frequency range	2570	-	2575	+1.6	5	15, 21, 26
	Frequency range	2575	-	2595	-15.5	5	15, 21, 26
	Frequency range	2595	-	2620	-40	1	15, 21
n8, n81	E-UTRA Band 1, 20, 28, 31, 32, 33, 34, 38, 39, 40, 45, 50, 51, 65, 67, 68, 69, 72, 73, 74, 75, 76	Fdl_low	-	$F_{DL_{high}}$	-50	1	

	E-UTRA band 3, 7, 22, 41, 42,	F _{DL_low}	-	FDL_high	-50	1	2
	43, 52,			_ 0			
	NR Band n77, n78, n79						
	E-UTRA 8	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50	1	15
	E-UTRA Band 11, 21	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n12	E-UTRA Band 2, 5, 13, 14, 17,	F_{DL_low}	-	$F_{DL_{high}}$	-50	1	
	24, 25, 26, 27, 30, 41, 50, 53,						
	70, 71, 74						
	E-UTRA Band 4, 48, 51, 66	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50	1	2
	E-UTRA Band 12, 85	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50	1	15
n20, n82	E-UTRA Band 1, 3, 7, 8, 22, 31,	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	32, 33, 34, 40, 43, 50, 51, 65,						
	67, 68, 72, 74, 75, 76						
	E-UTRA Band 20	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50	1	15
	E-UTRA Band 38, 42, 52, 69	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	2
	NR Band n77, n78						
	Frequency range	758	-	788	-50	1	
n25	E-UTRA Band 4, 5, 12, 13, 14,	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	17, 24, 26, 27, 28, 29, 30, 41,						
	42, 48, 53, 66, 70, 71, 85						
	E-UTRA Band 2	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	15
	E-UTRA Band 25	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50	1	15
	E-UTRA Band 43	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	2
n28, n83	E-UTRA Band 1, 4, 22, 32, 42,	F_{DL_low}	-	F_{DL_high}	-50	1	2
	43, 50, 51, 65, 66, 74, 75, 76						
	NR Band n77, n78						
	E-UTRA Band 1	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50	1	19, 25
	E-UTRA Band 2, 3, 5, 7, 8, 18,	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	19, 20, 25, 26, 27, 31, 34, 38,						
	40, 41, 52, 72, 73						
	NR Band n79						10.01
	E-UTRA Band 11, 21	FDL_low	-	FDL_high	-50	1	19, 24
	Frequency range	470	-	694	-42	8	15, 35
	Frequency range	470	-	710	-26.2	6	34
	Frequency range	662	-	694	-26.2	6	15
	Frequency range	758	-	773	-32	1	15
	Frequency range	773	-	803	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8, 19
n34	E-UTRA Band 1, 3, 7, 8, 11, 18,	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	5
	19, 20, 21, 22, 26, 28, 31, 32,						
	33, 38, 39, 40, 41, 42, 43, 44,						
	45, 50, 51, 52, 65, 67, 69, 72,						
	74, 75, 76						
	NR Band n78, n79						
	NR Band n77	FDL_low	-	F _{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n38	E-UTRA Band 1, 2, 3, 4, 5, 8,	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50	1	
	12, 13, 14, 17, 20, 22, 27, 28,						
	29, 30, 31, 32, 33, 34, 40, 42,						
	43, 50, 51, 52, 65, 66, 67, 68,						
	72, 74, 75, 76, 85,	0000	$\left \right $	00.17	45.5		45.00
	Frequency range	2620	-	2645	-15.5	5	15, 22,
		<u> </u>	$\left \right $				26
	Frequency range	2645	-	2690	-40	1	15, 22
n39	E-UTRA Band 1, 8, 22, 26, 34,	FDL_low	-	FDL_high	-50		
	40, 41, 42, 44, 45, 50, 51, 52, 74						
	NR Band n79	F	$\left \right $	F	F0	4	
	NR Band n77, n78	FDL_low	-	$F_{DL_{high}}$	-50	1	2

	Frequency range	1805	-	1855	-40	1	33
	Frequency range	1855	-	1880	-15.5	5	15, 26,
							33
n40	E-UTRA Band 1, 3, 5, 7, 8, 11,	FDL_low	-	$F_{DL_{high}}$	-50	1	
	18, 19, 20, 21, 22, 26, 27, 28,						
	31, 32, 33, 34, 38, 39, 41, 42,						
	43, 44, 45, 50, 51, 52, 65, 67,						
	68, 69, 72, 74, 75, 76 NR Band n77, n78						
	NR Band n79	E			-50	1	2
	Frequency range	F _{DL_low} 1884.5		F _{DL_high} 1915.7	-30	0.3	8
n41	E-UTRA Band 1, 2, 3, 4, 5, 8,				-41	0.3	0
1141	12, 13, 14, 17, 24, 25, 26, 27,	F _{DL_low}	-	F_{DL_high}	-50	1	
	28, 29, 30, 34, 39, 42, 44, 45,						
	48, 50, 51, 52, 65, 66, 70, 71,						
	73, 74, 85,						
	NR Band n77, n78						
	NR Band n79	F _{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA Band 11, 18, 19, 21	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1884.5		1915.7	-41	0.3	8
n50	E-UTRA Band 1, 2, 3, 4, 5, 7, 8,	F _{DL_low}	-	F _{DL_high}	-50	1	
	12, 13, 17, 20, 26, 28, 29, 31,						
	34, 38, 39, 40, 41, 42, 43, 48,						
	52, 65, 66, 67, 68, 85						
n51	E-UTRA Band 1, 2, 3, 4, 5, 7, 8,	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	12, 13, 17, 20, 26, 28, 29, 31,						
	34, 38, 39, 40, 41, 42, 43, 48,						
	65, 66, 67, 68						
n66, n86	E-UTRA Band 2, 4, 5, 7, 12, 13,	FDL_low	-	$F_{DL_{high}}$	-50	1	
	14, 17, 25, 26, 27, 28, 29, 30,						
	38, 41, 43, 50, 51, 53, 66, 70,						
	71, 74, 85		+ +		50	4	0
	E-UTRA Band 42, 48 E-UTRA Band 2, 4, 5, 12, 13,	FDL_low	-	FDL_high	-50	1	2
n70	14, 17, 24, 25, 26, 29, 30, 41,	FDL_low	-	$F_{DL_{high}}$	-50	I	2
	48, 66, 70, 71, 85						
n71	E-UTRA Band 4, 5, 12, 13, 14,	F _{DL_low}	-	F_{DL_high}	-50	1	
	17, 24, 26, 30, 48, 53, 66, 85	UL_IOW		DL_nign	00	•	
	E-UTRA Band 2, 25, 41, 70	F _{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA Band 29	FDL_low	-	FDL_high	-38	1	15
	E-UTRA Band 71	FDL_low	-	FDL_high	-50	1	15
n74	E-UTRA Band 1, 2, 3, 4, 5, 7, 8,	FDL_low	-	FDL_high	-50	1	
	12, 13, 17, 18, 19, 20, 26, 28,	I DE_IOW		i DE_mgn		•	
	29, 31, 34, 38, 39, 40, 41, 42,						
	43, 48, 52, 65, 66, 67, 68, 85						
	NR Band n77, n78						
	NR Band n79	F _{DL_low}	-	$F_{DL_{high}}$	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	Frequency range	1400	-	1427	-32	27	15, 41
	Frequency range	1475	-	1488	-50	1	42
	Frequency range	1475	-	1488	-28	1	15, 42
	Frequency range	1475	-	1488	-50	1	15, 45
	Frequency range	1475.9	-	1510.9	-35	1	15, 46
n77	E-UTRA Band 1, 3, 5, 7, 8, 11,	F _{DL_low}		$F_{DL_{high}}$	-50	1	
	18, 19, 20, 21, 26, 28, 34, 39,						
	40, 41, 65, 74						
	Frequency range	1884.5		1915.7	-41	0.3	8
n78	E-UTRA Band 1, 3, 5, 7, 8, 11,	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	18, 19, 20, 21, 26, 28, 32, 34,						
	39, 40, 41, 65, 74, 75, 76						

	Frequency range	1884.5	-	1915.7	-41	0.3	8
n79	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 21, 28, 34, 39, 40, 41, 42, 65, 74	F _{DL_low}		$F_{DL_{high}}$	-50	1	
	Frequency range	1884.5		1915.7	-41	0.3	

NOTE 1:	FDL_low and FDL_high refer to each frequency band specified in Table 5.2-1 for NR band, Table 5.2-1
	in TS 36.521-1 [21] for E-UTRA band.
NOTE 2:	As exceptions, measurements with a level up to the applicable requirements defined in Table
	6.5.3.1.3-2 are permitted for each assigned NR carrier used in the measurement due to 2nd, 3rd,
	4th or 5th harmonic spurious emissions. Due to spreading of the harmonic emission the exception
	is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on
	both sides of the harmonic emission. This results in an overall exception interval centred at the
	harmonic emission of (2MHz + N x LCRB x RBSizekHz), where N is 2, 3, 4, [5] for the 2nd, 3rd, 4th
	[or 5th] harmonic respectively. The exception is allowed if the measurement bandwidth (MBW)
	totally or partially overlaps the overall exception interval.
NOTE 3:	15 kHz SCS is assumed when RB is mentioned in the note when channel bandwidth is less than
	or equal to 50MHz, lowest SCS is assumed when channel bandwidth is larger than 50MHz. The
	transmission bandwidth in terms of RB position and range is not limited to 15 kHz SCS and shall
NOTE 4:	scale with SCS accordingly.
	For non synchronised TDD operation to meet these requirements some restriction will be needed
NOTE 5.	for either the operating band or protected band.
NOTE 6:	
NOTE 7:	
	Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz.
NOTE 9:	
NOTE 10	
NOTE 11	Void
NOTE 12	Void
NOTE 13	Void.
NOTE 14	
NOTE 15	These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table
	6.5.3.1.3-1 from the edge of the channel bandwidth.
NOTE 16	
NOTE 17	
NOTE 18	Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the
	channel bandwidth used is 5 or 10 MHz.
NOTE 20	
NOTE 21	This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with
	the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within
	the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre
	frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink
	transmission bandwidth less than or equal to 54 RB.
NOTE 22	This requirement is applicable for power class 3 UE for any channel bandwidths within the range
	2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier
	centre frequency is within the range 2605.5 - 2607.5 MHz and for carriers of 20 MHz bandwidth
	when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For power class 2 UE for
	any channel bandwidths within the range 2570 - 2615 MHz, NS_44 shall apply. For power class 2
	or 3 UE for carriers with channel bandwidth overlapping the frequency range 2615 - 2620 MHz the
	requirement applies with the maximum output power configured to +19 dBm in the IE P-Max.
NOTE 23	
NOTE 24	As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is
	permitted for each assigned NR carrier used in the measurement due to 2nd harmonic spurious
	emissions. An exception is allowed if there is at least one individual RB within the transmission
	bandwidth (see Figure 5.3.1-1) for which the 2nd harmonic totally or partially overlaps the
	measurement bandwidth (MBW).
NOTE 25	As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is
	permitted for each assigned NR carrier used in the measurement due to 3rd harmonic spurious
	emissions. An exception is allowed if there is at least one individual RB within the transmission
	bandwidth (see Figure 5.3.1-1) for which the 3rd harmonic totally or partially overlaps the measurement bandwidth (MBW)
NOTE 26	measurement bandwidth (MBW). For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s)
	operating in the protected operating band.
NOTE 27	This requirement is applicable for any channel bandwidths within the range 1920 - 1980 MHz with
	the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within
	· · ·

the range 1927.5 - 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre
frequency is within the range 1930 - 1938 MHz the requirement is applicable only for an uplink
transmission bandwidth less than or equal to 54 RB.
NOTE 28: Void
NOTE 29: Void
NOTE 30: Void
NOTE 31: Void
NOTE 32: Void
NOTE 33: This requirement is only applicable for carriers with bandwidth up to 20MHz and confined within 1885-1920 MHz (requirement for carriers with at least 1RB confined within 1880 - 1885 MHz is not specified). This requirement applies for an uplink transmission bandwidth less than or equal to 54 RB for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 1892.5 - 1894.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 1895 - 1903 MHz.
NOTE 34: This requirement is applicable for 5 and 10 MHz NR channel bandwidth allocated within 718- 728MHz. For carriers of 10 MHz bandwidth, this requirement applies for an uplink transmission bandwidth less than or equal to 30 RB with RB _{start} > 1 and RB _{start} < 48.
NOTE 35: This requirement is applicable in the case of a 10 MHz NR carrier confined within 703 MHz and
733 MHz, otherwise the requirement of -25 dBm with a measurement bandwidth of 8 MHz applies.
NOTE 36: Void
NOTE 37: Void
NOTE 38: Void
NOTE 39: Void.
NOTE 40: Void
NOTE 41: Applicable for cases when the lower edge of the assigned NR UL channel bandwidth frequency is greater than or equal to 1427 MHz + the channel BW assigned for 5 and 10 MHz bandwidth, and when the lower edge of the assigned NR UL channel bandwidth frequency is greater than or equal to 1440 MHz for 15 and 20 MHz bandwidth. This requirement shall be verified with UE transmission power of 15 dBm.
NOTE 42: Applicable when upper edge of the assigned NR UL channel bandwidth frequency is more than 1460MHz and more than 1460MHz and less than or equal to 1470MHz for 5 MHz bandwidth, and when the upper edge of the assigned NR UL channel bandwidth frequency is less than or equal to 1465 MHz for10 MHz bandwidth.
NOTE 43: Void
NOTE 44: Void
NOTE 45: Applicable when upper edge of the assigned NR UL channel bandwidth frequency is equal to or less than 1460MHz.
NOTE 46: Applicable for 5MHz bandwidth and when the NR carrier is within 1447.9 – 1462.9 MHz.

NOTE: To simplify Table 6.5.3.2.3-1, E-UTRA band numbers are listed for bands which are specified only for E-UTRA operation or both E-UTRA and NR operation. NR band numbers are listed for bands which are specified only for NR operation.

Table 6.5.3.2.3-2 Requirements for spurious emissions for UE co-existence Rel-16 specifies the requirements for NR bands for coexistence with protected bands.

Table 6.5.3.2.3-2: Requirements for spurious emissions for UE co-existence Rel-16

	Spurious emission for UE co-existence									
NR Band	Protected band	Frequer	ncy ra	inge (MHz)	Maxim um Level (dBm)	MBW (MHz)	NOTE			
n1, n84	E-UTRA Band 1, 5, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 32, 38, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 68, 69, 72, 73, 74, 75, 76 NR Band n78, n79	Fdl_low		$F_{DL_{high}}$	-50	1				
	NR Band n77	F _{DL} low	-	F_{DL_high}	-50	1	2			
	E-UTRA Band 3, 34	F _{DL_low}	-	FDL_high	-50	1	15			
	Frequency range	1880	-	1895	-40	1	15, 27			
	Frequency range	1895	-	1915	-15.5	5	15, 26, 27			
	Frequency range	1915	-	1920	+1.6	5	15, 26, 27			
n2	E-UTRA Band 4, 5, 12, 13, 14, 17, 24, 26, 27, 28, 29, 30, 41, 42, 48, 50, 51, 53, 66, 70, 71, 74, 85	$F_{DL_{low}}$	-	F_{DL_high}	-50	1				
	E-UTRA Band 2, 25	F_{DL_low}	-	F_{DL_high}	-50	1	15			
	E-UTRA Band 43 NR Band n77	F_{DL_low}	-	F_{DL_high}	-50	1	2			
n3, n80	E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 40, 41, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73,74, 75, 76 NR Band n79	F _{DL_low}	-	F_{DL_high}	-50	1				
	E-UTRA Band 3	F_{DL_low}	-	F_{DL_high}	-50	1	15			
	E-UTRA Band 11, 18, 19, 21	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	13			
	E-UTRA Band 22, 42,52 NR Band n77, n78	F_{DL_low}	-	F_{DL_high}	-50	1	2			
	Frequency range	1884.5	-	1915.7	-41	0.3	13			
n5, n89	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 12, 13, 14, 17, 18, 19, 24, 25, 26, 28, 29, 30, 31, 34, 38, 40, 42, 43, 45, 48, 50, 51, 65, 66, 70, 71, 73, 74, 85	F _{DL_low}	-	$F_{DL_{high}}$	-50	1				
	E-UTRA Band 41, 52, 53 NR Band n77, n78	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	2			
	E-UTRA Band 11, 21	F_{DL_low}	-	F_{DL_high}	-50	1	39			
	Frequency range	1884.5	-	1915.7	-41	0.3	8,39			
n7	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 12, 13, 14, 17, 20, 22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68, 72, 74, 75, 76, 85, NR Band n77, n78	Fdl_low	-	F_{DL_high}	-50	1				
	NR Band n79	F _{DL_low}	-	F_{DL_high}	-50	1	2			
	Frequency range	2570	-	2575	+1.6	5	15, 21, 26			
	Frequency range	2575	-	2595	-15.5	5	15, 21, 26			
	Frequency range	2595	-	2620	-40	1	15, 21			
n8, n81	E-UTRA Band 1, 20, 28, 31, 32, 33, 34, 38, 39, 40, 45, 50, 51, 65, 67, 68, 69, 72, 73, 74, 75, 76	F_{DL_low}	-	F_{DL_high}	-50	1				

		-	1 1	_	50	4	2
	E-UTRA band 3, 7, 22, 41, 42,	F_{DL_low}	-	$F_{DL_{high}}$	-50	1	2
	43, 52,						
	NR Band n77, n78, n79						
	E-UTRA 8	F _{DL_low}	-	F _{DL_high}	-50	1	15
	E-UTRA Band 11, 21	F _{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n12	E-UTRA Band 2, 5, 13, 14, 17,	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50	1	
	24, 25, 26, 27, 30, 41, 50, 53, 70, 71, 74			- 0			
	E-UTRA Band 4, 48, 51, 66 NR Band n77	FDL_low	-	F_{DL_high}	-50	1	2
	E-UTRA Band 12, 85	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50	1	15
n14	E-UTRA Band 2, 4, 5, 12, 13,	FDL low	-	FDL_high	-50	1	
	14, 17, 23, 24, 25, 26, 27, 29, 30, 41, 48, 53, 66, 70, 71, 85	I DL_IOW		' DL_nign			
	NR Band n77	FDL_low	-	F_{DL_high}	-50	1	2
	Frequency range	769	-	775	-35	0.0062 5	12, 15
	Frequency range	799	-	805	-35	0.0062 5	11, 12, 15
n18	E-UTRA Band 1, 3, 11, 21, 34,	F _{DL_low}	-	F _{DL_high}	-50	1	
	40, 42, 65 NR Band n79						
	NR Band n77, n78	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	2
	Frequency range	758	-	799	-50	1	
	Frequency range	799	-	803	-40	1	
	Frequency range	860	_	890	-40	1	
	Frequency range	945	_	960		1	
			-		-30		8
	Frequency range	1884.5	-	1915.7		0.3	0
	Frequency range	2545	-	2575	-50	1	
	Frequency range	2595	-	2645	-50	1	
n20, n82	E-UTRA Band 1, 3, 7, 8, 22, 31, 32, 33, 34, 40, 43, 50, 51, 65, 67, 68, 72, 74, 75, 76	Fdl_low	-	F_{DL_high}	-50	1	
	E-UTRA Band 20	F _{DL_low}	-	F _{DL_high}	-50	1	15
	E-UTRA Band 38, 42, 69 NR Band n77, n78	FDL_low	-	FDL_high	-50	1	2
	Frequency range	758	-	788	-50	1	
n25	E-UTRA Band 4, 5, 12, 13, 14,	FDL low	- 1	FDL_high	-50	1	
1120	17, 24, 26, 27, 28, 29, 30, 41, 42, 48, 53, 66, 70, 71, 85			r DL_mgn			
	E-UTRA Band 2	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	15
	E-UTRA Band 25	FDL_low	-	$F_{DL_{high}}$	-50	1	15
	E-UTRA Band 43,	F _{DL_low}	-	F _{DL_high}	-50	1	2
	NR Band n77			Ŭ			
n26	E-UTRA Band 1, 2, 3, 4, 5, 11, 12, 13, 14, 17, 18,19, 21, 24, 25, 26, 29, 30, 31, 34, 39, 40, 42, 43, 48, 50, 51, 65, 66, 70, 71, 73,74, 85	F_{DL_low}	-	$F_{DL_{high}}$	-50	1	
	E-UTRA Band 41, 53 NR Band n77, n78, n79	FDL_low	-	F_{DL_high}	-50	1	2
	Frequency range	703	-	799	-50	1	
	Frequency range	799	-	803	-40	1	15
	Frequency range	945	-	960	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
L	i roquonoy range	1004.0	-	1910.1		0.5	0

		-	1	–	50	4	0
n28, n83	E-UTRA Band 1, 4, 22, 32, 42,	FDL_low	-	$F_{DL_{high}}$	-50	1	2
	43, 50, 51, 65, 66, 74, 75, 76						
	NR Band n77, n78						
	E-UTRA Band 1	F_{DL_low}	-	F_{DL_high}	-50	1	19, 25
	E-UTRA Band 2, 3, 5, 7, 8, 18,	F _{DL_low}	-	F_{DL_high}	-50	1	
	19, 20, 25, 26, 27, 31, 34, 38,			-			
	39, 40, 41, 52, 72, 73						
	NR Band n79						
	E-UTRA Band 11, 21	F _{DL_low}	-	FDL_high	-50	1	19, 24
	,	470	-	694	-42	8	15, 35
	Frequency range	_					
	Frequency range	470	-	710	-26.2	6	34
	Frequency range	662	-	694	-26.2	6	15
	Frequency range	758	-	773	-32	1	15
	Frequency range	773	-	803	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8, 19
n30	E-UTRA Band 2, 4, 5, 7, 12, 13,	FDL_low	-	$F_{DL_{high}}$	-50	1	
	14, 17, 24, 25, 26, 27, 29, 30,			5 <u>5 2</u> g.		-	
	38, 41, 48, 53, 66, 70, 71, 85,						
	NR Band n77						
n24		F		F	50	1	F
n34	E-UTRA Band 1, 3, 7, 8, 11, 18,	FDL_low	-	$F_{DL_{high}}$	-50	1	5
	19, 20, 21, 22, 26, 28, 31, 32,						
	33, 38, 39, 40, 41, 42, 43, 44, 45,						
	50, 51, 52, 65, 67, 69, 72, 74,						
	75, 76						
	NR Band n78, n79						
	NR Band n77	FDL_low	-	$F_{DL_{high}}$	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n38	E-UTRA Band 1, 2, 3, 4, 5, 8,	FDL low	-	F _{DL_high}	-50	1	
1100	12, 13, 14, 17, 20, 22, 27, 28,	· DL_IOW		• DE_mgn	00		
	29, 30, 31, 32, 33, 34, 40, 42,						
	43, 50, 51, 52, 65, 66, 67, 68,						
	72, 74, 75, 76, 85,						
	NR Band n77, n78	FDL_low	-	FDL_high	-50	1	
	Frequency range	2620	-	2645	-15.5	5	15, 22,
							26
	Frequency range	2645	-	2690	-40	1	15, 22
n39	E-UTRA Band 1, 8, 22, 26, 28,	F _{DL low}	-	F_{DL_high}	-50		
	34, 40, 41, 42, 44, 45, 50, 51,			_ 3			
	52, 74						
	NR Band n79						
		E			50	4	2
	NR Band n77, n78	FDL_low	-	FDL_high	-50	1	
	Frequency range	1805	-	1855	-40	1	33
	Frequency range	1855	-	1880	-15.5	5	15, 26,
							33
n40	E-UTRA Band 1, 3, 5, 7, 8, 11,	F _{DL_low}	-	F_{DL_high}	-50	1	
	18, 19, 20, 21, 22, 26, 27, 28,			-			
	31, 32, 33, 34, 38, 39, 41, 42,						
	43, 44, 45, 50, 51, 52, 65, 67,						
	68, 69, 72, 74, 75, 76						
	NR Band n77, n78						
	NR Band n79	En i	-	Fre	-50	1	2
		FDL_low	-	FDL_high		-	2
	Frequency range	1884.5		1915.7	-41	0.3	8
n41	E-UTRA Band 1, 2, 3, 4, 5, 8,	FDL_low	-	$F_{DL_{high}}$	-50	1	
	12, 13, 14, 17, 24, 25, 26, 27,						
	28, 29, 30, 34, 39, 42, 44, 45,						
	48, 50, 51, 52, 65, 66, 70, 71,						
	73, 74, 85,						
		1	1				1
	NR Band n77. n78						
	NR Band n77, n78 NR Band n79	Fpt law	-	FDI him	-50	1	2
	NR Band n77, n78 NR Band n79 E-UTRA Band 9, 11, 18, 19, 21	F _{DL_low}	-	F _{DL_high} F _{DL_high}	-50 -50	1	2 30

	Frequency range	1884.5		1915.7	-41	0.3	8, 30
n47	E-UTRA Band 1, 3, 5, 7, 8, 22,					0.0	0,00
	26, 28, 34, 39, 40, 41, 42, 44,	FDL_low	-	FDL_high	-50	1	
	45, 65, 68, 72, 73				= 0		
	NR Band n71, n77, n78, n79	FDL_low	-	FDL_high	-50	1	
n48	E-UTRA Band 2, 4, 5, 12, 13,	F _{DL_low}	-	F_{DL_high}	-50	1	
	14, 17, 24, 25, 26, 29, 30, 41,						
- 50	50, 51, 66, 70, 71, 74, 85	-			50	1	
n50	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 12, 13, 17, 20, 26, 28, 29, 31,	FDL_low	-	$F_{DL_{high}}$	-50	1	
	34, 38, 39, 40, 41, 42, 43, 48,						
	65, 66, 67, 68						
n51	E-UTRA Band 1, 2, 3, 4, 5, 7, 8,	F _{DL_low}	-	F _{DL_high}	-50	1	
	12, 13, 17, 20, 26, 28, 29, 31,	I DL_IOW		i DE_Iligh	00		
	34, 38, 39, 40, 41, 42, 43, 48,						
	52, 65, 66, 67, 68, 85						
n53	E-UTRA Band 2, 4, 5, 12, 13,	FDL_low	-	FDL_high	-50	1	
	14, 17, 24, 25, 26, 29, 30, 48,			_ 5			
	66, 70, 71, 85, NR Band n77						
n65	E-UTRA Band 1, 3, 5, 7, 8, 11,	FDL_low	-	FDL_high	-50	1	
	18, 19, 20, 21, 22, 26, 27, 28,						
	31, 32, 38, 40, 41, 42, 43, 50,						
	51, 65, 68, 69, 72, 74, 75, 76,						
	NR Band n78, n79						
	NR Band n77	FDL_low	-	FDL_high	-50	1	2
	E-UTRA Band 34	FDL_low	-	FDL_high	-50	1	43
	Frequency range	1900	-	1915	-15.5	5	15, 26, 27
	Frequency range	1915	-	1920	+1.6	5	15, 26, 27
n66, n86	E-UTRA Band 2, 4, 5, 7, 12, 13,	FDL low	-	F _{DL_high}	-50	1	21
1100, 1100	14, 17, 25, 26, 27, 28, 29, 30,	· DL_IOW		i DE_mgn	00		
	38, 41, 43, 50, 51, 53, 66, 70,						
	71, 74, 85						
	E-UTRA Band 42, 48	FDL_low	-	F _{DL_high}	-50	1	2
	NR Band n47, n77						
n70	E-UTRA Band 2, 4, 5, 12, 13,	F _{DL_low}	-	F _{DL_high}	-50	1	2
	14, 17, 24, 25, 26, 29, 30, 41,						
	48, 66, 70, 71, 85						
	NR Band n77	F _{DL_low}	-	FDL_high	-50	1	2
n71	E-UTRA Band 4, 5, 12, 13, 14,	FDL_low	-	F_{DL} high	-50	1	
	17, 24, 26, 30, 48, 53, 66, 85						
	E-UTRA Band 2, 25, 41, 70	FDL_low	-	F_{DL} high	-50	1	2
	NR Band n77	-					
	E-UTRA Band 29	F _{DL_low}	-	F _{DL_high}	-38	1	15
	E-UTRA Band 71	F _{DL_low}	-	F _{DL_high}	-50	1	15
n74	E-UTRA Band 1, 2, 3, 4, 5, 7, 8,	F _{DL_low}	-	F_{DL_high}	-50	1	
	12, 13, 17, 18, 19, 20, 26, 28,						
	29, 31, 34, 38, 39, 40, 41, 42, 43, 48, 52, 65, 66, 67, 68, 85						
	NR Band n77, n78						
	NR Band n79	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	Frequency range	1400	-	1427	-41	27	15, 41
	Frequency range	1400	-	1427	-32 -28	1	15, 41
	Frequency range	1475	-	1488	-20	1	15, 42
		1475.9	-	1510.9	-30	1	15, 45
	Frequency range Frequency range	1475.9	-	1510.9	-35	1	15, 46
	i requericy range	1400	-	1010	-30	I	10

n77	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 34, 39, 40, 41, 53, 65, 66, 70, 71, 74, 85	FDL_low	-	FDL_high	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n78	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65, 75, 76	F _{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n79	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 21, 28, 34, 39, 40, 41, 42, 65, 74	F_{DL_low}	-	F_{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n95	E-UTRA Band 1, 3, 5, 8, 28, 39, 40, 41 NR Band n78, n79	F _{DL_low}	-	F_{DL} high	-50	1	5
	NR Band n77	FDL_low	-	F_{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	8

NOTE 1:	F _{DL_low} and F _{DL_high} refer to each frequency band specified in Table 5.2-1 for NR band, Table 5.2-1
	in TS 36.521-1 [21] for E-UTRA band.
NOTE 2	As exceptions, measurements with a level up to the applicable requirements defined in Table
NOTE 2.	
	6.5.3.1.3-2 are permitted for each assigned NR carrier used in the measurement due to 2nd, 3rd,
	4th or 5th harmonic spurious emissions. Due to spreading of the harmonic emission the exception
	is also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on
	both sides of the harmonic emission. This results in an overall exception interval centred at the
	harmonic emission of (2MHz + N x L _{CRB} x RB _{Size} kHz), where N is 2, 3, 4, 5 for the 2nd, 3rd, 4th or
	5th harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally
NOTE	or partially overlaps the overall exception interval.
NOTE 3:	15 kHz SCS is assumed when RB is mentioned in the note when channel bandwidth is less than
	or equal to 50MHz, lowest SCS is assumed when channel bandwidth is larger than 50MHz. The
	transmission bandwidth in terms of RB position and range is not limited to 15 kHz SCS and shall
	scale with SCS accordingly.
NOTE 4:	
	For non-synchronised TDD operation to meet these requirements some restriction will be needed
NOTE 5.	
	for either the operating band or protected band.
NOTE 6:	
NOTE 7:	
NOTE 8:	Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz.
NOTE 9:	Void
NOTE 10	: Void
NOTE 11	
-	
NOTE 12	: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation <
	0.5 dB
NOTE 13	
NOTE 14	
NOTE 15	: These requirements also apply for the frequency ranges that are less than FOOB (MHz) in Table
	6.5.3.1.3-1 from the edge of the channel bandwidth.
NOTE 16	-
NOTE 17	
NOTE 18	
	: Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the
NOTE 19	: Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.
NOTE 19 NOTE 20	: Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. : Void
NOTE 19 NOTE 20	: Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.
NOTE 19 NOTE 20	: Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. : Void
NOTE 19 NOTE 20	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within
NOTE 19 NOTE 20	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre
NOTE 19 NOTE 20	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink
NOTE 19 NOTE 20 NOTE 21	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
NOTE 19 NOTE 20 NOTE 21	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For
NOTE 19 NOTE 20 NOTE 21	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth within the range 2570 - 2615 MHz with the following restriction: for carriers of
NOTE 19 NOTE 20 NOTE 21	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2605.5 - 2607.5 MHz and for
NOTE 19 NOTE 20 NOTE 21	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carriers of 20 MHz bandwidth when carriers of 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2605.5 - 2607.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz
NOTE 19 NOTE 20 NOTE 21	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2605.5 - 2607.5 MHz and for
NOTE 19 NOTE 20 NOTE 21	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carriers of 20 MHz bandwidth when carriers of 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2605.5 - 2607.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz
NOTE 19 NOTE 20 NOTE 21	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carriers of 20 MHz bandwidth when carriers of 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2605.5 - 2607.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers overlapping the frequency range 2615 - 2620 MHz the requirement applies with
NOTE 19 NOTE 20 NOTE 21	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carriers of 20 MHz bandwidth when carrier sof 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2605.5 - 2607.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers overlapping the frequency range 2615 - 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max.
NOTE 19 NOTE 20 NOTE 21 NOTE 22	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier s of 20 MHz bandwidth when carrier s of 20 MHz bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers overlapping the frequency range 2615 - 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max. Void.
NOTE 19 NOTE 20 NOTE 21 NOTE 22	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2605.5 - 2607.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers overlapping the frequency range 2615 - 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max. Void. As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is
NOTE 19 NOTE 20 NOTE 21 NOTE 22	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers overlapping the frequency range 2615 - 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max. Void. As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 2nd harmonic spurious
NOTE 19 NOTE 20 NOTE 21 NOTE 22	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2577 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2605.5 - 2607.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz The requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers overlapping the frequency range 2615 - 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max. Void. As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 2nd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission
NOTE 19 NOTE 20 NOTE 21 NOTE 22	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers overlapping the frequency range 2615 - 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max. Void. As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 2nd harmonic spurious
NOTE 19 NOTE 20 NOTE 21 NOTE 22	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2577 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2605.5 - 2607.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz This requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers overlapping the frequency range 2615 - 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max. Void. As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 2nd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission
NOTE 19 NOTE 20 NOTE 21 NOTE 22 NOTE 23 NOTE 24	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2605.5 - 2607.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2605.5 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2605.5 - 2607.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers overlapping the frequency range 2615 - 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max. Void. As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 2nd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.3.1-1) for which
NOTE 19 NOTE 20 NOTE 21 NOTE 22 NOTE 23 NOTE 24	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz. For channel bandwidth when carrier centre frequency is within the range 2605.5 - 2607.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers overlapping the frequency range 2615 - 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max. Void. As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 2nd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (MBW). As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is
NOTE 19 NOTE 20 NOTE 21 NOTE 22 NOTE 23 NOTE 24	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2507 - 2605 MHz. The requirement is applicable only for an uplink transmission bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers overlapping the frequency range 2615 - 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max. Void. As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 2nd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (MBW). As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 3rd harmonic spurious
NOTE 19 NOTE 20 NOTE 21 NOTE 22 NOTE 23 NOTE 24	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2550 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2697.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers overlapping the frequency range 2615 - 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max. Void. As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 2nd harmonic spurious emissions bandwidth (MBW). As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (MBW).
NOTE 19 NOTE 20 NOTE 21 NOTE 22 NOTE 23 NOTE 24	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers overlapping the frequency range 2615 - 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max. Void. As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 2nd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (MBW). As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figur
NOTE 19 NOTE 20 NOTE 21 NOTE 22 NOTE 23 NOTE 24	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers overlapping the frequency range 2615 - 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max. Void. As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 2nd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (MBW). As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the
NOTE 19 NOTE 20 NOTE 21 NOTE 22 NOTE 23 NOTE 24	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2507 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers overlapping the frequency range 2615 - 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max. Void. As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 2nd harmonic spurious emission. An exception is allowed if there is at least one individual RB within the transmission bandwidth (MBW). As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least
NOTE 19 NOTE 20 NOTE 21 NOTE 22 NOTE 23 NOTE 24 NOTE 25 NOTE 25	 Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz. Void This requirement is applicable for any channel bandwidths within the range 2500 - 2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For channel bandwidth when carrier centre frequency is within the range 2570 - 2615 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth when carrier centre frequency is within the range 2597 - 2605 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB. For carriers overlapping the frequency range 2615 - 2620 MHz the requirement applies with the maximum output power configured to +19 dBm in the IE P-Max. Void. As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 2nd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the transmission bandwidth (MBW). As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned NR carrier used in the measurement due to 3rd harmonic spurious emissions. An exception is allowed if there is at least one individual RB within the

NOTE 27: This requirement is applicable for channel bandwidths up to 20MHz within the range 1920 - 1980 MHz with the following restriction: for carriers of 15 MHz bandwidth when the carrier centre

fraguanay ia withir	the range 1027 E 1020 E MUz and far corriers of 20 MUz handwidth when the
	the range 1927.5 - 1929.5 MHz and for carriers of 20 MHz bandwidth when the
	uency is within the range 1930 - 1938 MHz the requirement is applicable only for sion bandwidth less than or equal to 54 RB.
NOTE 28: Void	Sion bandwidth less than of equal to 54 KB.
NOTE 29: Void	
NOTE 30: Void	
NOTE 31: Void	
NOTE 32: Void	
	a anly applicable for corriers with bandwidth up to 20MHz and confined within
1885-1920 MHz (r	s only applicable for carriers with bandwidth up to 20MHz and confined within equirement for carriers with at least 1RB confined within 1880 - 1885 MHz is not quirement applies for an uplink transmission bandwidth less than or equal to 54
	15 MHz bandwidth when carrier centre frequency is within the range 1892.5 - or carriers of 20 MHz bandwidth when carrier centre frequency is within the
	s applicable for 5 and 10 MHz NR channel bandwidth allocated within 718-728
	of 10 MHz bandwidth, this requirement applies for an uplink transmission
	an or equal to 30 RB with RB _{start} > 1 and RB _{start} < 48 .
	s applicable in the case of a 10 MHz NR carrier confined within 703 MHz and
	se the requirement of -25 dBm with a measurement bandwidth of 8 MHz applies.
NOTE 36: Void	
NOTE 37: Void	
NOTE 38: Void	
NOTE 39: Void.	
NOTE 40: Void	
greater than or eq when the lower ed	es when the lower edge of the assigned NR UL channel bandwidth frequency is ual to 1427 MHz + the channel BW assigned for 5 and 10 MHz bandwidth, and lge of the assigned NR UL channel bandwidth frequency is greater than or equal 5 and 20 MHz bandwidth. This requirement shall be verified with UE er of 15 dBm.
NOTE 42: Applicable when u 1460MHz and mo when the upper ed	upper edge of the assigned NR UL channel bandwidth frequency is more than re than 1460MHz and less than or equal to 1470MHz for 5 MHz bandwidth, and dge of the assigned NR UL channel bandwidth frequency is less than or equal to
1465 MHz for 10 M	
	s applicable for NR channel bandwidth allocated within 1920-1980 MHz.
	90 and 100 MHz channel bandwidth, -40 dBm/MHz is applicable in the f 2496 – 2505 MHz
	pper edge of the assigned NR UL channel bandwidth frequency is equal to or
	Hz bandwidth and when the NR carrier is within 1447.9 – 1462.9 MHz.

 Table 6.5.3.2.3-3: Requirements for spurious emissions for UE co-existence Rel-17

	Protected band	Spurious emission for UE co-existence								
		Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	NOTE			
n1, n84	E-UTRA Band 1, 5, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 32, 38, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 68, 69, 72, 73, 74, 75, 76, NR Band n78, n79	F _{DL_low}	-	FDL_high	-50	1				
	NR Band n77	F _{DL_low}	-	F _{DL_high}	-50	1	2			
	E-UTRA Band 3, 34	FDL_low	-	FDL_high	-50	1	15			
	Frequency range	1880	-	1895	-40	1	15, 27			
	Frequency range	1895	-	1915	-15.5	5	15, 26, 27			
	Frequency range	1915	-	1920	+1.6	5	15, 26, 27			
n2	E-UTRA Band 4, 5, 12, 13, 14, 17, 24, 26, 27, 28, 29, 30, 41, 42, 48, 50, 51, 53, 66, 70, 71, 74, 85	Fdl_low	-	FDL_high	-50	1				
	E-UTRA Band 2, 25	F_{DL_low}	-	F_{DL_high}	-50	1	15			
	E-UTRA Band 43, NR Band n77	F _{DL_low}	-	F _{DL_high}	-50	1	2			
n3, n80	E-UTRA Band 1, 5, 7, 8, 20, 26, 27, 28, 31, 32, 33, 34, 38, 39, 40, 41, 43, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73,74, 75, 76. NR Band n79	F _{DL_low}	-	$F_{DL_{high}}$	-50	1				
	E-UTRA Band 3	FDL_low	-	$F_{DL_{high}}$	-50	1	15			
	E-UTRA Band 11, 18, 19, 21	F _{DL_low}	-	F_{DL_high}	-50	1				
	E-UTRA Band 22, 42, 52, NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1	2			
	Frequency range	1884.5	-	1915.7	-41	0.3	8			
n5, n89	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 12, 13, 14, 17, 18, 19, 24, 25, 26, 28, 29, 30, 31, 34, 38, 40, 42, 43, 45, 48, 50, 51, 65, 66, 70, 71, 73, 74, 85 NR Band n79	F _{DL_low}	-	F _{DL_high}	-50	1				
	E-UTRA Band 41, 52, 53 NR Band n77, n78	F_{DL_low}	-	$F_{DL_{high}}$	-50	1	2			
	E-UTRA Band 11, 21	FDL_low	-	$F_{DL_{high}}$	-50	1				
	Frequency range	1884.5	-	1915.7	-41	0.3	8			
n7	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 12, 13, 14, 17, 20, 22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68, 72, 74, 75, 76, 85, NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1				
	NR Band n79	F _{DL_low}	-	FDL_high	-50	1	2			
	Frequency range	2570	-	2575	+1.6	5	15, 21, 26			
	Frequency range	2575	-	2595	-15.5	5	15, 21, 26			
	Frequency range	2595	-	2620	-40	1	15, 21			
n8, n81	E-UTRA Band 1, 20, 28, 31, 32, 33, 34, 38, 39, 40, 45, 50, 51, 65, 67, 68, 69, 72, 73, 74, 75, 76	F _{DL_low}	-	FDL_high	-50	1				

NR Band	Spurious emission for UE co-existence								
	Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	NOTE		
	E-UTRA band 3, 7, 22, 41, 42, 43, 52,	F_{DL_low}	-	$F_{DL_{high}}$	-50	1	2		
	NR Band n77, n78, n79								
	E-UTRA 8	F _{DL_low}	-	FDL_high	-50	1	15		
	E-UTRA Band 11, 21	FDL_low	-	FDL_high	-50	1			
	Frequency range	1884.5	-	1915.7	-41	0.3	8		
n12	E-UTRA Band 2, 5, 13, 14, 17, 24, 25, 26, 27, 30, 41, 50, 53, 70, 71, 74	F _{DL_low}	-	F _{DL_high}	-50	1			
	E-UTRA Band 4, 48, 51, 66 NR Band n77	F _{DL_low}	-	F _{DL_high}	-50	1	2		
	E-UTRA Band 12, 85	F _{DL_low}	-	F_{DL_high}	-50	1	15		
n13	E-UTRA Band 2, 4, 5,12, 13, 17, 25, 26, 27, 29, 41, 48, 50, 51, 53, 66, 70, 71, 74, 85	F _{DL_low}	-	F _{DL_high}	-50	1			
	E-UTRA Band 14	FDL_low	-	FDL_high	-50	1	15		
	E-UTRA Band 24, 30 NR Band n77	F _{DL_low}	-	F _{DL_high}	-50	1	2		
	Frequency range	769	-	775	-35	0.0062 5	15		
	Frequency range	799	-	805	-35	0.0062 5	11, 15		
n14	E-UTRA Band 2, 4, 5, 12, 13, 14, 17, 23, 24, 25, 26, 27, 29, 30, 41, 48, 53, 66, 70, 71, 85	FD _{L_low}	-	FD _{L_high}	-50	1			
	NR Band n77	F _{DL_low}	-	F_{DL_high}	-50	1	2		
	Frequency range	769	-	775	-35	0.0062 5	12, 15		
	Frequency range	799	-	805	-35	0.0062 5	11, 12 15		
n18	E-UTRA Band 1, 3, 11, 21, 34, 40, 42, 65 NR Band n79	F _{DL_low}	-	F _{DL_high}	-50	1			
	NR Band n77, n78	F _{DL_low}	-	F_{DL_high}	-50	1	2		
	Frequency range	758	-	799	-50	1			
	Frequency range	799	-	803	-40	1			
	Frequency range	860	-	890	-40	1			
	Frequency range	945	-	960	-50	1			
	Frequency range	1884.5	-	1915.7	-41	0.3	8		
	Frequency range	2545	-	2575	-50	1			
	Frequency range	2595	-	2645	-50	1			
120, n82	E-UTRA Band 1, 3, 7, 8, 22, 31, 32, 33, 34, 40, 43, 50, 51, 65, 67, 68, 72, 74, 75, 76	Fdl_low	-	F _{DL_high}	-50	1			
	E-UTRA Band 20	FDL_low	-	FDL_high	-50	1	15		
	E-UTRA Band 38, 42, 52, 69, NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1	2		
	Frequency range	758	-	788	-50	1			
n24, n99	E-UTRA Band 2, 4, 5, 10, 12, 13, 14, 17, 24, 25, 26, 29, 30, 41, 48, 66, 70, 71, 85	F _{DL_low}	-	F _{DL_high}	-50	1			
	NR Band n77	F_{DL_low}	-	F_{DL_high}	-50	1	2		
n25	E-UTRA Band 4, 5, 12, 13, 14, 17, 24, 26, 27, 28, 29, 30, 41, 42, 48, 53, 66, 70, 71, 85	F _{DL_low}	-	$F_{DL_{high}}$	-50	1			

Protected band Frequency range (MHz) Maximum Level (dBm) MBW (MHz) E-UTRA Band 2 FDL_bw - FDL_high -50 1 E-UTRA Band 125 FDL_bw - FDL_high -50 1 E-UTRA Band 12, 3, 4, 5, 11, NR Band n77 FDL_bw - FDL_high -50 1 n26 E-UTRA Band 43, NR Band 17, 18, 19, 21, 24, 25, 26, 29, 30, 31, 34, 39, 40, 42, 43, 48, 50, 51, 65, 66, 70, 71, 73, 74, 85 - FDL_high -50 1 Frequency range 703 - 799 -50 1 Frequency range 1884.5 - 1915.7 -41 0.3 NR Band 17, 778 - FDL_bw - FDL_high -50 1 L-UTRA Band 1, 4, 22, 32, 42, 43, 50, 51, 62, 62, 73, 13, 43, 8, 39, 40, 41, 52, 72, 73 - FDL_bw <	NR Band	Spurious emission for UE co-existence								
E-UTRA Band 25 FDL_bow - FDL_Mgh -50 1 NR Band 77 - FDL_bow - FDL_Mgh -50 1 n26 E-UTRA Band 1, 2, 3, 4, 5, 11, 12, 13, 14, 17, 18, 19, 21, 24, 22, 26, 29, 30, 31, 33, 49, 49, 42, 43, 48, 50, 51, 65, 66, 70, 71, 73, 74, 85 - FDL_bow - FDL_Mgh -50 1 Frequency range 703 - 799 - 803 -40 1 Frequency range 148.5 - 1915.7 -41 0.3 n28, n83 E-UTRA Band 1, 4, 22, 32, 42, 43, 50, 51, 65, 66, 74, 75, 76, NR Band n79 - FDL_bow - FDL_hgh -50 1 E-UTRA Band 1, 2, 72, 73 - - FDL_bow - FDL_hgh<	Dand	Protected band	Frequency range (MHz)			Level		NOTE		
E-UTRA Band 43, NR Band n77 FDL_box 12, 13, 14, 17, 18, 19, 21, 24, 25, 26, 29, 30, 31, 34, 39, 40, 42, 34, 48, 50, 15, 65, 66, 70, 71, 73, 74, 85 FDL_box FDL_box FDL_box FDL_hop FDL_hop -50 1 NR Band n77, n78, n79 FDL_box - FDL_hop -50 1 Frequency range 703 - FDL_hop -50 1 Frequency range 703 - 799 -50 1 Frequency range 703 - 799 -50 1 Frequency range 945 - 960 -50 1 Frequency range 945 - 960 -50 1 Frequency range 945 - 960 -50 1 Frequency range 14884.5 - 1915.7 -41 0.3 12, 20, 25, 26, 27, 31, 34, 38, 39, 40, 41, 52, 72, 73 FDL_hop - FDL_hop -50 1 Frequency range 470 - FDL_hop -50 1 Frequency range 773 - 803 -50 <th></th> <th>E-UTRA Band 2</th> <th>FDL_low</th> <th>-</th> <th>F_{DL_high}</th> <th>-50</th> <th>1</th> <th>15</th>		E-UTRA Band 2	FDL_low	-	F_{DL_high}	-50	1	15		
NR Band n77 Fol_low Fol_low Fol_high -50 1 n26 E-UTRA Band 1, 2, 3, 4, 5, 11, 26, 29, 30, 31, 34, 39, 40, 42, 43, 48, 50, 51, 65, 66, 70, 71, 73, 74, 85 Fol_low - Fol_high -50 1 Reurn RA Band 41, 53 Fol_low - Fol_high -50 1 Frequency range 703 - 799 -50 1 Frequency range 703 - 799 -50 1 Frequency range 703 - 799 -50 1 Frequency range 1884.5 - 1915.7 -41 0.3 n28, n83 E-UTRA Band 1, 4, 22, 32, 42, 43, 50, 51, 65, 66, 74, 75, 76, NR Band n77, n78 Fol_low - Fol_high -50 1 E-UTRA Band 1, 2, 72, 73 NR Fol_low - Fol_high -50 1 Requency range 470 - Fol_high -50 1 Frequency range 773 - 803 -50 1 Frequency range 778		E-UTRA Band 25	F _{DL_low}	-	F_{DL_high}	-50	1	15		
n26 E-UTRA Band 1, 2, 3, 4, 5, 11, 12, 13, 14, 17, 18, 19, 21, 24, 25, 62, 29, 30, 31, 34, 39, 40, 42, 43, 48, 50, 51, 65, 66, 70, 71, 73, 74, 85 FDL_low - FDL_high -50 1 E-UTRA Band 41, 53 NR Band n77, n78, n79 FDL_low - FDL_high -50 1 Frequency range 703 - 799 -50 1 Frequency range 703 - 799 -50 1 Frequency range 794 - 803 -40 1 Frequency range 786 - 1915.7 -41 0.3 n28, n83 E-UTRA Band 1.4, 22, 32, 42, 43, 50, 51, 65, 66, 74, 75, 76, NR Band n79 FDL_low - FDL_high -50 1 Frequency range 470 - 694 -42 8 Frequency range 773 <td< td=""><td></td><td></td><td>F_{DL_low}</td><td>-</td><td>F_{DL_high}</td><td>-50</td><td>1</td><td>2</td></td<>			F _{DL_low}	-	F _{DL_high}	-50	1	2		
12, 13, 14, 17, 18, 19, 21, 24, 25, 26, 29, 30, 31, 34, 39, 40, 42, 34, 48, 50, 51, 65, 66, 70, 71, 73, 74, 85 - FoL_high -50 1 REAR E-UTRA Band 41, 53 Frequency range FOL_low - FoL_high -50 1 Frequency range 703 - 799 -50 1 Frequency range 703 - 799 -50 1 Frequency range 945 - 960 -50 1 Frequency range 1884.5 - 1915.7 -41 0.3 n28, n83 E-UTRA Band 1, 4, 22, 32, 42, 43, 50, 51, 65, 66, 74, 75, 76, NR Band n77, n78 FDL_bw - FDL_high -50 1 E-UTRA Band 1, 52, 72, 73 NR Band n79 FDL_bw - FDL_high -50 1 Frequency range 470 - 694 -42 8 Frequency range 662 - 694 -42 8 Frequency range 768 - 773 -32 1 Frequency range 768 - 773										
NR Band n77, n78, n79 Image Total Image Total Total <thtotal< th=""> Total Total<!--</td--><td>n26</td><td>12, 13, 14, 17, 18,19, 21, 24, 25, 26, 29, 30, 31, 34, 39, 40, 42, 43, 48, 50, 51, 65, 66, 70, 71,</td><td>F_{DL_low}</td><td>-</td><td>F_{DL_high}</td><td>-50</td><td>1</td><td></td></thtotal<>	n26	12, 13, 14, 17, 18,19, 21, 24, 25, 26, 29, 30, 31, 34, 39, 40, 42, 43, 48, 50, 51, 65, 66, 70, 71,	F _{DL_low}	-	F _{DL_high}	-50	1			
Frequency range 799 - 803 -40 1 Frequency range 945 - 960 -50 1 Frequency range 1884.5 - 1915.7 -41 0.3 n28, n83 E-UTRA Band 1, 4, 22, 32, 42, 43, 50, 51, 65, 66, 74, 75, 76, NR Band n77, n78 FDL_low - FDL_high -50 1 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 39, 40, 41, 52, 72, 73 FDL_low - FDL_high -50 1 R Band n79 - FDL_low - FDL_high -50 1 Frequency range 470 - 694 -42 8 Frequency range 470 - 694 -26.2 6 Frequency range 758 - 773 -32 1 Frequency range 758 - 1915.7 -41 0.3 n30 E-UTRA Band 2, 4, 5, 7, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 48, 53, 66, 70, 71, 85, NR Band n77 FDL_low - FDL_high -50 1 n34			F _{DL_low}	-	FDL_high	-50	1	2		
Frequency range 945 - 960 -50 1 Frequency range 1884.5 - 1915.7 -41 0.3 n28, n83 E-UTRA Band 1, 4, 22, 32, 42, 43, 50, 51, 65, 66, 74, 75, 76, NR Band n77, n78 FDL_low - FDL_high -50 1 E-UTRA Band 1 FDL_low - FDL_high -50 1 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 62, 72, 31, 34, 38, 39, 40, 41, 52, 72, 73 FDL_low - FDL_high -50 1 Frequency range 470 - FDL_high -50 1 Frequency range 470 - FDL_high -50 1 Frequency range 758 - 773 -32 1 Frequency range 778 - 1915.7 -41 0.3 n30 E-UTRA Band 1, 3, 7, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 48, 53, 66, 70, 71, 85, NR Band n77 - FDL_low - FDL_high -50 1 n34 E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 26, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 69, 72,		Frequency range	703	-	799	-50	1			
Frequency range 1884.5 - 1915.7 -41 0.3 n28, n83 E-UTRA Band 1, 4, 22, 32, 42, 43, 50, 51, 65, 66, 74, 75, 76, NR Band n77, n78 FDL_low - FDL_high -50 1 E-UTRA Band 1 FDL_box - FDL_high -50 1 E-UTRA Band 1, 52, 75, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 39, 40, 41, 52, 72, 73 FDL_low - FDL_high -50 1 RB and n79 FDL_low - FDL_high -50 1 Frequency range 470 - 694 -422 8 Frequency range 470 - 694 -26.2 6 Frequency range 758 - 773 -32 1 Frequency range 773 - 803 -50 1 Frequency range 778 - 1915.7 -41 0.3 n30 E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 26, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 69, 72, 74, 75, 76, NR Band n77 FDL_low - FDL_high -50 1		Frequency range	799	-	803	-40	1	15		
Frequency range 1884.5 - 1915.7 -41 0.3 n28, n83 E-UTRA Band 1, 4, 22, 32, 42, 43, 50, 51, 65, 66, 74, 75, 76, NR Band n77, n78 FDL_low - FDL_high -50 1 E-UTRA Band 1, 7, 78 FDL_bow - FDL_high -50 1 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 39, 40, 41, 52, 72, 73 FDL_low - FDL_high -50 1 NR Band n79 FDL_low - FDL_high -50 1 Frequency range 470 - 694 -422 8 Frequency range 662 - 694 -26.2 6 Frequency range 758 - 773 -32 1 Frequency range 778 - 1915.7 -41 0.3 n30 E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 52, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 69, 72, 74, 75, 76, NR Band n77 FDL_low - FDL_high -50 1 N38 E-UTRA Band 1, 2, 3, 4, 5, 8, 12, 13, 14, 17, 20, 22, 27, 28, 33, 38, 39, 40, 41, 42, 43, 44,			945	-	960	-50	1			
n28, n83 E-UTRA Band 1, 4, 22, 32, 42, 43, 50, 51, 65, 66, 74, 75, 76, NR Band n77, n78 FDL_low - FDL_high 50 1 E-UTRA Band 1 FDL_low - FDL_high 50 1 E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 39, 40, 41, 52, 72, 73 FDL_low - FDL_high 50 1 NR Band n79 - FDL_low - FDL_high 50 1 Frequency range 470 - FDL_high 50 1 Frequency range 662 - 694 -42 8 Frequency range 758 - 7773 -32 1 Frequency range 758 - 7773 -32 1 Frequency range 758 - 1915.7 -41 0.3 n30 E-UTRA Band 2, 4, 5, 7, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 48, 53, 66, 70, 71, 85, NR Band n77 - FDL_high -50 1 n34 E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 26, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 69, 72, 74, 75, 76, NR Band n7		. , ,		-		-41	0.3	8		
E-UTRA Band 2, 3, 5, 7, 8, 18, 19, 20, 25, 26, 27, 31, 34, 38, 39, 40, 41, 52, 72, 73 FDL_low - FDL_high -50 1 E-UTRA Band 179 - FDL_low - FDL_high -50 1 Frequency range 470 - 694 -42 8 Frequency range 470 - 694 -42 8 Frequency range 470 - 694 -42 8 Frequency range 662 - 694 -26.2 6 Frequency range 773 - 803 -50 1 Frequency range 1884.5 - 1915.7 -411 0.3 n30 E-UTRA Band 2, 4, 5, 7, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 48, 53, 66, 70, 71, 85, NR Band n77 FDL_low - FDL_high -50 1 n34 E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 26, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 69, 72, 74, 75, 76, NR Band n77 FDL_low - FDL_high -50 1 Frequency range 1884.5 1915.7 -41 <td>n28, n83</td> <td>43, 50, 51, 65, 66, 74, 75, 76, NR Band n77, n78</td> <td></td> <td>-</td> <td>F_{DL_high}</td> <td>-50</td> <td>1</td> <td>2</td>	n28, n83	43, 50, 51, 65, 66, 74, 75, 76, NR Band n77, n78		-	F _{DL_high}	-50	1	2		
19, 20, 25, 26, 27, 31, 34, 38, 39, 40, 41, 52, 72, 73 NR Band n79 -			FDL_low	-	FDL_high	-50	1	19, 25		
Frequency range 470 - 694 -42 8 Frequency range 470 - 710 -26.2 6 Frequency range 662 - 694 -26.2 6 Frequency range 758 - 773 -32 1 Frequency range 773 - 803 -50 1 Frequency range 1884.5 - 1915.7 -41 0.3 n30 E-UTRA Band 2, 4, 5, 7, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 48, 53, 66, 70, 71, 85, NR Band n77 FDL_low - FDL_high -50 1 n34 E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 26, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 69, 72, 74, 75, 76, NR Band n78, n79 - FDL_low - FDL_high -50 1 frequency range 1884.5 - 1915.7 -41 0.3 n38 E-UTRA Band 1, 2, 3, 4, 5, 8, 12, 13, 14, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68, 72, 74, 75, 76, 85 - FDL_high -50 1 NR Band n77, n78, n79		19, 20, 25, 26, 27, 31, 34, 38, 39, 40, 41, 52, 72, 73 NR Band n79		-						
Frequency range 470 - 710 -26.2 6 Frequency range 662 - 694 -26.2 6 Frequency range 758 - 773 -32 1 Frequency range 773 - 803 -50 1 Frequency range 1884.5 - 1915.7 -41 0.3 n30 E-UTRA Band 2, 4, 5, 7, 12, 13, 14, 50, 26, 27, 29, 30, 38, 41, 48, 53, 66, 70, 71, 85, NR Band n77 FDL_low - FDL_high -50 1 n34 E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 26, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 69, 72, 74, 75, 76, NR Band n78, n79 - FDL_low - FDL_high -50 1 NR Band n77 FDL_low - FDL_high -50 1 - NR Band n78, n79 - FDL_low - FDL_high -50 1 Frequency range 1884.5 - 1915.7 -41 0.3 138 E-UTRA Band 1, 2, 3, 4, 5, 8, 12, 10, 10 - FDL_low					-			19, 24		
Frequency range 662 - 694 -26.2 6 Frequency range 758 - 773 -32 1 Frequency range 773 - 803 -50 1 Frequency range 1884.5 - 1915.7 -41 0.3 n30 E-UTRA Band 2, 4, 5, 7, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 48, 53, 66, 70, 71, 85, NR Band n77 FDL_low - FDL_high -50 1 n34 E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 26, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 69, 72, 74, 75, 76, NR Band n78, n79 - FDL_low - FDL_high -50 1 NR Band n77 FDL_low - FDL_high -50 1 Frequency range 1884.5 - 1915.7 -41 0.3 NR Band n77 FDL_low - FDL_high -50 1 Frequency range 1884.5 - 1915.7 -41 0.3 n38 E-UTRA Band 1, 2, 3, 4, 5, 8, 12, 13, 14, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68				-			-	15, 35		
Frequency range 758 - 773 -32 1 Frequency range 773 - 803 -50 1 Frequency range 1884.5 - 1915.7 -41 0.3 n30 E-UTRA Band 2, 4, 5, 7, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 48, 53, 66, 70, 71, 85, NR Band n77 FDL_low - FDL_high -50 1 n34 E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 26, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 69, 72, 74, 75, 76, NR Band n78, n79 FDL_low - FDL_high -50 1 NR Band n78, n79 FDL_low - FDL_high -50 1 NR Band n74, n79, n79 FDL_low - FDL_high -50 1 NR Band n77, n78, n79 FDL_low - FDL_high -50 1 NR Band n77, n78, n79 FDL_low - FDL_high -50 1 NR Band n77, n78, n79 FDL_low - FDL_high -50 1 NR Band n77, n78, n79 FDL_low - FDL_high -50				-				34		
Frequency range 773 - 803 -50 1 Frequency range 1884.5 - 1915.7 -41 0.3 n30 E-UTRA Band 2, 4, 5, 7, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 48, 53, 66, 70, 71, 85, NR Band n77 FDL_low - FDL_high -50 1 n34 E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 26, 28, 31, 32, 33, 38,39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 69, 72, 74, 75, 76, NR Band n78, n79 FDL_low - FDL_high -50 1 NR Band n77 FDL_low - FDL_high -50 1 NR Band n78, n79 NR Band n77 FDL_low - FDL_high -50 1 Frequency range 1884.5 - 1915.7 -41 0.3 n38 E-UTRA Band 1, 2, 3, 4, 5, 8, 12, 13, 14, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68, 72, 74, 75, 76, 85 - FDL_low - FDL_high -50 1 NR Band n77, n78, n79 FDL_lo W - FDL_high -50 1 1				-				15		
Frequency range 1884.5 - 1915.7 -41 0.3 n30 E-UTRA Band 2, 4, 5, 7, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 48, 53, 66, 70, 71, 85, NR Band n77 FDL_low - FDL_high -50 1 n34 E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 26, 28, 31, 32, 33, 38,39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 69, 72, 74, 75, 76, NR Band n78, n79 FDL_low - FDL_high -50 1 NR Band n77 FDL_low - FDL_high -50 1 NR Band n78, n79 FDL_low - FDL_high -50 1 NR Band n78, n79 FDL_low - FDL_high -50 1 NR Band n77 FDL_low - FDL_high -50 1 Frequency range 1884.5 - 1915.7 -41 0.3 n38 E-UTRA Band 1, 2, 3, 4, 5, 8, 12, 13, 14, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68, 72, 74, 75, 76, 85 - FDL_high -50 1 NR Band n77, n78, n79 FDL_lo W - FDL_high -50 1				-				15		
n30 E-UTRA Band 2, 4, 5, 7, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 48, 53, 66, 70, 71, 85, NR Band n77 FDL_low - FDL_high -50 1 n34 E-UTRA Band 1, 3, 7, 8, 11, 18, 19, 20, 21, 22, 26, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 69, 72, 74, 75, 76, NR Band n78, n79 FDL_low - FDL_high -50 1 n38 E-UTRA Band 1, 2, 3, 4, 5, 8, 12, 13, 14, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68, 72, 74, 75, 76, 85 FDL_low - FDL_high -50 1 n38 E-UTRA Band 1, 2, 3, 4, 5, 8, 12, 13, 14, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68, 72, 74, 75, 76, 85 FDL_low - FDL_high -50 1 NR Band n77, n78, n79 FDL_lo W - FDL_high -50 1			-	-		-50	-			
14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 48, 53, 66, 70, 71, 85, NR Band n77 - </td <td></td> <td></td> <td>1884.5</td> <td>-</td> <td></td> <td></td> <td>0.3</td> <td>8, 19</td>			1884.5	-			0.3	8, 19		
19, 20, 21, 22, 26, 28, 31, 32, 33, 38, 39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 69, 72, 74, 75, 76, NR Band n78, n79 - - FDL_high -50 1 NR Band n77 FDL_low - FDL_high -50 1 Frequency range 1884.5 - 1915.7 -41 0.3 n38 E-UTRA Band 1, 2, 3, 4, 5, 8, 12, 13, 14, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68, 72, 74, 75, 76, 85 - FDL_low - FDL_high -50 1 NR Band n77, n78, n79 FDL_lo - FDL_high -50 1		14, 17, 24, 25, 26, 27, 29, 30, 38, 41, 48, 53, 66, 70, 71, 85, NR Band n77		-						
Frequency range 1884.5 - 1915.7 -41 0.3 n38 E-UTRA Band 1, 2, 3, 4, 5, 8, 12, 13, 14, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68, 72, 74, 75, 76, 85 FDL_low - FDL_high -50 1 NR Band n77, n78, n79 FDL_lo - FDL_hi -50 1	n34	19, 20, 21, 22, 26, 28, 31, 32, 33, 38,39, 40, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 69, 72, 74, 75, 76,		-	FD∟_high	-50	1	5		
n38 E-UTRA Band 1, 2, 3, 4, 5, 8, 12, 13, 14, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68, 72, 74, 75, 76, 85 NR Band n77, n78, n79 FDL_lo W gh		NR Band n77	FDL_low	-	FDL_high	-50	1	2		
12, 13, 14, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68, 72, 74, 75, 76, 85 NR Band n77, n78, n79 FDL_lo w gh			1884.5	-	1915.7	-41	0.3	8		
NR Band n77, n78, n79 w gh	n38	12, 13, 14, 17, 20, 22, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68,		-						
Frequency range 2620 - 2645 -15.5 5		NR Band n77, n78, n79		-	gh		1			
		Frequency range	2620	-	2645	-15.5	5	15, 22, 26		
Frequency range 2645 - 2690 -40 1		Frequency range	2645	-	2690	-40	1	15, 22		

NR Band	Spurious emission for UE co-existence								
	Protected band	tected band Frequency range (MHz)				MBW (MHz)	NOTE		
n39, n98	E-UTRA Band 1, 8, 22, 26, 28, 34, 40, 41, 42, 44, 45, 50, 51, 52, 74, NR Band n79	F _{DL_low}	-	FDL_high	(dBm) -50	1			
	NR Band n77, n78	F _{DL_low}	-	FDL_high	-50	1	2		
	Frequency range	1805	-	1855	-40	1	33		
	Frequency range	1855	-	1880	-15.5	5	15, 26, 33		
n40, n97	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 68, 69, 72, 74, 75, 76, NR Band n77, n78	FDL_low	-	FDL_high	-50	1	44		
	NR Band n79	F_{DL_low}	-	F_{DL_high}	-50	1	2		
	Frequency range	1884.5	-	1915.7	-41	0.3	8		
n41	E-UTRA Band 1, 2, 3, 4, 5, 8, 12, 13, 14, 17, 24, 25, 26, 27, 28, 29, 30, 34, 39, 42, 44, 45, 48, 50, 51, 52, 65, 66, 70, 71, 73, 74, 85, NR Band n77, n78	FDL_low	-	F _{DL_high}	-50	1			
	E-UTRA Band 40	F_{DL_low}	-	F_{DL_high}	-40	1			
	NR Band n79	F _{DL_low}	-	F_{DL_high}	-50	1	2		
	E-UTRA Band 11, 18, 19, 21	F _{DL_low}	-	FDL_high	-50	1			
	Frequency range	1884.5		1915.7	-41	0.3	8		
n47	E-UTRA Band 1, 3, 5, 7, 8, 22, 26, 28, 34, 39, 40, 41, 42, 44, 45, 65, 68, 72, 73	FDL_lo W	-	FDL_hi gh	-50	1			
	NR Band n71, n77, n78, n79	FDL_lo w	-	FDL_hi gh	-50	1			
n48	E-UTRA Band 2, 4, 5, 12, 13, 14, 17, 24, 25, 26, 29, 30, 41, 50, 51, 66, 70, 71, 74, 85	F _{DL_low}	-	F _{DL_high}	-50	1			
n50	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 12, 13, 17, 20, 26, 28, 29, 31, 34, 38, 39, 40, 41, 42, 43, 48, 65, 66, 67, 68	F _{DL_low}	-	F _{DL_high}	-50	1			
n51	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 12, 13, 17, 20, 26, 28, 29, 31, 34, 38, 39, 40, 41, 42, 43, 48, 52, 65, 66, 67, 68, 85	F _{DL_low}	-	$F_{DL_{high}}$	-50	1			
n53	E-UTRA Band 2, 4, 5, 12, 13, 14, 17, 24, 25, 26, 29, 30, 48, 66, 70, 71, 85, NR Band n77	F _{DL_low}	-	F_{DL_high}	-50	1			
n65	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 32, 38, 40, 41, 42, 43, 50, 51, 65, 68, 69, 72, 74, 75, 76, NR Band n78, n79	F _{DL_low}	-	F _{DL_high}	-50	1			
	NR Band n77	FDL_low	-	FDL_high	-50	1	2		
	E-UTRA Band 34	F _{DL_low}	-	F _{DL_high}	-50	1	43		
	Frequency range	1900	-	1915	-15.5	5	15, 26, 27		

NR Band

959									
Spurious emission for UE co-existence									
Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	NOTE			
ency range	1915	-	1920	+1.6	5	15, 26, 27			
A Band 2, 4, 5, 7, 12, 13, 25, 26, 27, 28, 29, 30, 43, 50, 51, 53, 66, 70, 85	FDL_low	-	FDL_high	-50	1				

					Level (dBm)	(MHz)	
	Frequency range	1915	-	1920	+1.6	5	15, 26, 27
n66, n86	E-UTRA Band 2, 4, 5, 7, 12, 13, 14, 17, 25, 26, 27, 28, 29, 30, 38, 41, 43, 50, 51, 53, 66, 70, 71, 74, 85	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 42, 48, NR Band n77	F _{DL_low}	-	F_{DL_high}	-50	1	2
n70	E-UTRA Band 2, 4, 5, 12, 13, 14, 17, 24, 25, 26, 29, 30, 41, 48, 66, 70, 71, 85	F _{DL_low}	-	F _{DL_high}	-50	1	
	NR Band n47, n77	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50	1	2
n71	E-UTRA Band 4, 5, 12, 13, 14, 17, 24, 26, 30, 48, 53, 66, 85	F _{DL_low}	-	FDL_high	-50	1	
	E-UTRA Band 2, 25, 41, 70, NR Band n77	F _{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA Band 29	F _{DL_low}	-	FDL_high	-38	1	15
	E-UTRA Band 71	F _{DL_low}	-	FDL_high	-50	1	15
n74	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 12, 13, 17, 18, 19, 20, 26, 28, 29, 31, 34, 38, 39, 40, 41, 42, 43, 48, 52, 65, 66, 67, 68, 85 NR Band n77, n78, 103	F _{DL_low}	-	F _{DL_high}	-50	1	
	NR Band n79	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	8
	Frequency range	1400	-	1427	-32	27	15, 41
	Frequency range	1475	-	1488	-28	1	15, 42
	Frequency range	1475	-	1488	-50	1	15, 45
	Frequency range	1475.9	-	1510.9	-35	1	15, 46
	Frequency range	1488	-	1518	-50	1	15
n77	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 11, 12, 13, 14, 17, 18, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 34, 39, 40, 41, 53, 65, 66, 70, 71, 74, 85, 103	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n78	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65, 75, 76	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n79	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 21, 28, 34, 39, 40, 41, 42, 65, 74	F _{DL_low}	-	FDL_high	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	8
n85	E-UTRA Band 2, 5, 13, 14, 17, 24, 25, 26, 27, 30, 41, 53, 70, 71, 74, 103	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 4, 48, 51, 66 NR Band n77, n78	F _{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA Band 12, 85	F_{DL_low}	-	F_{DL_high}	-50	1	15
n95	E-UTRA Band 1, 3 , 5, 8, 28, 39, 40, 41, NR Band n78, n79	F _{DL_low}	-	F _{DL_high}	-50	1	5
	NR Band n77	F _{DL_low}	-	F_{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	8

NR Band	Spurious emission for UE co-existence										
	Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	NOTE				
n101	E-UTRA Band 1, 3, 8, 20, 22, 28, 31, 32, 33, 34, 38, 40, 43, 50, 51, 52, 65, 67, 68, 69, 72, 74, 75, 76	F _{DL_low}	-	F _{DL_high}	-50	1					
	E-UTRA Band 7, 41, 42 NR Band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1	2				
	Frequency range	758	-	788	-50	1					

NOTE 1:	F_{DL_low} and F_{DL_high} refer to each frequency band specified in Table 5.2-1 in TS 38.101-1 [2] or
	Table 5.5-1 in TS 36.101
NOTE 2:	As exceptions, measurements with a level up to the applicable requirements defined in Table
	6.5.3.1-2 are permitted for each assigned NR carrier used in the measurement due to 2nd, 3rd, 4th
	or 5th harmonic spurious emissions. Due to spreading of the harmonic emission the exception is
	also allowed for the first 1 MHz frequency range immediately outside the harmonic emission on
	both sides of the harmonic emission. This results in an overall exception interval centred at the
	harmonic emission of (2 MHz + N x L _{CRB} x RB _{size} kHz), where N is 2, 3, 4, 5 for the 2nd, 3rd, 4th or
	5th harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally
	or partially overlaps the overall exception interval.
NOTE 3:	15 kHz SCS is assumed when RB is mentioned in the note when channel bandwidth is less than
	or equal to 50 MHz, lowest SCS is assumed when channel bandwidth is larger than 50 MHz. The
	transmission bandwidth in terms of RB position and range is not limited to 15 kHz SCS and shall
	scale with SCS accordingly.
NOTE 4:	
NOTE 5:	For non-synchronised TDD operation to meet these requirements some restriction will be needed
	for either the operating band or protected band
NOTE 6:	
NOTE 7:	
	Applicable when co-existence with PHS system operating in 1884.5 - 1915.7 MHz.
NOTE 9:	
NOTE 10	
NOTE 11	
NOTE 12	: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation <
NOTE 13	0.5 dB
NOTE 13	
-	
NOTE 15	: These requirements also apply for the frequency ranges that are less than FOOB (MHz) in Table
NOTE 16	6.5.3.1-1 from the edge of the channel bandwidth.
NOTE 17	
NOTE 18	
	: Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the
	channel bandwidth used is 5 or 10 MHz.
NOTE 20	
	This requirement is applicable for any channel bandwidths up to 20MHz within the range 2500 -
	2570 MHz with the following restriction: for carriers of 15 MHz bandwidth when carrier centre
	frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when
	carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for
	an uplink transmission bandwidth less than or equal to 54 RB.
NOTE 22	This requirement is applicable for power class 3 UE for any channel bandwidths up to 20 MHz. For
	channel bandwidth within the range 2570 - 2615 MHz with the following restriction: for carriers of
	15 MHz bandwidth when the carrier centre frequency is within the range 2605.5 - 2607.5 MHz and
	for carriers of 20 MHz bandwidth when the carrier centre frequency is within the range 2597 - 2605
	MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to
	54 RB. For carriers overlapping the frequency range 2615 - 2620 MHz the requirement applies
	with the maximum output power configured to +19 dBm in the IE P-Max.
NOTE 23	
NOTE 24	As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is
	permitted for each assigned NR carrier used in the measurement due to 2nd harmonic spurious
	emissions. An exception is allowed if there is at least one individual RB within the transmission
	bandwidth (see Figure 5.3.1-1) for which the 2nd harmonic totally or partially overlaps the
	measurement bandwidth (MBW).
NOTE 25	: As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is
	permitted for each assigned NR carrier used in the measurement due to 3rd harmonic spurious
	emissions. An exception is allowed if there is at least one individual RB within the transmission
	bandwidth (see Figure 5.3.1-1) for which the 3rd harmonic totally or partially overlaps the measurement bandwidth (MBW)
	measurement bandwidth (MBW). : For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s)
1101220	
NOTE 27	operating in the protected operating band. This requirement is applicable for channel bandwidths up to 20 MHz within the range 1920 - 1980
	MHz with the following restriction: for carriers of 15 MHz bandwidth when the carrier centre

NR Band	Spurious emission for UE co-existence						
	Protected band	Frequency range (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE		
	frequency is within the range 1927.	5 - 1929.5 MHz and for carrie	ers of 20 MHz	bandwidth	when the		
	carrier centre frequency is within the		e requirement	is applicab	le only fo		
	an uplink transmission bandwidth le	ess than or equal to 54 RB.					
NOTE 28:							
NOTE 29:							
NOTE 30:							
NOTE 31:							
NOTE 32:	Void This requirement is only applicable						
	1885-1920 MHz (requirement for ca specified). This requirement applies RB for carriers of 15 MHz bandwidth 1894.5 MHz and for carriers of 20 M range 1895 - 1903 MHz.	for an uplink transmission b h when carrier center freque	andwidth less ncy is within th	than or eq e range 18	ual to 54 392.5 -		
NOTE 34:	This requirement is applicable for 5	and 10 MHz NR channel ba	ndwidth alloca	ted within 7	718-728		
	MHz. For carriers of 10 MHz bandw						
	bandwidth less than or equal to 30 l						
NOTE 35:	This requirement is applicable in the			hin 703 Mł	Iz and		
	733 MHz, otherwise the requirement	nt of -25 dBm with a measure	ment bandwic	th of 8 MH	z applies		
NOTE 36:	Void						
NOTE 37:							
NOTE 38:							
NOTE 39:							
NOTE 40:							
NOTE 41:	Applicable for cases and when the I frequency is greater than or equal to bandwidth, and when the lower edg greater than or equal to 1440 MHz to verified with UE transmission power	o 1427 MHz + the channel B le of the assigned NR UL cha for 15 and 20 MHz bandwidtl	W assigned fo annel bandwid	r 5 and 10 th frequenc	MHz cy is		
NOTE 42:	Applicable when upper edge of the 1460MHz and more than 1460MHz when the upper edge of the assigned 1465 MHz for 10 MHz bandwidth.	and less than or equal to 14	70MHz for 5 N	1Hz bandw	idth, and		
NOTE 43:	This requirement is applicable for N	R channel bandwidth allocat	ed within 1920)-1980 MH	z.		
	As exceptions, for 90 and 100 MHz						
	frequency range of 2496 - 2505 MH	Ηz.					
NOTE 45:	Applicable when upper edge of the less than 1460MHz.		ndwidth freque	ency is equ	al to or		
NOTE 46	Applicable for 5MHz bandwidth and	when the ND corrier is within	n 1 1 1 7 0 1 1				

NOTE: To simplify Table 6.5.3.2.3-2 and 6.5.3.2.3-3, E-UTRA band numbers are listed for bands which are specified only for E-UTRA operation or both E-UTRA and NR operation. NR band numbers are listed for bands which are specified only for NR operation.

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.2. This test use minimum requirements from many releases of TS 38.101-1 [2] due to release independence defined in TS 38.307 [23].

6.5.3.2.4 Test description

6.5.3.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with

applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in Table 6.5.3.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions						
Test Enviror	Test Environment as specified in TS Normal					
38.508-1 [5]	subclause 4.1.					
Test Freque	ncies as specified in TS	Low range, Mid range	e, High range (NOTE 2)			
38.508-1 [5]	subclause 4.3.1.					
Test Channe	el Bandwidths as specified in	Lowest, Mid, Highest				
TS 38.508-1	[5] subclause 4.3.1.					
Test SCS as	s specified in Table 5.3.5-1	Lowest				
		Test Parameters				
Test ID	Downlink Configuration		Uplink Configuration			
	N/A	Modulation	RB allocation (NOTE 1)			
1		CP-OFDM QPSK	Outer_Full			
2		CP-OFDM QPSK	Edge_1RB_Left			
3		CP-OFDM QPSK	Edge_1RB_Right			
NOTE 1: T	he specific configuration of each	RB allocation is defined	d in Table 6.1-1 Common UL configuration.			
NOTE 2: F	or NR band n28, 30MHz test cha	nnel bandwidth is teste	d with Low range and High range test			
fr	equencies.					

Table 6.5.3.2.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.3.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.3.2.4.3.

6.5.3.2.4.2 Test procedure

- 1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.3.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the power of the transmitted signal with a measurement filter of bandwidths according to Tables 6.5.3.2.3-1 to 6.5.3.2.3-3. The centre frequency of the filter shall be stepped in contiguous steps according to Tables 6.5.3.2.3-1 to 6.5.3.2.3-3. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5.3.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5.3.2.5 Test requirement

Test requirements for Spurious Emissions UE Co-existence are the same as the minimum requirements and are not repeated in this section.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) in Tables 6.5.3.1.3-1 from the edge of the channel bandwidth. The spurious emission limits in Tables 6.5.3.2.3-1 to 6.5.3.2.3-3 apply for all transmitter band configurations (NRB) and channel bandwidths.

The measured average power of spurious emission, derived in step 3, shall not exceed the described value in Table 6.5.3.2.3-1 to 6.5.3.2.3-3 for difference releases.

The requirements for the UE are release specific and can be found in Tables 6.5.3.2.3-1 to 6.5.3.2.3-3. If the UE support a band, which is not defined in the table corresponding UE's release, the requirements for this band are taken from the table of earliest release where requirements for this band are defined. This has been described in following Table 6.5.3.2.5-1.

UE Requirements per release NR Band Rel-15 Rel-16 R17				
n1	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n2	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n2	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n5	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n7	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n8	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n12	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n14	Table 6.5.3.2.3-2	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n18	Table 6.5.3.2.3-2	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n20	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n24	Table 6.5.3.2.3-3	Table 6.5.3.2.3-3	Table 6.5.3.2.3-3	
n25	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n26	Table 6.5.3.2.3-2	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n28	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n30	Table 6.5.3.2.3-2	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n34	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n38	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n39	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n40	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n41	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n48	Table 6.5.3.2.3-2	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n50	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n51	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n53	Table 6.5.3.2.3-2	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n65	Table 6.5.3.2.3-2	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n66	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n70	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n71	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n74	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n77, n78	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
n79	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3	
 NOTE 1: The frequency range applicable with network signalling values of NS_04, NS_17, NS_18, NS_05, NS_43, NS_37, NS_38, NS_39, NS_40, NS_41, NS_42, NS_45 and NS_56 are covered in subclause 6.5.3.3 Additional Spurious Emissions NOTE 2: The restriction on the maximum uplink transmission to 54 RB in Notes 21 and 22 of Tables 6.5.3.2.3-1 to 6.5.3.2.3-3 is intended for conformance testing and may be applied to network operation to facilitate coexistence 				
when the aggressor and victim bands are deployed in the same geographical area. The applicable spurious emission requirement of - 15.5 dBm/5MHz is a least restrictive technical condition for FDD/TDD coexistence and may have to be revised in the future.				

Table 6.5.3.2.5-1: UE Requirements according to UE NR release and supported E-UTRA and NR band

6.5.3.3 Additional spurious emissions

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined

Initial conditions for NS_37, NS_38, NS_39, NS_40, NS_41, NS_42, NS_45 and NS_50 are incomplete.

The requirements of this test case for NS_44, NS_46, NS_47, NS_48, and NS_49 apply to all types of NR UE release 16 forward, and release 15 if the corresponding channel bandwidths are supported.

6.5.3.3.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions under the deployment scenarios where additional requirements are specified.

6.5.3.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.3.3.3 Minimum conformance requirements

These requirements are specified in terms of an additional spectrum emission requirement. Additional spurious emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

6.5.3.3.3.1 Minimum conformance requirements (network signalling value "NS_04")

When "NS 04" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.1-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100	Measurement bandwidth
2495 ≤ f < 2496	-13	1% of Channel BW
2490.5 ≤ f < 2495	-13	1 MHz
0.009 < f < 2490.5	-25	1 MHz

Table 6.5.3.3.3.1-1: Additional requirements for "NS_04"

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.1.

6.5.3.3.3.2 Minimum conformance requirements (network signalling value "NS_17")

When "NS_17" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.2-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3.2-1: Additional requirements for "NS_17"

Frequency band	Channel bandwidth (MHz)/ Spectrum emission limit (dBm)	Measurement bandwidth	NOTE
(MHz)	5, 10		
470 ≤ f ≤ 710	-26.2	6 MHz	1
NOTE 1: Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth is 5 or 10 MHz.			

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.2.

6.5.3.3.3.3 Minimum conformance requirements (network signalling value "NS_18")

When "NS_18" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.3-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3.1: Additional requirements for "NS_18"

Frequency band (MHz)	Channel bandwidth (MHz)/ Spectrum emission limit (dBm) 5, 10, 15, 20, 30	Measurement bandwidth	
692-698	-26.2	6 MHz	

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.3.

6.5.3.3.3.4 Minimum conformance requirements (network signalling value "NS_05" and "NS_05U")

When "NS_05" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.4-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3.4-1: Additional requirements for "NS_05" and "NS_05U"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 5, 10, 15, 20	Measurement bandwidth	NOTE
$1884.5 \le f \le 1915.7$	-41	300 kHz	

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.4.

6.5.3.3.3.5 Minimum conformance requirements (network signalling value "NS_43" and "NS_43U")

When "NS_43" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.5-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3.5-1: Additional requirement for "NS_43" and "NS_43U"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 5, 10, 15	Measurement bandwidth	
860 ≤ f ≤ 890	-40	1 MHz	
NOTE 1: Applicable for 5 MHz and 15 MHz channel BW confined between 900 MHz and			
915 MHz and for 10 MHz channel BW confined between 905 MHz and 915			
MHz			

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.5.

6.5.3.3.3.6 Minimum conformance requirements (network signalling value "NS_37")

When "NS 37" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.6-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.6-1: Additional req	uirement for "NS_37"
-----------------------------------	----------------------

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm)	Measurement bandwidth
(5, 10, 15, 20	banamam
1475.9 ≤ f ≤ 1510.9	-35	1 MHz

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.6.

6.5.3.3.3.7 Minimum conformance requirements (network signalling value "NS_38")

When "NS 38" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.7-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm)	Measurement bandwidth
	5, 10, 15, 20	
1400 ≤ f ≤ 1427	-32	27 MHz
NOTE 1: This requirement shall be verified with UE transmission power of 15 dBm.		

Table 6.5.3.3.7-1: Additional requirements for "NS_38"

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.7.

6.5.3.3.3.8 Minimum conformance requirements (network signalling value "NS_39")

When "NS 39" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.8-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.8-1: Additional requirements for "NS_39	9"
---	----

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 5, 10, 15, 20	Measurement bandwidth
1475 ≤ f ≤ 1488	-28	1MHz

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.8.

6.5.3.3.3.9 Minimum conformance requirements (network signalling value "NS_40")

When "NS_40" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.9-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3.9-1: Additional requirements for NR channels assigned within 1427-1452MHz for "NS_40"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 5	Measurement bandwidth
1400 ≤ f ≤ 1427	-32	27 MHz
NOTE 1: This requirement shall be verified with UE transmission power of 15 dBm.		

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.9.

6.5.3.3.3.10 Minimum conformance requirements (network signalling value "NS_41")

When "NS_41" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.10-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3.10-1: Additional requirements for NR channels assigned within 1432-1517 MHz for "NS_41"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm)	Measurement bandwidth
	5, 10, 15, 20, 40, 50, 60	

1400 ≤ f ≤ 1427	-32	27 MHz		
NOTE 1: This requirement shall be verified with UE transmission power of 15 dBm.				

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.10.

6.5.3.3.3.11 Minimum conformance requirements (network signalling value "NS_42")

When "NS_42" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.11-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3.11-1: Additional requirements for NR channels assigned within 1432-1517MHz for "NS_42"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm)	Measurement bandwidth
	5, 10, 15, 20, 40, 50, 60	
1518 ≤f≤1520	-0.8	1 MHz
1520 < f ≤ 1559	-30	1 MHz

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.11.

6.5.3.3.3.12 Minimum conformance requirements (network signalling value "NS_21")

When "NS_21" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.12-1. These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 5, 10	Measurement bandwidth
2200 ≤ f < 2288	-40	1 MHz
2288 ≤ f < 2292	-37	1 MHz
2292 ≤ f < 2296	-31	1 MHz
2296 ≤ f < 2300	-25	1 MHz
2320 ≤ f < 2324	-25	1 MHz
2324 ≤ f < 2328	-31	1 MHz
2328 ≤ f < 2332	-37	1 MHz
2332 ≤ f ≤ 2395	-40	1 MHz

Table 6.5.3.3.3.12-1: Additional requirements for "NS_21"

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.12.

6.5.3.3.3.13 Minimum conformance requirements (network signalling value "NS_24")

When "NS 24" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.13-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm)	Measurement bandwidth			
5, 10, 15, 20					
2010 ≤ f ≤ 2025	-50	1 MHz			
NOTE 1: This requirement applies at a frequency offset equal or larger than 5 MHz from the upper edge of the channel bandwidth, whenever these frequencies overlap with the specified frequency band.					

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.13.

6.5.3.3.3.14 Minimum conformance requirements (network signalling value "NS_27")

When "NS 27" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.14-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency range (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 5, 10, 15, 20, 30, 40	Measurement bandwidth
9 kHz – 3530 MHz	-40	
3530 MHz – 3540 MHz	-25	1 MHz
3710 MHz – 3720 MHz	-25	1 1011 12
3720 MHz – 12.75 GHz	-40	

Table 6.5.3.3.14-1: Additional requirements for "NS_27"

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.14.

6.5.3.3.3.15 Minimum conformance requirements (network signalling value "NS_47")

When "NS_47" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.15-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3.15-1: Additional requirements for NR channels assigned within 2545 - 2575 MHz for
"NS_47"

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 30	Measurement bandwidth
2530 ≤ f ≤ 2535	-25	1 MHz
2505 ≤ f ≤ 2530	-30	1 MHz

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.15.

6.5.3.3.3.16 Minimum conformance requirements (network signalling value "NS_50")

When "NS_50" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.16-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Protected band	Frequency range (MHz)		ge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE
Frequency range	1805	-	1855	-40	1	1
Frequency range	1855	-	1880	-15.5	5	1, 2, 3
 NOTE 1: This requirement is applicable for carriers with aggregated channel bandwidths confined in 1885-1920 MHz for ≤ 30MHz channel BWs and confined in 1880-1920 MHz for 40MHz channel BW. NOTE 2: The requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth. NOTE 3: For these adiagont bands, the emission limit aculd imply risk of barmful interference to UE(a) operating in 						
NOTE 3: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.						

Table 6.5.3.3.3.16-1: Additional requirements for "NS_50"

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.16.

6.5.3.3.3.17 Minimum conformance requirements (network signalling value "NS_12")

When "NS_12" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.17-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3.17-1: Additional requirements for "NS_12"

Frequency band (MHz)	(MHz) Spectrum emission limit (dBm)			
	5 MHz, 10 MHz			
806 ≤ f ≤ 813.5	6.25 kHz			
NOTE 1: The requirement applies for NR carriers with lower channel edge at or above 814 MHz.				
NOTE 2: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB.				

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.17.

6.5.3.3.3.18 Minimum conformance requirements (network signalling value "NS_13")

When "NS_13" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.18-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Spectrum emission limit (dBm)	Measurement bandwidth					
	5 MHz						
806 ≤ f ≤ 816	-42	6.25 kHz					
NOTE 1: The requirement applies for NR carriers with lower channel edge at or above 817 MHz.							
	NOTE 2: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB.						

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.18.

6.5.3.3.3.19 Minimum conformance requirements (network signalling value "NS_14")

When "NS_14" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.19-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth				
	10 MHz, 15 MHz, 20MHz					
806 ≤ f ≤ 816	-42	6.25 kHz				
NOTE 1: The requirement applies for NR carriers with lower channel edge at or above 824 MHz.						
NOTE 2: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB.						

Table 6.5.3.3.3.19-1: Additional requirements for "NS_14"

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.19.

6.5.3.3.3.20 Minimum conformance requirements (network signalling value "NS_15")

When "NS_15" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.20-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3.20-1: Additional	I requirements NS_1	5
----------------------------------	---------------------	---

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth					
	5 MHz, 10 MHz, 15 MHz, 20 MHz						
851 ≤ f ≤ 859	-53	6.25 kHz					
NOTE 1: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB.							

6.5.3.3.3.21 Minimum conformance requirements (network signalling value "NS_45")

When "NS_45" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.21-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel b Spectrum limit (Measurement bandwidth	
	5 MHz	10 MHz	
0.009 < f ≤ 2473.5	-25	-25	1 MHz
2473.5 < f ≤ 2477.5	-25	-13	1 MHz
2477.5 < f ≤ 2478.5	-13	-13	1 MHz
2478.5< f ≤ 2483.5	-10	-10	1 MHz
2495 ≤ f < 2496	-13	-13	1% of Channel Bandwidth
2496 ≤ f < 2501	-13	-13	1 MHz
2501 < f ≤ 2505	-25	-13	1 MHz
$2505 \le f \le 5^{th}$ harmonic of the upper frequency edge of the UL operating band	-25	-25	1 MHz

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.21.

6.5.3.3.3.22 Minimum conformance requirements (network signalling value "NS_48" and "NS_51")

When "NS_48" or "NS_51" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.22-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Protected band	Frequency range (MHz)		nge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE
E-UTRA band 34 –	F		F	FO	4	
NR band n34	FDL_low	-	FDL_high	-50	I	
Frequency range	1900	-	1915	-15.5	5	1
Frequency range	1915	-	1920	+1.6	5	1
NOTE 1: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in						
the protected operating band.						

Table 6.5.3.3.3.22-1: Additional requirements for "NS_48"

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.22.

6.5.3.3.3.23 Minimum conformance requirements (network signalling value "NS_49")

When "NS_49" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.23-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.3.23-1: Additional requirements for "NS_49"

Protected band	Frequen	cy ra	nge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE
E-UTRA band 34 -	E		E	-50	1	
NR band n34	FDL_low	-	FDL_high	-50	I	
Frequency range	1880	-	1895	-40	1	
Frequency range	1895		1915	-15.5	5	1
Frequency range	1915	-	1920	1.6	5	1
NOTE 1: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in						
the protected operating band.						

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.23.

6.5.3.3.3.24 Minimum conformance requirements (network signalling value "NS_44")

When "NS_44" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.24-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Protected band	Frequency range (MHz)			Maximum Level (dBm)	MBW (MHz)	NOTE
Frequency range	2620	-	2645	-15.5	5	1, 2
Frequency range	2645	-	2690	-40	1	1
NOTE 1: This requirement is applicable for carriers confined in 2570-2615 MHz.						
NOTE 2: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in						
the protected operating band.						

Table 6.5.3.3.3.24-1: Additional requirements for "NS_44"

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.24.

6.5.3.3.3.25 Minimum conformance requirements (network signalling value "NS_46")

When "NS_46" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.25-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Protect	ed band	Frequen	cy ran	ge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE
Frequency	range	2570	-	2575	+1.6	5	1, 2
Frequency	range	2575	-	2595	-15.5	5	1, 2
Frequency	range	2595	-	2620	-40	1	1
NOTE 1: This requirement is applicable for all carriers confined in 2500-2570 MHz. Special restrictions apply for channel bandwidths up to 20MHz: For carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB with the minimum supported SCS of 15KHz.							
	NOTE 2: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.						

Table 6.5.3.3.25-1: Additional requirements for "NS_46"

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.25.

6.5.3.3.3.26 Minimum conformance requirements (network signalling value "NS_07")

6.5.3.3.26-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1-1 from the edge of the channel bandwidth.

Table 6.5.3.3.26-1: Additional requirements

Frequency band		Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth			
(MF	łz)	10 MHz				
769 ≤ f ≤ 775		-57	6.25 kHz			
NOTE: The emissions measurement shall be sufficiently power averaged to ensure standard standard deviation < 0.5 dB.						

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.26.

6.5.3.3.3.27 Minimum conformance requirements (network signalling value "NS_56")

When "NS_56" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.3.27-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit ¹ (dBm) 5 MHz, 10MHz	Measurement bandwidth	NOTE
1541 ≤ f ≤ 1559	-102	2kHz	Averaged over any 2 millisecond active transmission interval
1559≤ f ≤ 1608	-85	700Hz	
1608≤ f ≤ 1610	-85 +5/2 (f-1608)	700Hz	
1610≤ f ≤ 1625	-80+ 66/15 (f-1610)	700Hz	
1541 ≤ f ≤ 1608	-75	1MHz	Averaged over any 2 millisecond active transmission interval
1608≤ f ≤ 1610	-75 + 5/2 (f-1608)	1MHz	
1610≤ f ≤ 1627.5	-70+ 57/17.5 (f-1610)	1MHz	
1627.5	-37	4kHz	
1638.5 ≤f ≤ 1645.5	-28	4kHz	
1657.5 ≤f ≤ 1660.5	-28	4kHz	
NOTE 1: The EIRP I a 0 dBi ant		s converted to con	ducted requirement using

Table 6.5.3.3.27-1: Additional requirements

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.3.27.

6.5.3.3.4 Test description

6.5.3.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All these configurations shall be tested with applicable test parameters for each channel bandwidth and sub-carrier spacing, are shown in Tables 6.5.3.3.4.1-1 through Table 6.5.3.3.4.1-27 for different NS values. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5.3.3.4.1-1: Test Configuration Table (network signalling value "NS_04")

Same test configuration as listed in Table 6.2.3.4.1-2 shall be used with the following exceptions:

Test Channel Bandwidths shall be: 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, and 100 MHz.

Test SCS shall be: Lowest.

Table 6.5.3.3.4.1-2: Test Config	ouration Table (r	network signalling	value "NS 17")
Table 0.3.3.3.4.1-2. Test 00111	guiadon rabie (i	ietwork signalling	

Initial Conditions				
	nment as specified in TS 38.508-1 [5]	Normal		
subclause 4	.1			
Test Freque	ncies as specified in TS 38.508-1 [5]	Mid range		
subclause 4	.3.1			
Test Channe	el Bandwidths as specified in TS 38.508-1	5MHz, 10MHz		
[5] subclaus	e 4.3.1			
Test SCS as	s specified in Table 5.3.5-1	able 5.3.5-1 Lowest		
	Test P	arameters		
Test ID	Downlink Configuration	Uplink Con	figuration	
		Modulation	RB allocation (NOTE 1)	
1	N/A	CP-OFDM QPSK OuterFull		
2		CP-OFDM QPSK	Edge_1RB_Left	
NOTE 1: T	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration			

Table 6.5.3.3.4.1-3: Test Configuration Table (network signalling value "NS_18")

Same test configuration as listed in Table 6.2.3.4.1-11 shall be used with the following exceptions:

Test Channel Bandwidths shall be: 5, 10, 20 and 30 MHz.

Test SCS shall be: Lowest.

Table 6.5.3.3.4.1-4: Test Configuration Table (network signalling value "NS_05" and "NS_05U")

Same test configuration as listed in Table 6.2.3.4.1-4 for NS_05 and Table 6.2.3.4.1-5 for NS_05U shall be used with the following exceptions:

- Test SCS shall be: [Lowest].

Table 6.5.3.3.4.1-5: Test Configuration Table (network signalling value "NS_43" and "NS_43U")

Same test configuration as listed in Table 6.2.3.4.1-6 for NS_43 and Table 6.2.3.4.1-7 for NS_43U shall be used with the following exceptions:

- Test Channel Bandwidths shall be: [5, 10, and 15] MHz
 - Test SCS shall be: [Lowest].

Table 6.5.3.3.4.1-6: Test Configuration Table (network signalling value "NS_37")

Same test configuration as listed in Table 6.2.3.4.1-8 shall be used with the following exceptions:

- Test SCS shall be: [Lowest].

Table 6.5.3.3.4.1-7: Test Configuration Table (network signalling value "NS_38")

Initial Conditions				
Test Enviror	ment as specified in TS 38.508-1 [5]	Normal		
subclause 4	.1			
Test Freque	ncies as specified in TS 38.508-1 [5]	[TBD]		
subclause 4	.3.1			
Test Channe	el Bandwidths as specified in TS 38.508-1	[TBD]		
[5] subclaus	e 4.3.1			
Test SCS as	s specified in Table 5.3.5-1	[TBD]		
	Test P	arameters		
Test ID	Downlink Configuration	Uplink Configuration		
		Modulation	RB allocation (NOTE 1)	
1	N/A for Spurious Emissions testing	FFS	FFS	
2		FFS	FFS	
3		FFS	FFS	
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 Common UL configuration				

Table 6.5.3.3.4.1-8: Test Configuration Table (network signalling value "NS_39")

Initial Conditions				
Test Enviror	nment as specified in TS 38.508-1 [5]	Normal		
subclause 4	.1			
Test Freque	encies as specified in TS 38.508-1 [5]	[TBD]		
subclause 4	.3.1			
Test Channe	el Bandwidths as specified in TS 38.508-1	[TBD]		
[5] subclaus				
Test SCS as	s specified in Table 5.3.5-1	[TBD]		
	Test P	arameters		
Test ID	Downlink Configuration	Uplink C	Configuration	
		Modulation	RB allocation (NOTE 1)	
1	N/A for Spurious Emissions testing	FFS	FFS	
2		FFS	FFS	
3	3 FFS FFS			
5		•		

Table 6.5.3.3.4.1-9: Test Configuration Table (network signalling value "NS_40")

TBD

Table 6.5.3.3.4.1-10: Test Configuration Table (network signalling value "NS_41")

TBD

Table 6.5.3.3.4.1-11: Test Configuration Table (network signalling value "NS_42")

TBD

Table 6.5.3.3.4.1-12: Test Configuration Table (network signalling value "NS_45")

Same test configuration as listed in Table 6.2.3.4.1-20 shall be used.

Table 6.5.3.3.4.1-13: Test Configuration Table (network signalling value "NS_24")

Same test configuration as listed in Table 6.2.3.4.1-12 shall be used.

Table 6.5.3.3.4.1-14: Test Configuration Table (network signalling value "NS_27")

Same test configuration as listed in Table 6.2.3.4.1-13 shall be used with the following exceptions:

- Test SCS shall be: Lowest.

Table 6.5.3.3.4.1-15: Test Configuration Table (network signalling value "NS_47")

Same test configuration as listed in Table 6.2.3.4.1-17, Table 6.2.3.4.1-17a and Table 6.2.3.4.1-18 shall be used with the following exceptions:

Test Channel Bandwidths shall be: 30 MHz.

Test SCS shall be: Lowest.

Table 6.5.3.3.4.1-16: Test Configuration Table (network signalling value "NS_50")

Same test configuration as listed in Table [6.2.3.4.1-31] shall be used.

Table 6.5.3.3.4.1-17: Test Configuration Table (network signalling value "NS_12")

Same test configuration as listed in Table 6.2.3.4.1-20 shall be used.

Table 6.5.3.3.4.1-18: Test Configuration Table (network signalling value "NS_13")

Same test configuration as listed in Table 6.2.3.4.1-21 shall be used.

Table 6.5.3.3.4.1-19: Test Configuration Table (network signalling value "NS_14")

Same test configuration as listed in Table 6.2.3.4.1-23 shall be used with the following exceptions:

- Test Frequency shall be: High Range.

Table 6.5.3.3.4.1-20: Test Configuration Table (network signalling value "NS_15")

Same test configuration as listed in Table 6.2.3.4.1-23 shall be used.

Table 6.5.3.3.4.1-21: Test Configuration Table (network signalling value "NS_45")

TBD

Table 6.5.3.3.4.1-22: Test Configuration Table (network signalling value "NS_48")

Same test configuration as listed in Table 6.2.3.4.1-19 shall be used with the following exceptions:

- Test Channel Bandwidths shall be: 25, 30, 40, 45 and 50 MHz

- Test SCS shall be: Lowest.

Table 6.5.3.3.4.1-23: Test Configuration Table (network signalling value "NS_49")

Same test configuration as listed in Table 6.2.3.4.1-29 shall be used with the following exceptions:

- Test Channel Bandwidths shall be: 25, 30, 40, and 50 MHz
- Test SCS shall be: Lowest.

Table 6.5.3.3.4.1-24: Test Configuration Table (network signalling value "NS_44")

Same test configuration as listed in Table 6.2.3.4.1-26 shall be used with the following exceptions:

- Test SCS shall be: Lowest.

Table 6.5.3.3.4.1-25: Test Configuration Table (network signalling value "NS_21")

Same test configuration as listed in Table 6.2.3.4.1-27shall be used with the following exceptions:

Test SCS shall be: Lowest.

Table 6.5.3.3.4.1-27: Test Configuration Table (network signalling value "NS_56")

Same test configuration as listed in Table 6.2.3.4.1-30 shall be used.

Table 6.5.3.3.4.1-28: Test Configuration Table (network signalling value "NS_46")

Same test configuration as listed in Table 6.2.3.4.1-25 shall be used with the following exceptions:

- Test SCS shall be: Lowest.
- Test Channel Bandwidths shall be: 25 and 50 MHz
- 1. Connect the SS to the UE to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.3.3.4.1-1 through Table 6.5.3.3.4.1-27.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.3.3.4.3.

6.5.3.3.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.3.3.4.1-1 through Table 6.5.3.3.4.1-27. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration in Tables 6.5.3.3.4.1-1 through 6.5.3.3.4.1-27 as appropriate, which shall meet the requirements in clause 6.5.3.3.5 with allowed A-MPR values if specified in Tables 6.2.3.5-1 through 6.2.3.5-27 as appropriate per test condition specified in Tables 6.2.3.4.1-1 through 6.2.3.4.1-30 as appropriate. The measured power shall be verified for each step. The measurement period shall capture the active time slots.
- 4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to clauses 6.5.3.3.3.1 to 6.5.3.3.27 as appropriate. The centre frequency of the filter shall be stepped in contiguous steps according to the same table.

6.5.3.3.4.3 Message contents

6.5.3.3.4.3.1 Message contents exceptions (network signalling value "NS_04")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_04. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.1-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_04"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1				
Information Element Value/remark Comment Condition				
additionalSpectrumEmission	1 (NS_04)			

6.5.3.3.4.3.2 Message contents exceptions (network signalling value "NS_17")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_17. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.2-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_17"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element Value/remark Comment Condition			
additionalSpectrumEmission	1 (NS_17)		

6.5.3.3.4.3.3 Message contents exceptions (network signalling value "NS_18")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_18. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.3-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_18"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1				
Information Element Value/remark Comment Condition				
additionalSpectrumEmission	2 (NS_18)			

6.5.3.3.4.3.4 Message contents exceptions (network signalling value "NS_05")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_05. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.4-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_05"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element Value/remark Comment Condition			
additionalSpectrumEmission	2 (NS_05)		

6.5.3.3.4.3.4a Message contents exceptions (network signalling value "NS_05U")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_05U. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.4a-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_05U"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1				
Information Element Value/remark Comment Condition				
additionalSpectrumEmission	3 (NS_05U)			

6.5.3.3.4.3.5 Message contents exceptions (network signalling value "NS_43")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_43. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.5-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_43"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element Value/remark Comment Condition			
additionalSpectrumEmission	2 (NS_43)		

6.5.3.3.4.3.5a Message contents exceptions (network signalling value "NS_43U")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_43U. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.5a-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_43U"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element Value/remark Comment Condition			
additionalSpectrumEmission	3 (NS_43U)		

6.5.3.3.4.3.6 Message contents exceptions (network signalling value "NS_37")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_37. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.6-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_37"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_37)		

6.5.3.3.4.3.7 Message contents exceptions (network signalling value "NS_38")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_38. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.7-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_38"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	2 (NS_38)		

6.5.3.3.4.3.8 Message contents exceptions (network signalling value "NS_39")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_39. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.8-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_39"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	3 (NS_39)		

6.5.3.3.4.3.9 Message contents exceptions (network signalling value "NS_40")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_40. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.9-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_40"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4	.6.3-1		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_40)		

6.5.3.3.4.3.10 Message contents exceptions (network signalling value "NS_41")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_41. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.10-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_41"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_41)		

6.5.3.3.4.3.11 Message contents exceptions (network signalling value "NS_42")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_42. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.11-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_42"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	2 (NS_42)		

6.5.3.3.4.3.12 Message contents exceptions (network signalling value "NS_21")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_21. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.12-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_21"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element Value/remark Comment Condition			
additionalSpectrumEmission	1 (NS_21)		

6.5.3.3.4.3.13 Message contents exceptions (network signalling value "NS_24")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_24. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.13-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_24"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_24)		

6.5.3.3.4.3.14 Message contents exceptions (network signalling value "NS_27")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_27. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.14-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_27"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_27)		

6.5.3.3.4.3.15 Message contents exceptions (network signalling value "NS_47")

1. Information element additionalSpectrumEmission is set to NS_47. This can be set in the *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.15-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_47"

Derivation Path: TS 38.508-1 [5], Table 4.6.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	2 (NS_47)		

6.5.3.3.4.3.16 Message contents exceptions (network signalling value "NS_50")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_50. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.16-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_50"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_50)		

6.5.3.3.4.3.17 Message contents exceptions (network signalling value "NS_12")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_12. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.17-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_12"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_12)		

6.5.3.3.4.3.18 Message contents exceptions (network signalling value "NS_13")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_13. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.18-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_13"

	Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element Value/remark Co				Condition
	additionalSpectrumEmission	1 (NS_13)		

6.5.3.3.4.3.19 Message contents exceptions (network signalling value "NS_14")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

- 984
- 1. Information element additionalSpectrumEmission is set to NS_14. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.19-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_14"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element Value/remark Comment Conditi			
additionalSpectrumEmission	1 (NS_14)		

6.5.3.3.4.3.20 Message contents exceptions (network signalling value "NS_15")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_15. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.20-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_15"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element Value/remark Comment Cond			
additionalSpectrumEmission	1 (NS_15)		

6.5.3.3.4.3.21 Message contents exceptions (network signalling value "NS_45")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_45. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.21-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_45"

Derivation Path: TS 38.508-1 [5], Table 4.6.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_45)		

6.5.3.3.4.3.22 Message contents exceptions (network signalling value "NS_48")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_48. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.22-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_48"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element Value/remark Comment Condition			
additionalSpectrumEmission	4 (NS_48)		

6.5.3.3.4.3.23 Message contents exceptions (network signalling value "NS_49")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

- 985
- 1. Information element additionalSpectrumEmission is set to NS_49. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.23-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_49"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element Value/remark Comment Condition			
additionalSpectrumEmission	5 (NS_49)		

6.5.3.3.4.3.24 Message contents exceptions (network signalling value "NS_44")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_44. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.24-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_44"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element Value/remark Comment Cond			Condition
additionalSpectrumEmission	1 (NS_44)		

6.5.3.3.4.3.25 Message contents exceptions (network signalling value "NS_46")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_46. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.25-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_46"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element Value/remark Comment Conditi			
additionalSpectrumEmission	1 (NS_46)		

6.5.3.3.4.3.26 Message contents exceptions (network signalling value "NS_07")

FFS.

6.5.3.3.4.3.27 Message contents exceptions (network signalling value "NS_56")

Message contents are according to TS 38.508-1 [5] subclause 4.6, with the following exceptions:

1. Information element additionalSpectrumEmission is set to NS_56. This can be set in *SIB1* as part of the cell broadcast message. This exception indicates that the UE shall meet the additional spurious emission requirement for a specific deployment scenario.

Table 6.5.3.3.4.3.27-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_56"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1			
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_56)		

6.5.3.3.5 Test requirement

This clause specifies the requirements for the specified NR band for an additional spectrum emission requirement with protected bands as indicated from Table 6.5.3.3.5.1 to Table 6.5.3.3.5.27 for different NS_values.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5.3.3.5.1 Test requirement (network signalling value "NS_04")

When "NS 04" is indicated in the cell,

- The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Table 6.2.3.5-2 for power class 2 UE, and Table 6.2.3.5-3 for power class 3 UE.
- The power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.1-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100 (MHz)	Measurement bandwidth
2495 ≤ f < 2496	-13	1% of Channel BW
2490.5 ≤ f < 2495	-13	1 MHz
0.009 < f < 2490.5	-25	1 MHz

Table 6.5.3.3.5.1-1: Additional requirements

6.5.3.3.5.2 Test requirement (network signalling value "NS_17")

When "NS_17" is indicated in the cell,

The power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.2-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 and Table 6.5.3.1.3-2 from the edge of the channel bandwidth.

Frequency band	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth	NOTE
(MHz)	5, 10 MHz		
470 ≤ f ≤ 710	-26.2	6 MHz	1
NOTE 1: Applicable when the assigned E-UTRA carrier is confined within 718 MHz and 748 MHz and when the channel bandwidth used is 5 or 10 MHz.			

6.5.3.3.5.3 Test requirement (network signalling value "NS_18")

When "NS_18" is indicated in the cell,

- The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Table 6.2.3.5-8 for power class 3 UE.
- The power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.3-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency range (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5, 10, 15, 20, 30 MHz	Measurement bandwidth	
692-698	-26.2	6 MHz	

Table 6.5.3.3.5.3-1: Additional requirements for "NS_18"

6.5.3.3.5.4 Test requirement (network signalling value "NS_05" and "NS_05U")

When "NS 05" or "NS_05U" is indicated in the cell,

- The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Table 6.2.3.5-6 for power class 3 UE.
- The power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.4-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.5.4-1: Additional requirements for "NS_05" and "NS_05U"

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5, 10, 15, 20 MHz	Measurement bandwidth	
1884.5 ≤ f ≤ 1915.7	-41	300 kHz	

6.5.3.3.5.5 Test requirement (network signalling value "NS_43" and "NS_43U")

When "NS_43" or "NS_43U" is indicated in the cell,

- The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Table 6.2.3.5-10 for power class 3 UE.
- The power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.5-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency range (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5, 10, 15 MHz	Measurement bandwidth		
860 ≤ f ≤ 890	-40	1 MHz		
NOTE 1: Applicable for 5 MHz and 15 MHz channel BW confined between 900 MHz and 915 MHz and for 10 MHz channel BW confined between 905 MHz and 915 MHz				

6.5.3.3.5.6 Test requirement (network signalling value "NS_37")

When "NS_37" is indicated in the cell,

- The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Table 6.2.3.5-14 for power class 3 UE.
- The power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.6-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

	Frequency band (MHz)	(dBm)	Measurement bandwidth
		5, 10, 15, 20	
	1475.9 ≤ f ≤ 1510.	9 -35	1 MHz
6.5	5.3.3.5.7	Test requirement (network signalling value "NS_38")	
TB	D		
6.5	5.3.3.5.8	Test requirement (network signalling value "NS_39")	
TB	D		
6.5	5.3.3.5.9	Test requirement (network signalling value "NS_40")	
TB	D		
6.5	5.3.3.5.10	Test requirement (network signalling value "NS_41")	
TB	D		
6.5	5.3.3.5.11	Test requirement (network signalling value "NS_42")	
TB	D		
6.5	5.3.3.5.12	Test requirement (network signalling value "NS_21")	

Table 6.5.3.3.5.6-1: Additional requirement for "NS_37"

When "NS_21" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.12-1. These requirements also apply for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 5, 10	Measurement bandwidth
2200 ≤ f < 2288	-40	1 MHz
2288 ≤ f < 2292	-37	1 MHz
2292 ≤ f < 2296	-31	1 MHz
2296 ≤ f < 2300	-25	1 MHz
2320 ≤ f < 2324	-25	1 MHz
2324 ≤ f < 2328	-31	1 MHz
2328 ≤ f < 2332	-37	1 MHz
2332 ≤ f ≤ 2395	-40	1 MHz

Table 6.5.3.3.5.12-1: Additional requirements for "NS_21"

6.5.3.3.5.13 Test requirement (network signalling value "NS_24")

When "NS 24" is indicated in the cell,

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Table 6.2.3.5-17.

The power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.13-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm)	Measurement bandwidth		
	5 MHz, 10 MHz, 15 MHz, 20 MHz			
2010 ≤ f ≤ 2025	-50	1 MHz		
NOTE 1: This requirement applies at a frequency offset equal or larger than 5 MHz from the upper edge of the channel bandwidth, whenever these frequencies overlap with the specified frequency band.				

Table 6.5.3.3.5.13-1: Additional requirements

6.5.3.3.5.14 Test requirement (network signalling value "NS_27")

When "NS_27" is indicated in the cell,

- The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Table 6.2.3.5-18 for power class 3 UE.
- The power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.14-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.5.14-1: Additional req	uirement for "NS_27"
--------------------------------------	----------------------

Frequency range (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 5, 10, 15, 20, 30, 40	Measurement bandwidth
9 kHz – 3530 MHz	-40	
3530 MHz – 3540 MHz	-25	1 MHz
3710 MHz – 3720 MHz	-25	
3720 MHz – 12.75 GHz	-40	

6.5.3.3.5.15 Test requirement (network signalling value "NS_47")

When "NS 47" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.15-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth (MHz) / Spectrum emission limit (dBm) 30	Measurement bandwidth
2530 ≤ f ≤ 2535	-25	1 MHz
2505 ≤ f ≤ 2530	-30	1 MHz

6.5.3.3.5.16 Test requirement (network signalling value "NS_50")

When "NS_50" is indicated in the cell, the power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.16-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Protected band	Frequence	:y ran	ge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE
Frequency range	1805	-	1855	-40	1	1
Frequency range	1855	-	1880	-15.5	5	1, 2, 3
 NOTE 1: This requirement is applicable for carriers with aggregated channel bandwidths confined in 1885-1920 MHz for ≤ 30MHz channel BWs and confined in 1880-1920 MHz for 40MHz channel BW. NOTE 2: The requirement also applies for the frequency ranges that are less than F_{00B} (MHz) in Table 6.5.3.1.3-1 						
 from the edge of the channel bandwidth. NOTE 3: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band. 						

Table 6.5.3.3.5.16-1: Additional requirements for "NS_50"

6.5.3.3.5.17

Test requirement (network signalling value "NS_12")

	Table 6.5.3.3.5.17-1: Additional req	uirements for "NS_12"
--	--------------------------------------	-----------------------

Frequency band (MHz)	Measurement bandwidth				
5 MHz, 10 MHz 806 ≤ f ≤ 813.5 -42 6.25 kHz					
NOTE 1: The requirement applies for E-UTRA carriers with lower channel edge at or					
above 814 MHz.					
NOTE 2: The emissions measurement shall be sufficiently power averaged to ensure a					
standard devia	ation < 0.5 dB.				

6.5.3.3.5.18

Test requirement (network signalling value "NS_13")

Table 6.5.3.3.5.18-1: Additional red	quirements for "NS_13"
--------------------------------------	------------------------

Frequency band (MHz)	Measurement bandwidth				
	5 MHz				
806 ≤ f ≤ 816 -42 6.25 kHz					
NOTE 1: The requirement applies for E-UTRA carriers with lower channel edge at or above 817 MHz.					
NOTE 2: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB.					

6.5.3.3.5.19 Test requirement (network signalling value "NS_14")

Table 6.5.3.3.5.19-1: Additional requirements for "NS_14"

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 10 MHz, 15 MHz, 20MHz	Measurement bandwidth		
000 45 4040				
806 ≤ f ≤ 816	-42	6.25 kHz		
NOTE 1: The requireme above 817 MH	NOTE 1: The requirement applies for E-UTRA carriers with lower char			
NOTE 2: The emissions measurement shall be sufficiently power averaged to ensure a				
standard devia		aged to ensure a		

6.5.3.3.5.20

Test requirement (network signalling value "NS_15")

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit (dBm) 5 MHz, 10 MHz, 15 MHz, 20 MHz	Measurement bandwidth			
851 ≤ f ≤ 859	-53	6.25 kHz			
NOTE 1: The emissions measurement shall be sufficiently power averaged to ensure a standard deviation < 0.5 dB.					

Table 6.5.3.3.5.20-1: Additional requirements for "NS_15"

6.5.3.3.5.21 Test requirement (network signalling value "NS_45")

When "NS 45" is indicated in the cell,

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Table 6.2.3.5-29.

The power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.21-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel b Spectrum limit (Measurement bandwidth	
	5 MHz	10 MHz	
0.009 < f ≤ 2473.5	-25	-25	1 MHz
2473.5 < f ≤ 2477.5	-25	-13	1 MHz
2477.5 < f ≤ 2478.5	-13	-13	1 MHz
2478.5< f ≤ 2483.5	-10	-10	1 MHz
2495 ≤ f < 2496	-13	-13	1% of Channel Bandwidth
2496 ≤ f < 2501	-13	-13	1 MHz
2501 < f ≤ 2505	-25	-13	1 MHz
$2505 \le f \le 5^{th}$ harmonic of the upper frequency edge of the UL operating band	-25	-25	1 MHz

Table 6.5.3.3.5.21-1: Additional requirements

6.5.3.3.5.22 Test requirement (network signalling value "NS_48")

When "NS 48" is indicated in the cell,

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Table 6.2.3.5-24.

The power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.22-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Protected band	Frequency range (MHz)		nge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE
E-UTRA band 34 – NR band n34	F _{DL_low}	-	F_{DL_high}	-50	1	
Frequency range	1900	-	1915	-15.5	5	1
Frequency range	1915	-	1920	+1.6	5	1
NOTE 1: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.						

Table 6.5.3.3.5.22-1: Additional requirements

6.5.3.3.5.23 Test requirement (network signalling value "NS_49")

When "NS 49" is indicated in the cell,

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Table 6.2.3.5-33.

The power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.23-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Table 6.5.3.3.5.23-1: Additional requirements

Protected band	Frequen	cy ra	nge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE
E-UTRA band 34 -	F _{DL_low}	-	FDL_high	-50	1	
NR band n34						
Frequency range	1880	-	1895	-40	1	
Frequency range	1895		1915	-15.5	5	1
Frequency range	1915	-	1920	1.6	5	1
NOTE 1: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in						
the protected	operating ban	d.				

6.5.3.3.5.24 Test requirement (network signalling value "NS_44")

When "NS 44" is indicated in the cell,

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Table 6.2.3.5-31.

The power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.24-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Protected band	Frequency range (MHz)		ge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE
Frequency range	2620	-	2645	-15.5	5	1, 2
Frequency range	2645	-	2690	-40	1	1
NOTE 1: This requirement is applicable for carriers confined in 2570-2615 MHz. NOTE 2: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.						

Table 6.5.3.3.5.24-1: Additional requirements

6.5.3.3.5.25 Test requirement (network signalling value "NS_46")

When "NS_46" is indicated in the cell, the measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Table 6.2.3.5-30. The power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.25-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Protected I	band	Frequency range (MHz) Maxi		Maximum Level (dBm)	MBW (MHz)	NOTE	
Frequency ran	ge	2570	- 2575 +1.6 5 1,2				1, 2
Frequency ran	ge	2575	-	2595	-15.5	5	1, 2
Frequency ran	ge	2595	-	2620	-40	1	1
NOTE 1: This requirement is applicable for all carriers confined in 2500-2570 MHz. Sepcial restrictions apply for channel bandwidths up to 20MHz: For carriers of 15 MHz bandwidth when carrier centre frequency is within the range 2560.5 - 2562.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the range 2552 - 2560 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB with the minimum supported SCS of 15KHz.							
	NOTE 2: For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in the protected operating band.						

Table 6.5.3.3.25-1: Additional requirements for "NS_46"

6.5.3.3.5.26 Test requirement (network signalling value "NS_07")

FFS

6.5.3.3.5.27 Test requirement (network signalling value "NS_56")

When "NS 56" is indicated in the cell,

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Table 6.2.3.5-36.

The power of any UE emission shall not exceed the levels specified in Table 6.5.3.3.5.27-1. This requirement also applies for the frequency ranges that are less than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency band (MHz)	Channel bandwidth / Spectrum emission limit ¹ (dBm) 5 MHz, 10MHz	Measurement bandwidth	NOTE				
1541 ≤ f ≤ 1559	-102	2kHz	Averaged over any 2millisecond active transmission interval				
1559≤ f ≤ 1608	-85	700Hz					
1608≤ f ≤ 1610	-85 +5/2 (f-1608)	700Hz					
1610≤ f ≤ 1625	-80+ 66/15 (f-1610)	700Hz					
1541 ≤ f ≤ 1608	-75	1MHz	Averaged over any 2millisecond active transmission interval				
1608≤ f ≤ 1610	-75 + 5/2 (f-1608)	1MHz					
1610≤ f ≤ 1627.5	-70+ 57/17.5 (f-1610)	1MHz					
1627.5	-37	4kHz					
1638.5 ≤f ≤ 1645.5	-28	4kHz					
1657.5 ≤f ≤ 1660.5	-28	4kHz					
	NOTE 1: The EIRP requirement in regulation is converted to conducted requirement using a 0 dBi antenna.						

Table 6.5.3.3.5.27-1: Additional requirements

6.5.4 Transmit intermodulation

6.5.4.1 Test purpose

To verify that the UE transmit intermodulation does not exceed the described value in the test requirement.

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non-linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

6.5.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward.

6.5.4.3 Minimum conformance requirements

UE transmit intermodulation is defined by the ratio of the mean power of the wanted signal to the mean power of the intermodulation product when an interfering CW signal is added at a level below the wanted signal at each transmitter antenna port with the other antenna port(s) if any terminated. Both the wanted signal power and the intermodulation product power are measured through NR rectangular filter with measurement bandwidth shown in Table 6.5.4.3-1.

The requirement of transmit intermodulation is specified in Table 6.5.4.3-1.

Table 6.5.4.3-1: Transmit Intermodulation

Wanted signal channel bandwidth	BW	VChannel		
Interference signal frequency offset from channel centre	BWChannel	2*BW _{Channel}		
Interference CW signal level	-40dBc			
Intermodulation product	< -29dBc	< -35dBc		
Measurement bandwidth	The maximum transmission bandwidth configuration among the different SCSs for the channel BW as defined in Table 6.5.2.4.1.3-1			
Measurement offset from channel centre	BWChannel and 2*BWChannel	2*BWChannel and 4*BWChannel		

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.4.

6.5.4.4 Test description

6.5.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 6.5.4.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

		Initial Conditions			
Test Environme	ent as specified in TS 38.508-1	Normal			
[5] subclause 4	.1				
Test Frequenci	es as specified in TS 38.508-1	Mid range (NOTE 2)			
[5] subclause 4	.3.1				
Test Channel B	andwidths as specified in TS	Mid, Highest			
38.508-1 [5] su	bclause 4.3.1				
Test SCS as sp	pecified in Table 5.3.5-1	Lowest, Highest			
		Test Parameters			
Test ID	Downlink Configuration	Uplink Configu	Iration		
	N/A for transmit	Modulation	RB allocation (NOTE 1)		
1	intermodulation test case	DFT-s-OFDM PI/2 BPSK	Inner Full		
2		DFT-s-OFDM QPSK	Inner Full		
NOTE 1: The	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1.				
NOTE 2: For I	NR band n28, 30MHz test channe	el bandwidth is tested with Low range tes	t frequencies.		

Table 6.5.4.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.3.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5.4.4.3.

6.5.4.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands to the UE until the UE transmits at its P_{UMAX} level.
- 3. Measure the rectangular filtered mean power of the UE. For TDD, only slots consisting of only UL symbols are under test for the wanted signal and for the intermodulation product.
- 4. Set the interference signal frequency below the UL carrier frequency using the first offset in table 6.5.4.5-1.
- 5. Set the interference CW signal level according to table 6.5.4.5-1.
- 6. Search the intermodulation product signals below and above the UL carrier frequency, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 3.
- 7. Set the interference signal frequency above the UL carrier frequency using the first offset in table 6.5.4.5-1.
- 8. Search the intermodulation product signals below and above the UL carrier frequency, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 3.
- 9. Repeat the measurement using the second offset in table 6.5.4.5-1.

6.5.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exception:

Table 6.5.4.4.3-1: PUSCH-Config

Derivation Path: TS 38.508-1 [5], Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED

6.5.4.5 Test requirement

The ratio derived in step 6 and 8, shall not exceed the described value in table 6.5.4.5-1.

Table 6.5.4.5-1: Transmit Intermodulation

Wanted signal channel bandwidth	BW	Channel		
Interference signal frequency offset from channel centre	BW _{Channel}	2*BW _{Channel}		
Interference CW signal level	-40dBc			
Intermodulation product	< -29dBc	< -35dBc		
Measurement bandwidth	The maximum transmission bandwidth configuration among the different SCSs for the channel BW as defined in Table 6.5.2.4.1.5-1			
Measurement offset from channel centre	BW _{Channel} and 2*BW _{Channel} 2*BW _{Channel} and 4*BW _{Channel}			
Note 1: The test requirements do not apply when the interfering signal overlaps with the channel bandwidth of the downlink signal.				

6.5A Output RF spectrum emissions for CA

6.5A.1 Occupied bandwidth for CA

6.5A.1.0 Minimum conformance requirements

6.5A.1.0.1 Void

6.5A.1.0.1a Occupied bandwidth for Intra-band contiguous CA

For intra-band contiguous carrier aggregation the occupied bandwidth is a measure of the bandwidth containing 99 % of the total integrated power of the transmitted spectrum. The OBW shall be less than the aggregated channel bandwidth defined in subclause 5.3A.3.

6.5A.1.0.2 Occupied bandwidth for Intra-band non-contiguous CA

For intra-band non-contiguous carrier aggregation, the OBW requirement is met when the ratio of the transmitted power in all sub-blocks of the uplink CA configuration to the total integrated power of the transmitted spectrum is greater than 99%.

6.5A.1.0.3 Occupied bandwidth for Inter-band CA

For inter-band carrier aggregation with uplink assigned to two NR bands, the occupied bandwidth is defined per component carrier. Occupied bandwidth is the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on assigned channel bandwidth on the component carrier. The occupied bandwidth shall be less than the channel bandwidth specified in Table 6.5.1.3-1.

6.5A.1.1 Occupied bandwidth for CA (2UL CA)

Editor's Note:

- 997
- Due to lack of MPR requirements in core specification, this test case is incomplete for intra-band contiguous UL CA for power class 2 UEs indicating IE dualPA-Architecture supported, and incomplete for intra-band non-contiguous UL CA for power class 2 UEs, and power class 3 UEs when signalling is absent for dualPA-Architecture.

- MU needs to be reassessed.

6.5A.1.1.1 Test purpose

To verify that the UE occupied bandwidth for all transmission bandwidth configurations supported by the UE are less than their specific limits for 2 UL CA

6.5A.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports 2UL CA

6.5A.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in subclause 6.5A.1.0.

6.5A.1.1.4 Test description

6.5A.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, are shown in Table 6.5A.1.1.4.1-1 for inter-band UL CA, table 6.5A.1.1.4.1-2 for intra-band contiguous CA and table 6.5A.1.1.4.1-3 for intra-band non-contiguous CA. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5A.1.1.4.1-1: Inter band CA Test Configuration Table

	Initial Conditions				
Test Enviro	nment as specified in TS	Normal			
38.508-1 [5]] subclause 4.1				
Test Freque	encies as specified in TS	Mid range for both PCC a	nd SCC (NOTE 4)		
38.508-1 [5]	subclause 4.3.1				
Test Chann	el Bandwidths as specified in	Lowest NRB_agg for both PC	CC and SCC		
TS 38.508-1 [5] subclause 4.3.1 Highest N _{RB_agg} for both PCC and SCC					
Test SCS as specified in Table 5.3.5-1 Smallest supported SCS per C			per Channel Bandwidth		
		Test Parameters			
Test ID	Downlink Configuration for	for Uplink Configuration			
	PCC & SCC				
		Modulation for all CCs	RB allocatio	on (NOTE 1)	
		(NOTE 2)	PCC	SCC	
1	N/A for this test	CP-OFDM QPSK	Outer_Full	Outer_Full	
NOTE 1: T	The specific configuration of each	RB allocation is defined in 1	Table 6.1-1.		
NOTE 2: C	CA Configuration Test CC Combir	nation settings are checked	separately for each CA (Configuration, which	
a	pplicable aggregated channel ba	ndwidths are specified in Ta	ble 5.3A.4-1.		
NOTE 3: T	NOTE 3: Test Channel Bandwidths and Test SCS are checked separately for each NR CA band combination, which				
a	pplicable channel bandwidths an	d SCS are specified in Table	e 5.5A.3-1.		
NOTE 4: F	or NR band n28, 30MHz test cha	nnel bandwidth is tested wit	th Low range test freque	ncies.	

		Initial Conditions						
Test Enviro	nment as specified in TS	Normal						
38.508-1 [5	i] subclause 4.1							
Test Frequ	encies as specified in TS	Mid range						
38.508-1 [5	i] subclause 4.3.1							
Test Chann	nel Bandwidths as specified in	All aggregated channel bandw	vidth					
TS 38.508-	1 [5] subclause 4.3.1							
Test SCS a	as specified in Table 5.3.5-1	Smallest supported SCS per Channel Bandwidth						
	Test Parameters							
Test ID	Downlink Configuration for	Uplin	k Configuration					
	PCC & SCC							
		Modulation for all CCs	RB allocation (NOTE 1)					
		(NOTE 2)						
1	N/A for this test	CP-OFDM QPSK	Outer_Full					
NOTE 1:	The specific configuration of each	RB allocation is defined in Table	e 6.1A-1a.					
NOTE 2: 0	NOTE 2: CA Configuration Test CC Combination settings are checked separately for each CA Configuration, which							
	applicable aggregated channel ba	ndwidths are specified in Table	5.5A.1-1.					
	f the UE supports multiple CC Co combination with the highest NRB		ion with the same N_{RB_agg} , only the					

Table 6.5A.1.1.4.1-3: Intra band non-contiguous CA Test Configuration Table

	Initial Conditions									
Test Environment as specified in TS 38.508-1 [5]						Normal				
subclause 4.1										
Test Frequencies as specified in TS 38.508-1 [5] subclause				For test free	quencies refer to "	'Range" colum	ns			
	4.3.1									
	Test Channel Bandwidths as specified in TS 38.508-1 [5]				All aggrega	ted channel band	width			
	clause 4.3									
Test	Test SCS as specified in Table 5.3.5-1						pported SCS per	Channel Band	width	
					Test Para	meters				
			CA c	onfig		DL	UL config			
ID	Р	CC	S	CC	Wgap		CC MOD	RB allocation (NOTE		
	Band	Range	Band	Range	vvgap	comg		PCC	SCC	
1	nX	CC1	nX	CC2	Max (NOTE 4)	N/A	CP-OFDM QPSK	Outer_Full	Outer_Full	
NO	ΓE 1: Th	e RB alloc	ation is d	lefined in ta	able 6.1-1 for each	n CC.				
NO	ГЕ 2: Те	st Channe	l Bandwi	dths and T	est SCS are chec	ked separate	ly for each NR CA	band combination	ation, which	
	ар	plicable ch	annel ba	ndwidths a	and SCS are spec	ified in Table	5.5A.2-1.			
NO	ГЕЗ: lft	he UE sup	ports mu	Itiple CC C	Combinations in the	e CA Configu	ration with the sa	me N _{RB_agg} , on	ly the	
	со	mbination	with the h	highest NR	B_PCC is tested.					
NO	ГЕ 4: Th	e Wgap is	defined t	o be wides	st possible on ban	d based on th	ne PCC and SCC	configuration		

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.3 for TE diagram and section A.3.2.1 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1 and C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5A.1.1.4.1-1 to Table 6.5A.1.1.4.1-3.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5A.1.1.4.3.

6.5A.1.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause 5.5.1. Message contents are defined in clause 6.5A.1.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5A.1.1.4.1-1 or Table 6.5A.1.1.4.1-2 as appropriate. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Send continuously power control "up" commands to the UE until the UE transmits at PUMAX level. Allow at least 200ms for the UE to reach PUMAX level.
- 6. For inter-band CA: measure the power spectrum distribution of both PCC and SCC within two times or more range over the requirement for Occupied Bandwidth specification centring on the current carrier frequency.
- **For Intra-band contiguous CA:** measure the power spectrum distribution over all component carriers within two times or more range over the aggregated channel bandwidth requirement for Occupied Bandwidth specification centring on the centre of aggregated channel bandwidth. The characteristics of the filter shall be approximately Gaussian (typical spectrum analyser filter). Other methods to measure the power spectrum distribution are allowed. The measuring duration is at least 1ms over consecutive active uplink slots.
- **For intra-band non-contiguous CA:** measure the power spectrum distribution of each sub-block over all component carriers within the requirement for Occupied Bandwidth for CA specification, centring on the carrier frequency of each sub-block in CA configuration. The characteristic of the filter shall be approximately Gaussian (typical spectrum analyzer filter). Other methods to measure the power spectrum distribution are allowed. The measuring duration is one active uplink subframe. For TDD slots with transient periods are not under test.
- 7. Calculate the total power within the range of all frequencies measured in step 6 and save this value as "Total power". "Total power" is calculated for each CC separately for inter-band carrier aggregation, and for all CCs together for intra-band contiguous and non-contiguous carrier aggregation.
- 8. Identify the measurement window whose centre is aligned on the centre of the channel bandwidth on each carrier for inter-band carrier aggregation, or on the centre of the aggregated channel bandwidth for intra-band contiguous carrier aggregation or centring on each carrier frequency of each sub-block for which the sum of the power measured is 99% of the "Total power".
- 9. The "Occupied Bandwidth" is the width of the measurement window obtained in step 8.

6.5A.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exception.

Table 6.5A.1.1.4.3-1: FrequencyInfoUL-SIB for inter-band CA

Derivation Path: TS 38.508-1 [5] Table 4.6.3-62 FrequencyInfoUL-SIB							
Information Element Value/remark Comment Condition							
p-Max	20		Power class 3 and Inter-band CA				

Table 6.5A.1.1.4.3-2: FrequencyInfoUL-SIB for intra-band contiguous CA (contiguous RB allocation)

Derivation Path: TS 38.508-1 [5] Table 4.6.3-62 FrequencyInfoUL-SIB							
Information Element Value/remark Comment Condition							
p-Max	15		Power class 3 and Bandwidth class B				
	10		Power class 3 and Bandwidth class C				

6.5A.1.1.5 Test requirements

For inter-band carrier aggregation, he measured Occupied Bandwidth for each component carrier shall not exceed values in Table 6.5A.1.1.5-1.

		NR channel bandwidth											
	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
Occupied channel bandwidth (MHz)	5	10	15	20	25	30	40	50	60	70	80	90	100

For intra-band contiguous carrier aggregation, the measured Occupied Bandwidth shall not exceed the aggregated channel bandwidth as defined in subclause 5.3A.3.

For intra-band non-contiguous carrier aggregation, the measured Occupied Bandwidth shall not exceed values of channel bandwidth as defined in section 5.5A.2.

6.5A.2 Out of band emission for CA

6.5A.2.1 General

This clause contains requirements for out of band emissions for UE configured of carrier aggregation.

6.5A.2.2 Spectrum emission mask

Editor's note: The following aspects are either missing or not yet determined:

- This test case in incomplete when signalling is absent for dualPA-Architecture IE due to lack of core requirements.

6.5A.2.2.0 Minimum conformance requirements

For intra-band contiguous carrier aggregation the spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the \pm edge of the aggregated channel bandwidth. For intra-band contiguous carrier aggregation, the power of any UE emission shall not exceed the levels specified in Table 6.5A.2.2.0-1 for the specified channel bandwidth.

For power class 2 intra-band contiguous carrier aggregation, the spectrum emission mask is measured as the sum from both UE transmit antenna connectors when UE indicates support for *dualPA-Architecture* IE.

Δf _{оов} (MHz)	Spectrum emission limit(dBm)	MBW(MHz)
± 0 - 1	-13	Min(0.01*BW _{channel_CA} , 0.4)
± 1 - 5	-10	1MHz
$\pm 5 - BW_{channel_CA}$	-13	1MHz
±BWchannel_CA-	-25	1MHz
BW _{channel_CA} +5		

Table 6.5A.2.2.0-1: General NR CA spectrum emission mask

For intra-band non-contiguous carrier aggregation the spectrum emission mask requirement is defined as a composite spectrum emissions mask. Composite spectrum emission mask applies to frequencies up to Δ fOOB starting from the edges of the sub-blocks. Composite spectrum emission mask is defined as follows:

- a) Composite spectrum emission mask is a combination of individual sub-block spectrum emissions masks
- b) In case the sub-block consist of one component carrier the sub-lock general spectrum emission mask is defined in subclause 6.5.2.2

- 1001
- c) If for some frequency sub-block spectrum emission masks overlap then spectrum emission mask allowing higher power spectral density applies for that frequency
- d) If for some frequency a sub-block spectrum emission mask overlaps with the sub-block bandwidth of another sub-block, then the emission mask does not apply for that frequency.

When signalling for dualPA-Architecture IE is absent, carrier leakage or I/Q image may land inside the gap spectrum between 2 UL CCs when UL CCs are synchronized with frequencies in the gap.

For inter-band carrier aggregation with uplink assigned to two NR bands, the minimum conformance requirements specified in subclause 6.5.2.2 shall apply on each component carrier with all component carriers active. If for some frequency spectrum emission masks of component carriers overlap then spectrum emission mask allowing higher power spectral density applies for that frequency. If for some frequency a component carrier spectrum emission mask overlaps with the channel bandwidth of another component carrier, then the emission mask does not apply for that frequency.

6.5A.2.2.1 Spectrum emission mask for CA (2UL CA)

6.5A.2.2.1.1 Test purpose

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth for 2UL CA.

6.5A.2.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports 2UL CA.

6.5A.2.2.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in subclause6.5A.2.2.0.

- 6.5A.2.2.1.4 Test description
- 6.5A.2.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, are shown in Tables 6.5A.2.2.1.4.1-1 through 6.5A.2.2.1.4.1-3. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions									
		as specified in TS 38.508-1	Normal						
	ause 4.1								
	•	as specified in TS 38.508-1	Low range for PCC and SCC						
		.1.3 for inter band CA in FR1	High range for PCC and						
	annei Bani I [5] subcla	dwidths as specified in TS	Lowest N _{RB_agg} for both F Highest N _{RB_agg} for both F						
		fied in Table 5.5A.3-1	Smallest and biggest sup		unnel Bandwidth				
1631.00			Test Parameters	poned 000 per one					
Test	Freq	Downlink Configuration		ink Configuration					
ID		J. J	Modulation (NOTE 3)		on (NOTE 1)				
				PCC	SCC				
1 ³	Low	N/A	DFT-s-OFDM PI/2 BPSK	Edge_1RB_Left	Edge_1RB_Left				
2 ³	High		DFT-s-OFDM PI/2 BPSK	Edge_1RB_Right	Edge_1RB_Right				
3	Low		DFT-s-OFDM QPSK	Edge_1RB_Left	Edge_1RB_Left				
4	High		DFT-s-OFDM QPSK	Edge_1RB_Right	Edge_1RB_Right				
5	Low		DFT-s-OFDM 16 QAM	Edge_1RB_Left	Edge_1RB_Left				
6	High		DFT-s-OFDM 16 QAM	Edge_1RB_Right	Edge_1RB_Right				
7	Default		DFT-s-OFDM 64 QAM	Outer_Full	Outer_Full				
8	Default		DFT-s-OFDM 256 QAM	Outer_Full	Outer_Full				
9	Low		CP-OFDM QPSK	Edge_1RB_Left	Edge_1RB_Left				
10	High		CP-OFDM QPSK	Edge_1RB_Right	Edge_1RB_Right				
11	Low		CP-OFDM 16 QAM	Edge_1RB_Left	Edge_1RB_Left				
12	High		CP-OFDM 16 QAM	Edge_1RB_Right	Edge_1RB_Right				
13	Default		CP-OFDM 64 QAM	Outer_Full	Outer_Full				
14	Default		CP-OFDM 256 QAM	Outer_Full	Outer_Full				
 NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1. NOTE 2: Test Channel Bandwidths and Test SCS are checked separately for each NR CA band combination, which applicable channel bandwidths and SCS are specified in Table 5.5A3-1. NOTE 3: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1. 									

Table 6.5A.2.2.1.4.1-1: Inter band CA Test Configuration Table

Table 6.5A.2.2.1.4.1-2: Intra-band contiguous CA Test Configuration Table for PC3 and PC2

		Initial C	onditions				
Test Environment a	s specified in TS 38.50	08-1 [5]	Normal				
subclause 4.1							
Test Frequencies as	s specified in TS 38.50	8-1 [5]	Low range				
subclause4.3.1			High range				
Test Channel Bandy	widths as specified in	FS 38.508-	Lowest NRB_agg, Highest	NRB_agg			
1 [5] subclause 4.3.	1		(NOTE 1)				
Test SCS as specifi	ed in Table 5.5A.3-1		Lowest, Highest				
		meters for CA	bandwidth class B an	d C			
Test ID	DL configuration		UL config	guration			
	for PCC & SCC	Modulation	s for all CCs (NOTE	RB allocation (NOTE 3)			
			2)				
1		DFT-s-	Pi/2 BPSK	Outer Full			
2		OFDM	QPSK	Outer Full			
3			16QAM	Outer Full			
4	N/A		64QAM	Outer Full			
5			256QAM	Outer Full			
6		CP-OFDM	QPSK	Outer Full			
7			16QAM	Outer Full			
8			64QAM	Outer Full			
9			256QAM	Outer Full			
NOTE 1: The Test	CC Combination setti	ngs are check	ed separately for each C	CA Configuration, which applicable			
	ed channel bandwidth						
			UEs which supports Pi/2				
			on is defined in Table 6.				
				with the same N_{RB_agg} , only the			
combinat	ion with the highest N _f	RB_PCC is tested	J.				

Initial Conditions						
Test Environment	as specified in TS 38.508-1	Normal				
[5] subclause 4.1						
Test Frequencies	as specified in TS 38.508-1	Low range for PCC and S				
	.1.3 for inter band CA in FR1	High range for PCC and S				
	dwidths as specified in TS	Lowest for both PCC and	SCC			
38.508-1 [5] subcla		Highest for both PCC and				
Test SCS as spec	ified in Table 5.5A.3-1	Smallest and biggest sup	ported SCS per Cha	annel Bandwidth		
		est Parameters				
Test ID	Downlink Configuration		nk Configuration			
		Modulation (NOTE 4)		on (NOTE 2)		
			PCC	SCC		
1	N/A	DFT-s-OFDM PI/2	Edge_1RB_Left	Edge_1RB_Right		
		BPSK				
2		DFT-s-OFDM QPSK	Edge_1RB_Left	Edge_1RB_Right		
3		DFT-s-OFDM 16 QAM	Edge_1RB_Left	Edge_1RB_Right		
4		DFT-s-OFDM 64 QAM	Edge_1RB_Left	Edge_1RB_Right		
5		DFT-s-OFDM 256 QAM	Edge_1RB_Left	Edge_1RB_Right		
6		CP-OFDM QPSK	Edge_1RB_Left	Edge_1RB_Right		
7		CP-OFDM 16 QAM	Edge_1RB_Left	Edge_1RB_Right		
8		CP-OFDM 64 QAM	Edge_1RB_Left	Edge_1RB_Right		
9		CP-OFDM 256 QAM	Edge_1RB_Left	Edge_1RB_Right		
	st configuration is only applicabl			pported		
	ecific configuration of each RB a					
NOTE 3: Test Channel Bandwidths and Test SCS are checked separately for each NR CA band combination,						
	which applicable channel bandwidths and SCS are specified in Table 5.5A3-1.					
NOTE 4: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.						

Table 6.5A.2.2.1.4.1-3: Intra-band non-contiguous CA Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.3 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Tables 6.5A.2.2.1.4.1-1 through 6.5A.2.2.1.4.1-3 as appropriate.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5A.2.2.1.4.3.

6.5A.2.2.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause 5.5.1. Message contents are defined in clause 6.5A.2.2.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Tables 6.5A.2.2.1.4.1-1 through 6.5A.2.2.1.4.1-3 on both PCC and SCC as

appropriate. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.

- 5. Send continuously power control "up" commands in every uplink scheduling information to the UE until the UE transmits at PUMAX level. Allow at least 200ms for the UE to reach PUMAX level.
- 6. For inter-band CA: measure the mean power of the UE in the channel bandwidth of the radio access mode for each CC according to the test configuration, which shall meet the requirements described in clause 6.2A.2. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.

For intra-band CA: measure the mean power over all component carriers in the CA configuration of the radio access mode, which shall meet the requirements described in clause 6.2A.2. The period of the measurement shall be at least the continuous duration of one active sub-frame (1ms) and in the uplink symbols. For TDD slots with transient periods are not under test.

7. For inter-band CA: measure the power of the transmitted signal with a measurement filter of bandwidths for each CC according to Table 6.5A.2.2.1.5-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.

For intra-band contiguous CA: measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.5A.2.2.1.5-3. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs. For power class 2 UE, the power is measured as the sum from both UE transmit antenna connectors when UE indicates support for *dualPA-Architecture* IE.

For intra-band non-contiguous CA: measure the power of the transmitted signal with a measurement filter of bandwidths for each CC according to Table 6.5A.2.2.1.5-1 except the Wgap area. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.

NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5A.2.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exception.

Derivation Path: TS 38.508-1 [5] Table 4.6.3-62 FrequencyInfoUL-SIB								
Information Element	Value/remark	Comment	Condition					
p-Max	20		Power class 3 and Inter-band CA					
			Test IDs 3, 4, 7					
	17		Power class 3 and Inter-band CA					
			Test IDs 5, 6, 13					
	16		Power class 3 and Inter-band CA					
			Test IDs 1, 2, 8-12					
	14		Power class 3 and Inter-band CA					
			Test IDs 14					

Information Element	Value/remark	Comment	Condition			
p-Max	20		Power class 3 and Inter-band CA Test IDs 2			
	17		Power class 3 and Inter-band CA Test IDs 3			
	16		Power class 3 and Inter-band CA Test IDs 1, 4, 5, 6			
	14		Power class 3 and Inter-band CA Test IDs 7			
	15		Power class 2 and Test IDs 1, 2, 3, 4			
	14		Power class 2 and Test IDs 5, 6, 8, 9			

Table 6.5A.2.2.1.4.3-2: FrequencyInfoUL-SIB for intra-band contiguous CA

6.5A.2.2.1.5 Test requirement

The measured UE mean power in the applicable channel bandwidth, derived in step 6, shall fulfil requirements in clause 6.2A.2 as appropriate, and the power of any UE emission, derived in step 7, shall fulfil requirements in Table 6.5A.2.2.1.5-1 for inter-band CA and table 6.5A.2.2.1.5-3 for intra-band contiguous CA. If for some frequency spectrum emission masks of component carriers overlap then spectrum emission mask allowing higher power spectral density applies for that frequency. If for some frequency a component carrier spectrum emission mask overlaps with the channel bandwidth of another component carrier, then the emission mask does not apply for that frequency.

Spectrum emission limit (dBm) / Channel bandwidth														
∆f _{оов} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz	Measurement bandwidth
	-	-	-	-										1 % channel
± 0-1	13+	13+	13+	13+	-13+TT	-13+TT	-13+TT							bandwidth
± 0-1	TT	TT	TT	TT				-24	-24	-24	-24	-24	-24	30 kHz
$\pm 0-1$ $\pm 1-5$	-	-	-	-		-10+TT		-24	-24	-24 -10+TT		-24 -10+TT	-24	30 KHZ
± 1-5	10+	- 10+	10+	10+	-10+TT		-10+TT	- 10+	-10+TT		-10+TT		- 10+	
	TT	TT	TT	TT				TT					TT	
± 5-6	-													
	13+	_												
	TT	13+												
± 6-10	-	TT	-											
	25+ TT		13+ TT	-										
± 10-15	TT	-	TT	13+										
± 10-13		- 25+		TT	-13+TT									
		TT				-13+TT								
± 15-20			-				-13+TT	-						
			25+					13+ TT						
			TT						-13+TT					
± 20-25				-					-13+11	-13+TT				
				25+ TT						10.11	-13+TT			
± 25-30					-25+TT							-13+TT	-	
± 30-35					-20+11	-25+TT							13+	1 MHz
± 35-40							-						TT	
± 40-45							-25+TT							
± 45-50														
± 50-55								-						
								25+						
								TT	-					
± 55-60 ± 60-65									-25+TT					
± 65-70									-23+11					
± 70-75	<u> </u>									-25+TT	1			
± 75-80		-									1			
± 80-85						1			1		-25+TT			
± 85-90					_									
± 90-95												-25+TT		
± 95-100														
± 100-105													-	
													25+ TT	
lote 1: T	he first c	nd last	megeur	amont n	osition v	vith a 20) kHz filte	arie at /		ausle to	0.015	MHz and	TT	/Hz
														the inside of
			5MHz, re			,				- poorti				

Table 6.5A.2.2.1.5-1: NR General spectrum emission mask

1007

Table 6.5A.2.2.1.5-2: Test Tolerance for Spectrum emission mask

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	1.5dB	1.8dB
40MHz < BW ≤ 100MHz	1.5dB	1.8dB

<u> </u>	Spectrum emission limit (dBm)	MBW (MHz)
± 0 - 1	-13+TT	Min(0.01*BW _{channel_CA} , 0.4)
± 1 - 5	-10+TT	1MHz
$\pm 5 - BW_{channel_CA}$	-13+TT	1MHz
±BW _{channel_CA} - BW _{channel_CA} +5	-25+TT	1MHz

Table 6.5A.2.2.1.5-3: NR General spectrum emission mask for intra-band contiguous CA

- NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.
- 6.5A.2.4 Adjacent channel leakage ratio
- 6.5A.2.4.1 NR ACLR
- 6.5A.2.4.1.0 Minimum conformance requirements
- 6.5A.2.4.1.0.1 NR ACLR for intra-band contiguous CA

For intra-band contiguous carrier aggregation the carrier aggregation the Adjacent Channel Leakage power Ratio is the ratio of the filtered mean power centred on the aggregated channel bandwidth to the filtered mean power centred on an adjacent aggregated channel bandwidth at nominal channel spacing. The assigned aggregated channel bandwidth power and adjacent aggregated channel bandwidth power are measured with rectangular filters with measurement bandwidths specified in Table 6.5A.2.4.1.0.1-1. If the measured adjacent channel power is greater than –50dBm then the NR_{ACLR} shall be higher than the value specified in Table 6.5A.2.4.1.0.1-1.

Table 6.5A.2.4.1.0.1-1: General requirements for intra-band contiguous CA ACLR

	ACLR / Measurement bandwidth						
CA ACLR	30 dB						
CA Measurement bandwidth (NOTE 1)	Nominal channel space+MBWACLR,low/2+ MBWACLR,high/2						
Adjacent channel centre frequency offset (in MHz)	+ BW _{Channel_CA} / - BW _{Channel_CA}						
Difference between ACLR MBW center and F _{c,low}	MBW _{shift} = (MBW _{ACLR_CA} -MBW _{ACLR,low})/2						
	$_{\rm CLR,high}$ are the single-channel ACLR measurement bandwidths andwidths BW $_{\rm channel(low)}$ and BW $_{\rm channel(high)}$ in 6.5.2.4.1.3,						

6.5A.2.4.1.0.2 NR ACLR for intra-band non-contiguous CA

For intra-band non-contiguous carrier aggregation, CA Adjacent Channel Leakage power Ratio(CA_{ACLR}) is the ratio of the sum of the filtered mean power centred on each assigned channel frequency to the filtered mean power centred on an adjacent NR channel frequency at nominal channel spacing. In case the gap bandwidth Wgap between 2 uplink CCs is smaller than maximum of the 2 uplink channel bandwidths then no CA_{ACLR} requirement is set for the gap. Each assigned NR channel power and adjacent NR channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.5.2.4.1.3-1. If the measured adjacent channel power is greater than -50dBm then the ACLR shall be higher than the value specified in Table 6.5A.2.4.1.0.2-1.

Table 6.5A.2.4.1.0.2-1: General requirements for intra-band non-contiguous CA ACLR

	ACLR / Measurement bandwidth
CA ACLR	30 dB
CA Measurement bandwidth for	MBWaclr
each sub block	
(NOTE 1)	
Adjacent channel centre	+ BW _{Channel}
frequency offset (in MHz)	/
	- BW _{Channel}
NOTE 1: MBWACLR is the single-cl	hannel ACLR measurement bandwidths specified in 6.5.2.4.1.3.

When the signalling is absent for dualPA-Architecture IE, if carrier leakage or I/Q image lands inside the gap spectrum between 2 UL CCs when UL CCs are synchronized with frequencies in the gap, exception to the ACLR requirement with 3dB relaxation applies.

6.5A.2.4.1.0.3 NR ACLR for Inter-band CA

For inter-band carrier aggregation with uplink assigned to two NR bands, the NR Adjacent Channel Leakage power Ratio (NRACLR) is defined per component carrier while both component carriers are active and the requirement is specified in clause 6.5.2.4.1.3.

6.5A.2.4.1.1 NR ACLR for CA (2UL CA)

Editor's Note: The following aspects are not yet determined:

- MU and TT for aggregate BW>100MHz are FFS.

6.5A.2.4.1.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR) for 2UL CA.

6.5A.2.4.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports 2UL CA.

6.5A.2.4.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in subclause 6.5A.2.4.1.0.

6.5A.2.4.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, are shown in the test configuration tables in clause 6.2A.2.1.4.1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

 Table 6.5A.2.4.1.1.4.1-1: Void

 Table 6.5A.2.4.1.1.4.1-2: Void

 Table 6.5A.2.4.1.1.4.1-3: Void

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.3 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to the test configuration tables in clause 6.2A.2.1.4.1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5A.2.4.1.1.4.3

6.5A.2.4.1.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause 5.5.1. Message contents are defined in clause 6.5A.2.4.1.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to the test configuration tables in clause 6.2A.2.1.4.1 on both PCC and SCC. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Send continuously power control "up" commands in every uplink scheduling information to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 6. Measure the sum of mean transmitted power over all component carriers in the CA configuration of the radio access mode, as measured in step 6 of 6.2A.2.1.4.2, which shall meet the requirements in clause 6.2A.2.1.5 as appropriate.
- 7. For intra-band contiguous 2UL CA UE, execute 7a) to 7c):
 - 7a) Measure the rectangular filtered mean power for the assigned NR aggregated channel bandwidth.
 - 7b)Measure the rectangular filtered mean power of the first NR adjacent aggregated channel on both lower and upper side of the assigned NR channel, respectively.
 - 7c) Calculate the ratios of the power between the values measured in step 7a) over step 7b) for lower and upper CA NR_{ACLR}, respectively.
- 8. For intra-band non-contiguous 2UL CA UE, execute 8a) to 8e):
 - 8a) Measure the rectangular filtered mean power for the assigned NR channel on the lowest sub-block and highest sub-block respectively.
 - 8b)Measure the rectangular filtered mean power of the first NR adjacent channel on lower side of the lowest sub-block, and the higher side of the highest sub-block (out of gap measurement).
 - 8c) If Wgap is larger or equeal to either of the sub-block bandwidths, perform this step, otherwise continue to next step. Measure the rectangular filtered mean power of the first NR adjacent channel on higher side of the lowest sub-block, and/or the lower side of the highest sub-block (in gap measurement).
 - 8d)Calculate the ratio of the power between the values measured in step 8a) over step 8b) for CA NR_{ACLR} (out of gap measurement).

- 8e) Calculate the ratio of the power between the values measured in step 8a) over step 8c) for CA NR_{ACLR} (in gap measurement).
- 9. For inter-band 2UL CA UE, execute 9a) to 9f):
 - 9a) Measure the rectangular filtered mean power for the assigned NR channel on PCC.
 - 9b)Measure the rectangular filtered mean power of the first NR adjacent channel on both lower and upper side of the assigned NR channel on PCC, respectively.
 - 9c) Calculate the ratios of the power between the values measured in step 7 over step 8 for lower and upper NR ACLR, respectively.
 - 9d)Measure the rectangular filtered mean power for the assigned NR channel on SCC.
 - 9e) Measure the rectangular filtered mean power of the first NR adjacent channel on both lower and upper side of the assigned NR channel on SCC, respectively.
 - 9f) Calculate the ratios of the power between the values measured in step 9d over step 9e for lower and upper NR ACLR, respectively.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration tables in clause 6.2A.2.1.4.1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5A.2.4.1.1.4.3 Message contents

Message contents are same as 6.2A.2.1.4.3.

Table 6.5A.2.4.1.1.4.3-1: Void

6.5A.2.4.1.1.5 Test requirement

The measured UE mean power in the channel bandwidth, derived in step 6, shall fulfil requirements in clause 6.2A.2.1 as appropriate, and if the measured adjacent channel power is greater than -50 dBm, then the measured NR ACLR derived in step 7c, step 8e, step 6c and step 9f, shall be higher than the limits in Table 6.5A.2.4.1.1.5-1, 6.5A.2.4.1.1.5-2 and 6.5A.2.4.1.1.5-3 respectively.

	ACLR / Measurement bandwidth					
CA ACLR	30 - TT dB					
CA Measurement bandwidth (NOTE 1)	Nominal channel space+MBW _{ACLR,low} /2+ MBW _{ACLR,high} /2					
Adjacent channel centre frequency offset (in MHz)	+ BW _{Channel_CA} / - BW _{Channel_CA}					
Difference between ACLR MBW center and F _{c,low}	MBW _{shift} = (MBW _{ACLR_CA} -MBW _{ACLR,low})/2					
- , -	$_{\rm CLR,high}$ are the single-channel ACLR measurement bandwidths andwidths BW $_{\rm channel(low)}$ and BW $_{\rm channel(high)}$ in 6.5.2.4.1,					

Table 6.5A.2.4.1.1.5-1: General requirements for intra-band contiguous CA ACLR

Table 6.5A.2.4.1.1.5-2: General requirements for intra-band non-contiguous CA ACLR

	ACLR / Measurement bandwidth
CA ACLR	30 - TT dB
CA Measurement bandwidth for	MBW _{ACLR}
each sub block	
(NOTE 1)	
Adjacent channel centre	+ BW _{Channel}
frequency offset (in MHz)	/
	- BW _{Channel}
NOTE 1: MBW _{ACLR} is the single-o	channel ACLR measurement bandwidths specified in 6.5.2.4.1.

Table 6.5A.2.4.1.1.5-3: General requirements for inter-band CA ACLR

	Power class 1	Power class 2	Power class 3
NR ACLR		31 - TT dB	30 - TT dB

Table 6.5A.2.4.1.1.5-4: NR ACLR measurement bandwidth for inter-band CA

	NR channel bandwidth / NR ACLR measurement bandwidth											
	5	10	15	20	25	30	40	50	60	80	90	100
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
NR ACLR												
measurement	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	78.15	88.23	98.31
bandwidth												

Table 6.5A.2.4.1.1.5-5: Test Tolerance for NR ACLR

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 100MHz	0.8dB	0.8dB
Aggregated BW ≤ 200MHz	FFS	FFS

6.5A.2.4.2 UTRA ACLR

Editor's note:

- No UTRA ACLR minimum requirements for intra-band CA are specified in RAN4

6.5A.2.4.2.0 Minimum conformance requirements

For inter-band carrier aggregation with uplink assigned to two NR bands, the UTRA Adjacent Channel Leakage power Ratio (UTRA ACLR) is defined per component carrier while both component carrier are active and the requirement is specified in clause 6.5.2.4.2.3.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5A.2.4.2.

6.5A.2.4.2.1 UTRA ACLR for CA (2UL CA)

6.5A.2.4.2.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent UTRA channels in terms of Adjacent Channel Leakage power Ratio (UTRA ACLR) for 2UL CA.

6.5A.2.4.2.1.2 Test applicability

This test case applies for network signalling values NS_3U, NS_5U, NS_43U, and NS_100 to all types of NR UE release 15 and forward that supports 2UL inter-band CA.

6.5A.2.4.2.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in subclause 6.5A.2.4.2.0.

6.5A.2.4.2.1.4	Test description
6.5A.2.4.2.1.4	Test description

6.5A.2.4.2.1.4.1 Initial conditions

Same as in subclause 6.2A.3.1.4.1 with the following exepction;

- Only network signalling values NS_3U, NS_5U, NS_43U, and NS_100 with the corresponding CA configuration defined in Table 6.2A.3.1.4.1-1 need to perform UTRA ACLR test.
- Message contents in step 6 are defined in clause 6.5A.2.4.2.1.4.3.

6.5A.2.4.2.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause 5.5.1. Message contents are defined in clause 6.5A.2.4.2.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to the applicable test configuration tables in clause 6.2A.3.1.4.1 on both PCC and SCC. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Send continuously power control "up" commands in every uplink scheduling information to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 6. Measure the sum of mean transmitted power over all component carriers in the CA configuration of the radio access mode. The period of measurement shall be at least the continuous duration of 1ms uplink. For TDD only slots consisting of only UL symbols are under test. For FDD band in inter-band CA with both TDD band and FDD band, only slots overlapping with only UL symbols in TDD are under test.
- 7. Measure the rectangular filtered mean power for the assigned NR channel on PCC.
- 8. Measure the RRC filtered mean power of the first and the second UTRA adjacent channel on both lower and upper side of the assigned NR channel on PCC, respectively.
- 9. Calculate the ratios of the power between the values measured in step 7 over step 8 for lower and upper UTRA ACLR, respectively.
- 10. Measure the rectangular filtered mean power for the assigned NR channel on SCC.
- 11. Measure the RRC filtered mean power of the first and the second UTRA adjacent channel on both lower and upper side of the assigned NR channel on SCC, respectively.
- 12. Calculate the ratios of the power between the values measured in step 10 over step 11 for lower and upper UTRA ACLR, respectively.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5A.2.4.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions:

6.5A.2.4.2.1.4.3.1 Message contents exceptions (network signalling value "NS_100" on PCC)

Table 6.5A.2.4.2.1.4.3.1-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_100" on PCC

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1 AdditionalSpectrumEmission							
Information Element	Value/remark	Comment	Condition				
AdditionalSpectrumEmission	1 (NS_100)		not for band n65				
	2 (NS_100)		for band n65				

6.5A.2.4.2.1.4.3.2 Message contents exceptions (network signalling value "NS_43U" on PCC)

Table 6.5A.2.4.2.1.4.3.2-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_43U" on PCC

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1 AdditionalSpectrumEmission						
Information Element Value/remark Comment Condition						
AdditionalSpectrumEmission	3 (NS_43U)					

6.5A.2.4.2.1.5 Test requirement

The measured UE mean power in the channel bandwidth, derived in step 6, shall fulfil requirements in clause 6.2A.3.1 as appropriate, and if the measured adjacent channel power is greater than -50 dBm, then the measured UTRA ACLR for each CC, derived in step 9 and step 13, shall be higher than the limits in Table 6.5A.2.4.2.1.5-2.

Table 6.5A.2.4.2.1.5-1: Measurement bandwidth for NR carrier

		NR channel bandwidth / UTRA ACLR measurement bandwidth											
	5	5 10 15 20 25 30 40 50 60 70 80 90								90	100		
	МН	МН	МН	МН	МН	МН	МН	МН	МН	МН	МН	МН	MH
	z	z	z	z	z	z	z	z	z	z	z	z	z
NR channel measurement	4.5	9.3	14.	19.	23.	28.	38.	48.	58.	68.	78.	88.	98.
bandwidth (MHz)	15	75	235	095	955	815	895	615	35	07	15	23	31
UTRA channel Measurement bandwidth (MHz)	3.84												
1 st Adjacent channel centre frequency offset	± 2.5 MHz from NR channel edge												
2 nd Adjacent channel centre frequency offset	± 7.5 MHz from NR channel edge												

Table 6.5A.2.4.2.1.5-2: UTRA ACLR requirement

	Power class 3
UTRAACLR1	33 dB -TT
UTRAACLR2	36 dB - TT

Table 6.5A.2.4.2.1.5-3: Test Tolerance for UTRA ACLR

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 100MHz	0.8dB	0.8dB

6.5A.3 Spurious emission for CA

6.5A.3.1 General spurious emissions for CA

Editor's Note:. The following aspects are either missing or not yet determined:

- Extending the coverage of the TCs with intra-band CA scenarios is FFS

6.5A.3.1.0 Minimum conformance requirements

For inter-band carrier aggregation with uplink assigned to two NR bands, the spurious emission requirement Table 6.5.3.1.3-2 apply for the frequency ranges that are more than F_{OOB} as defined in Table 6.5.3.1.3-1 away from edges of the assigned channel bandwidth on a component carrier. If for some frequency a spurious emission requirement of individual component carrier overlaps with the spectrum emission mask or channel bandwidth of another component carrier then it does not apply.

- NOTE 1: For inter-band carrier aggregation with uplink assigned to two NR bands the requirements in Table 6.5.3.1.3-2 could be verified by measuring spurious emissions at the specific frequencies where second and third order intermodulation products generated by the two transmitted carriers can occur; in that case, the requirements for remaining applicable frequencies in Table 6.5.3.1.3-2 would be considered to be verified by the measurements verifying the one uplink inter-band CA spurious emission requirement.
- For intra-band contiguous carrier aggregation the spurious emission limits apply for the frequency ranges that are more than FOOB (MHz) in Table 6.5A.3.1.0-1 from the edge of the aggregated channel bandwidth. For frequencies Δ fOOB greater than FOOB as specified in Table 6.5A.3.1.0-1 the spurious emission requirements in Table 6.5.3.1.3-2 are applicable.

Table 6.5A.3.1.0-1: Boundary between out of band and spurious emission domain for intra-band contiguous carrier aggregation

Channel OOB boundary FOOB (MHz) bandwidth	
BWChannel_CA BWChannel_CA + 5	

- For intra-band non-contiguous carrier aggregation transmission the spurious emission requirement is defined as a composite spurious emission requirement. Composite spurious emission requirement applies to frequency ranges that are more than FOOB away from the edges of each carrier in the gap and out of the gap. Composite spurious emission requirement is defined as follows
- a) Composite spurious emission requirement is a combination of individual sub-block spurious emission requirements
- b) In case the sub-block consist of one component carrier the sub-lock spurious emission requirement and FOOB are defined in subclause 6.5.3.1
- c) If for some frequency an individual sub-block spurious emission requirement overlaps with the general spectrum emission mask or the sub-block bandwidth of another sub-block then it does not apply

For the signalling is absent for dualPA-Architecture IE, if carrier leakage or I/Q image lands inside the gap spectrum between 2 UL CCs when UL CCs are synchronized with frequencies in the gap, exception to the general spurious requirement applies.

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5A.3.1

6.5A.3.1.1 General spurious emissions for CA (2UL CA)

6.5A.3.1.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5A.3.1.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports 2UL CA.

6.5A.3.1.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in subclause 6.5A.3.1.0.

6.5A.3.1.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, are shown in Table 6.5A.3.1.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5A.3.1.1.4.1-1: Inter band CA Test Configuration Table

Initial Conditions							
Test Enviro	onment as specified in TS 38.508-1	Normal					
[5] subclau	ise 4.1						
Test Frequ	encies as specified in TS 38.508-1 [5]	Low range for PCC and SCC					
subclause	4.3.1.1.3 for inter band CA in FR1	High range for PCC and SCC					
Test Chan	nel Bandwidths as specified in TS	Lowest NRB_agg for both P	CC and SCC				
38.508-1 [5] subclause 4.3.1 Highest N _{RB_agg} for both PCC and SCC							
Test SCS a	est SCS as specified in Table 5.5A.3-1 Lowest						
	Test Parameters						
Test ID	Downlink Configuration	Uplink Configuration					
		Modulation	RB allocation	on (NOTE 1)			
			PCC	SCC			
1	N/A	CP-OFDM QPSK	Outer_Full	Outer_Full			
2		CP-OFDM QPSK	Edge_1RB_Left	Edge_1RB_Left			
3		CP-OFDM QPSK	Edge_1RB_Right	Edge_1RB_Right			
NOTE 1:	The specific configuration of each RB a	llocation is defined in Table	e 6.1-1.				
NOTE 2: Test Channel Bandwidths and Test SCS are checked separately for each NR CA band combination, which applicable channel bandwidths and SCS are specified in Table 5.5A3-1.							

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.3 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1 and C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5A.3.1.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5A.3.1.1.4.3.

6.5A.3.1.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause 5.1.1. Message contents are defined in clause 6.5A.3.1.1.4.3.

- 1017
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5A.3.1.1.4.1-1 on both PCC and SCC. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 5. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 6. Measure the power of the transmitted signal with a measurement filter of bandwidths according to Table 6.5A.3.1.1.5-1. The centre frequency of the filter shall be stepped in contiguous steps according to Table 6.5A.3.1.1.5-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5A.3.1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exception.

Table 6.5A.3.1.1.4.3-1: FrequencyInfoUL-SIB

Derivation Path: TS 38.508-1 [5] Table 4.6.3-62 FrequencyInfoUL-SIB						
Information Element	Value/remark	Comment	Condition			
p-Max	16		Power class 3 and Inter-band CA			

6.5A.3.1.1.5 Test requirement

This clause specifies the requirements for the specified NR band for Transmitter Spurious emissions requirement with frequency range as indicated in Table 6.5A.3.1.1.5-1. The test requirement of configurations for CA operating band including Band n41 also apply for the corresponding CA operating bands with Band n90 replacing Band n41.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth. If for some frequency a spurious emission requirement of individual component carrier overlaps with the spectrum emission mask or channel bandwidth of another component carrier then it does not apply.

The measured average power of spurious emission, derived in step 6, shall not exceed the described value in Table 6.5A.3.1.1.5-1.

Frequency Range	Maximum Level	Measurement Bandwidth	Notes
Test requirement	s for CA_n3A-	n78A Configuration	
270 MHz ≤ f ≤ 380 MHz	-36 dBm+TT	100 kHz	
1515MHz ≤ f ≤ 2090 MHz			
3270 MHz ≤ f ≤ 3830 MHz	-30		
4815 MHz ≤ f ≤ 5890 MHz	dBm+TT	1 MHz	
6720 MHz ≤ f ≤ 7370 MHz	abiiii ii		
8310 MHz ≤ f ≤ 9385 MHz			
Test requirement		n78A Configuration	
780 MHz ≤f ≤1000 MHz	-36 dBm+TT	100 kHz	
1000MHz £ f £ 1015 MHz			
1470 MHz £ f £ 2040 MHz			
2385 MHz ≤ f ≤ 2920 MHz			
3290 MHz ≤ f ≤ 3810 MHz	-30	4 MUL	
4180 MHz ≤ f ≤4715 MHz	dBm+TT	1 MHz	
5060 MHz ≤ f ≤5630 MHz			
5685 MHz ≤ f ≤6720 MHz			
7480 MHz ≤ f ≤8515 MHz			
	s for CA n24A	-n41A Configuration	
563 MHz ≤ f ≤ 825 MHz	-36		
835.5 MHz ≤ f ≤ 1000 MHz	dBm+TT	100 kHz	
1000 MHz ≤ f ≤ 1063.5 MHz			
3331.5 MHz ≤ f ≤ 3753.5 MHz			
4122.5 MHz ≤ f ≤ 4350.5 MHz	-25	1 MHz	
5749 MHz ≤ f ≤ 6011 MHz	dBm+TT		
$6618.5 \text{ MHz} \le f \le 7040.5 \text{ MHz}$			
	s for CA n24A	-n48A Configuration	
	-36		
229 MHz ≤ f ≤ 447 MHz	dBm+TT	100 kHz	
1889.5 MHz ≤ f ≤ 2073.5 MHz			
5176.5 MHz ≤ f ≤ 5360.5 MHz			
5439.5 MHz ≤ f ≤ 5773.5 MHz	-30	1 MHz	
6803 MHz ≤ f ≤ 7021 MHz	dBm+TT		
8726.5 MHz ≤ f ≤ 9060.5 MHz			
	s for CA n24A	-n77A Configuration	
•	-36		
21 MHz ≤ f < 30 MHz	dBm+TT	10 kHz	
	-36		
30 MHz ≤ f < 947 MHz	dBm+TT	100 kHz	
1639.5 MHz ≤ f ≤ 2573.5 MHz			
4926.5 MHz ≤ f ≤ 7521 MHz	-30	1 MHz	
8226.5 MHz ≤ f ≤ 10060.5	dBm+TT		
MHz			
	s for CA_n26A	-n66A Configuration	
12 MHz ≤ f < 30 MHz	-36	10 kHz	
	dBm+TT		
$30 \text{ MHz} \le f \le 152 \text{ MHz}$	-36		
861 MHz ≤ f ≤ 966 MHz	dBm+TT	100 kHz	
$2524 \text{ MHz} \le f \le 2746$			
$MHz = 1 \le 2/40$			
	-30		
$3338 \text{ MHz} \le f \le 3478$	dBm+TT	1 MHz	
MHz			
4234 MHz ≤ f ≤ 4409 MHz			

Table 6.5A.3.1.1.5-1: General spurious emissions test requirements

Tost requirement	s for CA p26A	-n70A Configuration	
3 MHz ≤ f < 30 MHz	-36		
$3 V Z \leq 1 \leq 30 V Z$	dBm+TT	10 kHz	
30 MHz ≤ f < 82 MHz	-36		
50 IVII IZ 3 I < 82 IVII IZ	dBm+TT	100 kHz	
846 MHz ≤ f ≤ 896 MHz	-36		
040 WI 12 3 1 3 090 WI 12	dBm+TT	100 kHz	
2500 MH < 5 < 2000	UDITITI		
$2509 \text{ MHz} \le f \le 2606$			
MHz			
2222 MIL $- f < 2409$	-30	1 MHz	
$3323 \text{ MHz} \le f \le 3408$	dBm+TT	1 1011 12	
MHz			
4204 MHz ≤ f ≤ 4269 MHz			
	s for CA n28A	-n41A Configuration	
1000 MHz $\leq f \leq 1284$ MHz			
$1748MHz \le f \le 1987 MHz$			
$3199MHz \le f \le 3438 MHz$	-25		
$3902MHz \le f \le 4186 MHz$	dBm+TT	1MHz	
4244 MHz $\leq f \leq 4677$ MHz	abiiii ii		
$5695MHz \le f \le 6128MHz$			
	for CA n41A	-n79A Configuration	
•	-36		
8 MHz ≤ f ≤30 MHz	dBm+TT	10kHz	
	-36		
30 MHz ≤ f ≤980 MHz	dBm+TT	100kHz	
1710MHz ≤ f ≤ 2504MHz	UDIII+11		
$6110MHz \le f \le 7690MHz$	20		
	-30	1MHz	
9392MHz ≤ f ≤ 10380MHz	dBm+TT		
$11296 MHz \le f \le 12690 MHz$	- fan OA - n 10A		
10 MHz ≤ f < 30 MHz		-n66A Configuration	
$10 \text{ MHz} \le 1 \le 30 \text{ MHz}$	-36	10 kHz	
	dBm+TT		
30 MHz ≤ f < 280 MHz	-36	100 kHz	
1770 1971 0 1000	dBm+TT		
$1770 \text{ MHz} \le f \le 1990$			
MHz			
5260 MHz \leq f \leq 5690	20		
MHz	-30 dBm+TT	1 MHz	
(070) MU $< 5 < 72(0)$			
6970 MHz \le f \le 7260			
MHz			
8810 MHz ≤ f ≤ 9180 MHz			
	for CA n/8A	-n70A Configuration	
	-36		
130 MHz ≤ f ≤ 310 MHz	dBm+TT	100 kHz	
1840 MHz ≤ f ≤ 2005 MHz			
$5245 \text{ MHz} \le f \le 5705 \text{ MHz}$	-30		
$6940 \text{ MHz} \le f \le 7120 \text{ MHz}$	dBm+TT	1 MHz	
$8795 \text{ MHz} \le f \le 9110 \text{ MHz}$			
	s for CA p49A	-n71A Configuration	
•	5 101 CA_1148A		
$2154 \text{ MHz} \le f \le 2374$			
MHz	20		
1	-30	1 MHz	
2052 MIL- < £ < 2027	dBmitt		
$2852 \text{ MHz} \le f \le 3037$	dBm+TT		
$2852 \text{ MHz} \le f \le 3037 \\ \text{MHz}$	dBm+TT		

$\begin{array}{c} 4213 \ \mathrm{MHz} \leq f \leq 4398 \\ \mathrm{MHz} \end{array}$			
$\begin{array}{c} 4876 \ \text{MHz} \leq f \leq 5096 \\ \text{MHz} \end{array}$			
$\begin{array}{c} 6402 \ MHz \leq f \leq 6737 \\ MHz \end{array}$			
7763 MHz ≤ f ≤ 8098 MHz			
Test requirement		-n71A Configuration	
314 MHz ≤ f < 454 MHz	-36 dBm+TT	100 kHz	
$1012 \text{ MHz} \le f \le 1117 $ MHz			
$\begin{array}{c} 2373 \ \text{MHz} \leq f \leq 2478 \\ \text{MHz} \end{array}$			
$\begin{array}{c} 2722 \ \text{MHz} \leq f \leq 2897 \\ \text{MHz} \end{array}$	-30 dBm+TT	1 MHz	
$\begin{array}{c} 3036 \text{ MHz} \leq f \leq 3176 \\ \text{MHz} \end{array}$			
4083 MHz ≤ f ≤ 4258 MHz			
Test requirement	s for CA_n70A	-n71A Configuration	
299 MHz \leq f < 384 MHz	-36 dBm+TT	100 kHz	
997 MHz \leq f $<$ 1000 MHz 1000 MHz \leq f \leq 1047	-		
$\frac{1000 \text{ MHz}}{\text{MHz}} \le 1 \le 1047$			
$\begin{array}{c} 2358 \ MHz \leq f \leq 2408 \\ MHz \end{array}$			
$\begin{array}{c} 2692 \ \text{MHz} \leq f \leq 2757 \\ \text{MHz} \end{array}$	-30 dBm+TT	1 MHz	
$\begin{array}{c} 3021 \ \text{MHz} \leq f \leq 3106 \\ \text{MHz} \end{array}$			
4053 MHz ≤ f ≤ 4118 MHz			

Table 6.5A.3.1.1.5-2: Test Tolerance for General spurious emissions

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	0	0
40MHz < BW ≤ 100MHz	0	0

6.5A.3.2 Spurious emission for UE co-existence

Editor's note: The following aspects are either missing or not yet determined:

- Extending the coverage of the TCs with intra-band CA scenarios is FFS.

6.5A.3.2.0 Minimum conformance requirements

6.5A.3.2.0.1 Spurious emissions for UE co-existence for intra-band contiguous CA

This clause specifies the requirements for the specified intra-band contiguous carrier aggregation configurations for coexistence with protected bands, the requirements in Table 6.5A.3.2.0.1-1 apply.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

NR CA	Spurious emission Protected Band Frequency range (MHz) Maximum MBW NOTE						
combinatio	n Protected Band	Frequer	Frequency range (MHz)			MBW (MHz)	NOTE
CA_n7	E-UTRA Band 1, 2, 3, 4, 5, 7, 8, 10, 12, 13, 14, 17, 20, 22, 26, 27, 28, 29, 30, 31, 32, 33, 34, 40, 42, 43, 50, 51, 52, 65, 66, 67, 68, 72, 74, 75, 76, 85, NR Band n77, n78		-	F _{DL_high}	(dBm) -50	1	
	Frequency range	2570	-	2575	+1.6	5	1, 2, 3
	Frequency range	2575	-	2595	-15.5	5	1, 2, 3
	Frequency range	2595	-	2620	-40	1	1, 2
CA_n41	E-UTRA Band 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 17, 24, 25, 26, 27, 28, 29, 30, 34, 39, 42, 44, 45, 48, 50, 51, 52, 65, 66, 70, 71, 73, 74, 85, NR Band n77, n78		-	F_{DL_high}	-50	1	
0/(NR Band n79	F _{DL_low}	-	FDL_high	-50	1	2, 4
	E-UTRA Band 9, 11, 18, 19, 21	FDL_low	-	FDL_high	-50	1	6
	E-UTRA Band 40	F _{DL_low}	-	F _{DL_high}	-40	1	
	Frequency range	1884.5	İ	1915.7	-41	0.3	5, 6
CA_n48	E-UTRA Band 2, 4, 5, 12, 13, 14, 17, 24, 25, 26, 29, 30, 41, 50, 51, 66, 70, 71, 74, 85		-	F _{DL_high}	-50	1	
CA_n77	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65	F _{DL_low}	-	$F_{DL_{high}}$	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	5
CA_n78	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65	F _{DL_low}	-	$F_{DL_{high}}$	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	5
CA_n79	E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 21, 28, 34, 39, 40, 41, 42, 65	F _{DL_low}	-	$F_{DL_{high}}$	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	5
fro NOTE 2: Th foll 25 25	ese requirements also apply for the m the edge of the channel bandwid s requirement is applicable for any owing restriction: for carriers of 15 50.5 - 2562.5 MHz and for carriers 52 - 2560 MHz the requirement is a 54 RB.	th. channel band MHz bandwidt of 20 MHz bar	widths h when ndwidth	within the rar carrier centr when carrie	nge 2500 - 257 re frequency is r centre freque	70 MHz with within the r ncy is withir	the ange h the range
pro	these adjacent bands, the emissic tected operating band.						-
pe sp Mł Th kH	exceptions, measurements with a l mitted for each assigned NR carrie urious emissions. Due to spreading lz frequency range immediately out s results in an overall exception int z), where N is 2, 3, 4, 5 for the 2nd, asurement bandwidth (MBW) totall	er used in the r of the harmor tside the harm erval centred a , 3rd, 4th or 5t	neasure nic emis onic en at the h h harme	ement due to sion the exc hission on bo armonic emi- onic respection	2nd, 3rd, 4th eption is also a oth sides of the ssion of (2 MH vely. The exce	or 5th harm allowed for t harmonic e z + N x L _{CRF} ption is allo	onic he first 1 mission. 3 x RB _{size}
NOTE 5: Ap NOTE 6: Th	plicable when co-existence with PH s requirement applies when the NF channel bandwidth is 10 or 20 MH	IS system ope R carrier is cor	rating i	n 1884.5 - 19	915.7 MHz.		MHz and

Table 6.5A.3.2.0.1-1: Requirements for uplink intra-band contiguous carrier aggregation

6.5A.3.2.0.2 Void

6.5A.3.2.0.3 Spurious emissions for UE co-existence for Inter-band CA

For inter-band carrier aggregation with the uplink assigned to two NR bands, the requirements in Table 6.5A.3.2.0.3-1 and Table 6.5A.3.2.0.3-2 apply on each component carrier with both component carriers are active.

NOTE: For inter-band carrier aggregation with uplink assigned to two NR bands, the requirements in Table 6.5A.3.2.0.3-1 and Table 6.5A.3.2.0.3-2 could be verified by measuring spurious emissions at the specific frequencies where second and third order intermodulation products generated by the two transmitted carriers can occur; in that case, the requirements for remaining applicable frequencies in Table 6.5A.3.2.0.3-1 and Table 6.5A.3.2.0.3-2 would be considered to be verified by the measurements verifying the one uplink inter-band CA UE to UE co-existence requirements.

Table 6.5A.3.2.0.3-1: Requirements for uplink inter-band carrier aggregation (two bands)

NR CA		Spu	rious er	nission			
combination	Protected Band	Frequen	icy rang	ge (MHz)	Maximum Level (dBm)	MBW (MHz)	NOTE
CA_n1-n28	E-UTRA Band 5, 7, 8, 18, 19, 20, 26, 27, 31, 38, 40, 41, 72, 73 NR band n79	F _{DL_low}	-	FDL_high	-50	1	
	E-UTRA Band 1, 22, 32, 42, 43, 50, 51, 52, 65, 74, 75, 76 NR band n77, n78	Fdl_low	-	F _{DL_high}	-50	1	2
	E-UTRA Band 3, 34	F _{DL_low}	-	F _{DL_high}	-50	1	4
	E-UTRA Band 11, 21	F _{DL_low}	-	FDL_high	-50	1	11, 12
	E-UTRA Band 1, 65	FDL_low	-	FDL_high	-50	1	11, 15
	Frequency range	470	-	694	-42	8	4, 14
	Frequency range	470	-	710	-26.2	6	15
	Frequency range	758	-	773	-30	1	4
	Frequency range	773	-	803	-50	1	
	Frequency range	662	-	694	-26.2	6	4
	Frequency range	1880	-	1895	-40	1	4, 6
	Frequency range	1895	-	1915	-15.5	(MHz) 1 1 1 1 1 1 1 1 1 1 6 1 1 5 5 1 1 1 1 5 5 0.3 1 1 1 5 5 0.3 1 1 5 5 1 1 1 5 5 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 5 5 1 1 1 5 5 1 1 1 5 5 1 1 1 5 5 1 1 1 5 5 1 1 1 5 5 1 1 1 5 5 1 1 1 5 5 1 1 1 5 5 1 1 1 5 5 1 1 1 5 5 1 1 1 5 5 1 1 1 5 5 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 1 5 5 1 1 1 1 5 5 1 1 1 1 1 5 5 1 1 1 1 1 5 5 1 1 1 1 1 5 5 1 1 1 1 1 1 5 5 5 1 1 1 1 1 1 5 5 1 1 1 1 1 1 5 5 5 1 1 1 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 5 5 5 1 1 1 1 1 1 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1	4, 6, 7
	Frequency range	1915	-	1920	+1.6	5	4, 6, 7
CA_n1-n40	E-UTRA Band 1, 5, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 32, 38, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 68, 69, 72, 73, 74, 75, 76 NR band n78	FDL_low	-	F _{DL_high}	-50	1	
	Band 3, 34	F _{DL_low}	_	F _{DL_high}	-50	1	4
	NR band n77, n79	FDL_low	_	FDL_high	-50		2
	Frequency range	1880	-	1895	-40		4, 14
	Frequency range	1895		1915	-40		4, 7, 14
	Frequency range	1915		1920	+1.6		4, 7, 14
	Frequency range	1884.5	-	1915.7	-41	-	3
CA_n1-n78	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 40, 41, 65, 74	FDL_low	-	FDL_high	-50		
	Frequency range	1880	-	1895	-40	1	4, 6
	Frequency range	1895	-	1915	-15.5		4, 6, 7
	Frequency range	1915	-	1920	+1.6	5	4, 6, 7
CA_n1-n79	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 21, 26, 28, 34, 40, 41, 42, 65, 74	F _{DL_low}	-	FDL_high	-50		
	Frequency range	1880	-	1895	-40		4, 6
	Frequency range	1895	-	1915	-15.5		4, 6, 7
<u></u>	Frequency range	1915	-	1920	+1.6		4, 6, 7
CA_n3-n28	E-UTRA Band 5, 7, 8, 18, 19, 20, 26, 27, 31 38, 40, 41, 72	FDL_low	-	FDL_high	-50		2
	E-UTRA Band 32, 42, 43, 50, 51, 74, 75, 76 NR band n77, n78, n79	F _{DL_low}	-	FDL_high	-50		2
	E-UTRA Band 3, 34	FDL_low	-	FDL_high	-50	1	4
	E-UTRA Band 11, 21	FDL_low	-	FDL_high	-50	1	11, 12
	E-UTRA Band 1, 65	FDL_low	-	F_{DL_high}	-50	1	11, 15
	Frequency range	470	-	694	-42	8	4, 14
	Frequency range	470	-	710	-26.2	6	15
	Frequency range	758	-	773	-30	1	4
	Frequency range	773	-	803	-50	1	
	Frequency range	662	-	694	-26.2	6	4
	Frequency range	1880	-	1895	-40	1	4, 6

	Frequency range	1895	-	1915	-15.5	5	4, 6, 7
	Frequency range	1915	-	1920	+1.6	5	4, 6, 7
	Frequency range	1839.9	-	1879.9	-50	1	4
	Frequency range	1884.5	-	1915.7	-41	0.3	3, 11
CA_n3-n40	E-UTRA Band 1, 5, 7, 8, 11,	FDL_low	-	FDL_high	-50	1	5, 11
0A_113-1140	18, 19, 20, 21, 26, 27, 28, 31,	I DL_IOW	-	I DL_nign	-30	'	
	32, 33, 34, 38, 39, 41, 43, 44.						
	45, 50, 51, 65, 67, 68, 69, 72,						
	73, 74, 75, 76						
	E-UTRA Band 3	F _{DL_low}	-	FDL_high	-50	1	4
	UTRA Band 22, 42, 52	FDL_low	-	FDL_high	-50	1	2
	NR Band n77, n78, n79	I DL_IOW		DL_nign	00		2
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n3-n78	E-UTRA Band 1, 3, 5, 7, 8, 11,	1004.0	-	1915.7	-41	0.5	5
CA_113-1170		F		Ea	50	1	
	18, 19, 20, 21, 26, 28, 34, 39, 40, 41, 65	FDL_low	-	FDL_high	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.2	3
CA_n8-n78		1004.0	-	1915.7	-41	0.3	3
CA_08-078	E-UTRA Band 1, 8, 11, 20, 21,	F _{DL_low}	-	F _{DL_high}	-50	1	
	28, 34, 39, 40, 65, 74			-	50	4	0
	E-UTRA Band 3, 7, 41	F _{DL_low}	-	FDL_high	-50	1	2
0.0. 10 70	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n40-n78	UTRA Band 1, 3, 5, 7, 8, 11,	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	18, 19, 20, 21, 26, 27, 28, 31,						
	32, 33, 34, 38, 39, 41, 44, 45,						
	50, 51, 65, 67, 68, 69, 72, 73,						
	74, 75, 76						
	NR Band n79	FDL_low	-	FDL_high	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n40-n79	E-UTRA Band 1, 3, 5, 8, 11,	FDL_low	-	F_{DL} high	-50	1	
	18, 19, 21, 26, 28, 34, 39, 41,						
	42, 65, 74,						
	NR band n78						
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n78-n79	E-UTRA Band 1, 3, 5, 8, 11,	F _{DL_low}	-	FDL_high	-50	1	
	18, 19, 21, 28, 34, 40, 41, 65,						
	74						
	Frequency range	1884.5	-	1915.7	-41	0.3	3
	and FDL_high refer to each frequent	cy band spec	cified in	Table 5.2-1 i	n TS 38.101	-1 or Table	5.5-1 in
TS 36.							
	ceptions, measurements with a lev						
	ted for each assigned NR carrier ι						
	us emissions. Due to spreading of						
	requency range immediately outsid						
	esults in an overall exception interv				•		
	z), where N is 2, 3, 4, 5 for the 2nd						allowed if
	easurement bandwidth (MBW) tota					interval.	
	able when co-existence with PHS						
NOTE 4: These	requirements also apply for the free	equency ran	ges that	t are less tha	n F _{OOB} (MHz	z) in Table 6	.5.3.1-1
from th	ne edge of the channel bandwidth.						

NOTE: To simplify Table 6.5A.3.2.0.3-1, E-UTRA band numbers are listed for bands which are specified only for E-UTRA operation or both E-UTRA and NR operation. NR band numbers are listed for bands which are specified only for NR operation.

NR CA		Spu	Spurious emission										
Configuration	Protected Band	Frequer	ncy ran	ge (Mhz)	Maximum Level (dBm)	MBW (MHz)	NOTE						
CA_n1-n28	E-UTRA Band 5, 7, 8, 18, 19, 20, 26, 27, 31, 38, 40, 41, 72, 73 NR band n79	F _{DL_low}	-	F _{DL_high}	-50	1							
	E-UTRA Band 1, 22, 32, 42, 43, 50, 51, 52, 65, 74, 75, 76 NR band n77, n78	F _{DL_low}	-	F _{DL_high}	-50	1	2						
	E-UTRA Band 3, 34	F _{DL_low}	-	$F_{DL_{high}}$	-50	1	4						
	E-UTRA Band 11, 21	F_{DL_low}	-	F_{DL_high}	-50	1	11, 12						
	E-UTRA Band 1, 65	F_{DL_low}	-	F_{DL_high}	-50	1	11, 15						
	Frequency range	470	-	694	-42	8	4, 14						
	Frequency range	470	-	710	-26.2	6	15						
	Frequency range	758	-	773	-30	1	4						
	Frequency range	773	-	803	-50	1							
	Frequency range	662	-	694	-26.2	6	4						
	Frequency range	1880	-	1895	-40	1	4, 6						
	Frequency range	1895	-	1915	-15.5	5	4, 6, 7						
	Frequency range	1915	-	1920	+1.6	5	4, 6, 7						
CA_n1-n40	E-UTRA Band 1, 5, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 32, 38, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 68, 69, 72, 73, 74, 75, 76 NR band n78	F _{DL_low}	-	F _{DL_high}	-50	1							
	Band 3, 34	F _{DL_low}	-	$F_{DL_{high}}$	-50	1	4						
	NR band n77, n79	FDL_low	-	F_{DL_high}	-50	1	2						
	Frequency range	1880		1895	-40	1	4, 14						
	Frequency range	1895		1915	-15.5	5	4, 7, 14						
	Frequency range	1915		1920	+1.6	5	4, 7, 14						
	Frequency range	1884.5	-	1915.7	-41	0.3	3						
CA_n1-n78	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 40, 41, 65, 74	F _{DL_low}	-	F_{DL_high}	-50	1							
	Frequency range	1880	-	1895	-40	1	4, 6						
	Frequency range	1895	-	1915	-15.5	5	4, 6, 7						
	Frequency range	1915	-	1920	+1.6	5	4, 6, 7						

Table 6.5A.3.2.0.3-2: Requirements for uplink inter-band carrier aggregation (two bands) Rel-16

						1	1
CA_n1-n79	E-UTRA Band 1, 3, 5, 7, 8,	F _{DL_low}	-	$F_{DL_{high}}$	-50	1	
	11, 18, 19, 21, 26, 28, 34, 40,						
	41, 42, 65, 74	1000					
	Frequency range	1880	-	1895	-40	1	4,6
	Frequency range	1895	-	1915	-15.5	5	4, 6, 7
	Frequency range	1915	-	1920	+1.6	5	4, 6, 7
CA_n2A-n77A	E-UTRA Band 4, 5, 12, 13,	FDL_low	-	$F_{DL_{high}}$	-50	1	
	14, 17, 26, 29, 30, 41, 65, 66,						
	70, 71, 103					-	
	E-UTRA Band 2, 25	FDL_low	-	FDL_high	-50	1	2
CA_n3-n40	E-UTRA Band 1, 5, 7, 8, 11,	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50	1	
	18, 19, 20, 21, 26, 27, 28, 31,						
	32, 33, 34, 38, 39, 41, 43, 44.						
	45, 50, 51, 65, 67, 68, 69, 72,						
	73, 74, 75, 76	_			= 0		
	E-UTRA Band 3	FDL_low	-	F _{DL_high}	-50	1	4
	UTRA Band 22, 42, 52	FDL_low	-	$F_{DL_{high}}$	-50	1	2
	NR Band n77, n78, n79						
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n3-n41	E-UTRA Band 1, 5, 8, 11, 18,	_					
	19, 20, 21, 26, 27, 28, 34, 39,	F _{DL_low}	-	$F_{DL_{high}}$	-50	1	
	44, 45, 50, 51, 65, 73, 74						
	E-UTRA Band 40	FDL_low	-	F _{DL_high}	-40	1	
	E-UTRA Band 3	FDL_low	-	F_{DL} high	-50	1	4
	E-UTRA Band 42,	FDL_low	-	$F_{DL_{high}}$	-50	1	2
	NR Band n77, n78, n79			-			
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n3-n78	E-UTRA Band 1, 3, 5, 7, 8,						
	11, 18, 19, 20, 21, 26, 28, 34,	FDL_low	-	$F_{DL_{high}}$	-50	1	
	39, 40, 41, 65, 74						
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n5-n77	E-UTRA Band 1, 2, 3, 4, 8,	FDL_low	-	$F_{DL_{high}}$	-50	1	
	11, 12, 13, 14, 17, 18, 19, 21,						
	25, 26, 28, 29, 30, 34, 40, 65,						
	66, 70, 71, 74, 103	_			= 0		
	E-UTRA Band 41	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n8-n39	E-UTRA Band 1, 34, 40, 50,	F_{DL_low}	-	F_{DL_high}	-50	1	
	51, 74			. DL_mgn			
	E-UTRA Band 22, 41, 42	FDL_low	-	$F_{DL_{high}}$	-50	1	2
	NR Band n77, n78, n79			-			
	E-UTRA Band 8	F _{DL_low}	-	$F_{DL_{high}}$	-50	1	4
CA_n8-n40	E-UTRA Bands 1, 5, 11, 18,	FDL_low	-	$F_{DL_{high}}$	-50	1	
	19, 20, 21, 26, 28, 31, 32, 33,						
	34, 38, 39, 45, 50, 51, 65, 67,						
	68, 69, 72, 73, 74, 75, 76						
	E-UTRA Bands 3, 7, 22, 41,	FDL_low	-	$F_{DL_{high}}$	-50	1	2
	42, 43, 52						
	NR Bands n77, n78, n79			⊢_──┤	- -		
	E-UTRA Band 8	FDL_low	-	FDL_high	-50	1	4
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n8-n78	E-UTRA Band 1,8, 11, 20, 21,	FDL_low	-	$F_{DL_{high}}$	-50	1	
	28, 34, 39, 40, 65, 74			-			
	E-UTRA Band 3, 7, 41	FDL_low	-	F_{DL} high	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n28-n40	E-UTRA Band 1, 3, 5, 7, 8,	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50	1	
	18, 19, 20, 26, 27, 28, 31, 34,						
1	38, 41, 72						

	E LITPA Pand 11 21 22 22	E		F	50	1	2
	E-UTRA Band 11, 21, 22, 32,	F _{DL_low}	-	F_{DL_high}	-50	1	2
	42, 43, 50, 51, 52, 65, 73, 74,						
	75, 76						
	NR band n77, n78, n79	1884.5		1915.7	-41	0.2	3
CA = 20 = 11	Frequency range	1004.0	-	1915.7	-41	0.3	3
CA_n28-n41	E-UTRA Band 2, 3, 5, 8, 25,	F _{DL_low}	-	F _{DL_high}	-50	1	
	26, 27, 34						
	E-UTRA Band 4, 42, 50, 51,	F		F	50	1	2
	52, 65, 66, 73, 74	FDL_low	-	FDL_high	-50	1	2
	NR Band n77, n78, n79 E-UTRA Band 18, 19	E		E	-50	1	11
	E-UTRA Band 10, 19	FDL_low	-	FDL_high	-50	1	11, 15
	E-UTRA Band 11, 21		-	FDL_high	-50	1	11, 12
		F _{DL_low}	-	F _{DL_high} 694	-30	8	4, 14
	Frequency range	470	-	710	-42	6	4, 14
	Frequency range		-			6	4
	Frequency range	662	-	694	-26.2		
	Frequency range	758	-	773	-32	1	4
	Frequency range	773	-	803	-50	1	0.44
	Frequency range	1884.5	-	1915.7	-41	0.3	3, 11
CA_n39-n40	E-UTRA Band 1, 8, 22, 26,	_		_	=0		
	28, 34, 41, 42, 44, 45, 50, 51,	FDL_low	-	FDL_high	-50	1	
	52, 73, 74						
	NR Band n77, n78, n79	FDL_low	-	FDL_high	-50	1	2
	Frequency range	1805		1855	-40	1	8
	Frequency range	1855		1880	-15.5	5	4, 7, 8
CA_n39-n41	E-UTRA Band 1, 8, 26, 28,	FDL_low	-	F _{DL_high}	-50	1	
	34, 40, 42, 44, 45, 50, 51, 74			-			
	NR Band n77, n78, n79	FDL_low	-	F _{DL_high}	-50	1	2
	Frequency range	1805	-	1855	-40	1	4
	Frequency range	1855	-	1880	-15.5	5	4, 7, 8
CA_n39-n79	E-UTRA Band 1, 8, 28, 34,	F _{DL} low	-	F_{DL_high}	-50	1	
	40, 41, 44, 45	_		, , , , , , , , , , , , , , , , , , ,			
	NR Band n78	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1805	-	1855	-40	1	4, 8
	Frequency range	1855	-	1880	-15.5	5	4, 7, 8
CA_n40-n41	E-UTRA Band 1, 3, 5, 8, 11,	FDL_low	-	F_{DL} high	-50	1	
	18, 19, 21, 26, 27, 28, 34, 39,						
	42, 44, 45, 50, 51, 65, 73, 74,						
	NR Band n77, n78						
	NR Band n79	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n40-n78	UTRA Band 1, 3, 5, 7, 8, 11,	F_{DL_low}	-	F_{DL_high}	-50	1	
	18, 19, 20, 21, 26, 27, 28, 31,						
	32, 33, 34, 38, 39, 41, 44, 45,						
	50, 51, 65, 67, 68, 69, 72, 73,						
	74, 75, 76						
	NR Band n79	FDL_low	-	$F_{DL_{high}}$	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n40-n79	E-UTRA Band 1, 3, 5, 8, 11,	FDL_low	-	FDL_high	-50	1	
	18, 19, 21, 26, 28, 34, 39, 41,						
	42, 65, 74,						
	NR band n78						
	Frequency range	1884.5	-	1915.7	-41	0.3	3
	E-UTRA Band 1, 3, 5, 8, 11,						
	18, 19, 21, 28, 34, 42, 44, 45,	$F_{DL_{low}}$	-	$F_{DL_{high}}$	-50	1	
CA_n41-n79	65						
	E-UTRA Band 40	F _{DL_low}	-	F_{DL_high}	-40	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3

CA_n48-n66	E-UTRA Band 2, 4, 5, 7, 12, 13, 14, 17, 24, 25, 26, 27, 29, 30, 41, 50, 51, 66, 70, 71, 74, 85	F _{DL_low}	-	$F_{DL_{high}}$	-50	1	
	E-UTRA Band 4, 5, 12, 13, 14, 17, 26, 27, 30, 43, 50, 51, 53, 66, 74, 85	Fdl_low	-	F_{DL_high}	-50	1	
CA_n66-n71	E-UTRA Band 2, 25, 41, 42, 48, 70 NR Band n77	F _{DL_low}	-	F_{DL_high}	-50	1	2
	E-UTRA Band 29	$F_{DL_{low}}$	-	F_{DL_high}	-38	1	4
	E-UTRA Band 71	F_{DL_low}	-	F_{DL_high}	-50	1	4
CA_n66-n77	CA_n66-n77 E-UTRA Band 2, 4, 5, 12, 13, 14, 17, 26, 29, 30, 41, 65, 66, 70, 71, 103		-	F_{DL_high}	-50	1	
	E-UTRA Band 4, 5, 12, 13, 14, 17, 26, 27, 30, 48, 66, 74, 85	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
CA_n70-n71	E-UTRA Band 2, 7, 25, 41, 70, NR Band n77	Fdl_low	-	F_{DL_high}	-50	1	2
	E-UTRA Band 29	$F_{DL_{low}}$	-	F_{DL_high}	-38	1	4
	E-UTRA Band 71	$F_{DL_{low}}$	-	F_{DL_high}	-38	1	4

NOTE 1:	FDL_low and FDL_high refer to each frequency band specified in Table 5.2-1 or Table 5.5-1 in TS 36.101
NOTE 2:	As exceptions, measurements with a level up to the applicable requirements defined in Table 6.5.3.1-2 are
	permitted for each assigned NR carrier used in the measurement due to 2nd, 3rd, 4th or 5 th harmonic
	spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1
	MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission.
	This results in an overall exception interval centred at the harmonic emission of (2MHz + N x LCRB x
	180kHz), where N is 2, 3, 4, 5 for the 2nd, 3rd, 4th or 5th harmonic respectively. The exception is allowed if
	the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.
NOTE 3:	Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz
NOTE 4:	These requirements also apply for the frequency ranges that are less than FOOB (MHz) in Table 6.5.3.1-1
_	and Table 6.5A.3.1-1 from the edge of the channel bandwidth.
NOTE 5:	
	This requirement is applicable for any channel bandwidths within the range 1920 – 1980 MHz with the
	following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range
	1927.5 - 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the
	range 1930 – 1938 MHz the requirement is applicable only for an uplink transmission bandwidth less than
	or equal to 54 RB.
NOTE 7	For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in
	the protected operating band.
NOTE 8:	This requirement is only applicable for carriers with bandwidth confined within 1885-1920 MHz
	(requirement for carriers with at least 1RB confined within 1880 - 1885 MHz is not specified). This
	requirement applies for an uplink transmission bandwidth less than or equal to 54 RB for carriers of 15 MHz
	bandwidth when carrier centre frequency is within the range 1892.5 - 1894.5 MHz and for carriers of
	20 MHz bandwidth when carrier centre frequency is within the range 1895 - 1903 MHz.
NOTE 9:	
NOTE 10	
NOTE 11	Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel
_	bandwidth used is 5 or 10 MHz.
NOTE 12	As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted
_	for each assigned NR carrier used in the measurement due to 2 nd harmonic spurious emissions. An
	exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure
	5.3.1-1) for which the 2 nd harmonic totally or partially overlaps the measurement bandwidth (MBW).
NOTE 13	This requirement is applicable for 5 and 10 MHz NR channel bandwidth allocated within 718 - 728 MHz.
	For carriers of 10 MHz bandwidth, this requirement applies for an uplink transmission bandwidth less than
	or equal to 30 RB with RBstart > 1 and Rbstart < 48 .
NOTE 14	This requirement is applicable in the case of a 10 MHz NR carrier confined within 703 MHz and 733 MHz,
	otherwise the requirement of -25 dBm with a measurement bandwidth of 8 MHz applies.
NOTE 15	As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted
	for each assigned E-UTRA carrier used in the measurement due to 3rd harmonic spurious emissions. An
	exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-
	1) for which the 3rd harmonic totally or partially overlaps the measurement bandwidth (MBW).

Table 6.5A.3.2.0.3-3: Requirements for uplink inter-band carrier aggregation (two bands) Rel-17

NR CA		Spu	rious er	nission			
Configuration	Protected Band	Frequen	cy rang	ge (Mhz)	Maximum Level (dBm)	MBW (MHz)	NOTE
CA_n1-n78	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 40, F _{DL_low} - F _{DL_high} 41, 65, 74		-50	1			
	Frequency range	1880	-	1895	-40	1	4, 6
	Frequency range	1895	-	1915	-15.5	5	4, 6, 7
	Frequency range	1915	-	1920	+1.6	5	4, 6, 7
CA_n1-n79	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 21, 26, 28, 34, 40, 41, 42, 65, 74	F _{DL_low}	-	F _{DL_high}	-50	1	
	Frequency range	1880	-	1895	-40	1	4, 6
	Frequency range	1895	-	1915	-15.5	5	4, 6, 7
	Frequency range	1915	-	1920	+1.6	5	4, 6, 7

CA_n3-n78	E-UTRA Band 1, 3, 5, 7, 8, 11,		1				
CA_113-1176	18, 19, 20, 21, 26, 28, 34, 39,	FDL low	-	Es	-50	1	
	40, 41, 65, 74	FDL_low	-	FDL_high	-50	1	
		1884.5		1915.7	-41	0.3	3
CA_n8-n39	Frequency range E-UTRA Band 1, 34, 40, 50,	1004.5	-	1915.7	-41	0.3	3
CA_10-1139		F _{DL_low}	-	FDL_high	-50	1	
	51, 74 E-UTRA Band 22, 41, 42						
		FDL_low	-	FDL_high	-50	1	2
	NR Band n77, n78, n79			F	50	1	4
CA =0 =70	E-UTRA Band 8	FDL_low	-	F _{DL_high}	-50	1	4
CA_n8-n78	E-UTRA Band 1,8, 11, 20, 21,	F _{DL_low}	-	F _{DL_high}	-50	1	
	28, 34, 39, 40, 65, 74	_			50	4	
	E-UTRA Band 3, 7, 41	F _{DL_low}	-	F _{DL_high}	-50	1	2
0.0.01.11	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n24-n41	E-UTRA Band 2, 4, 5, 10, 12,	_		_	50		
	13, 14, 17, 25, 26, 29, 30, 48,	FDL_low	-	F_{DL_high}	-50	1	
	66, 70, 71, 85	_				-	
	NR Band n77	FDL_low	-	FDL_high	-50	1	2
CA_n24-n48	E-UTRA Band 2, 4, 5, 10, 12,			_			
	13, 14, 17, 25, 26, 29, 30, 41,	FDL_low	-	F_{DL_high}	-50	1	
	66, 70, 71, 85						
CA_n24-n77	E-UTRA Band 2, 4, 5, 10, 12,						
	13, 14, 17, 25, 26, 29, 30, 41,	FDL_low	-	$F_{DL_{high}}$	-50	1	
	66, 70, 71, 85						
CA_n26-n66	E-UTRA Band 2, 4, 5, 10, 12,	F _{DL_low}	-	$F_{DL_{high}}$	-50	1	
	13, 14, 17, 24, 25, 26, 29, 30,						
	43, 47, 50, 51, 66, 70, 71, 74,						
	85						
	E-UTRA Band 41, 42, 48, 53	F_{DL_low}	-	F_{DL_high}	-50	1	2
	NR band 77						
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n26-n70	E-UTRA Band 2, 5, 10, 12, 13,	F_{DL_low}	-	F_{DL_high}	-50	1	
	14, 17, 24, 25, 29, 30, 48, 66,						
	70, 71, 85						
	E-UTRA Band 41, 53	F_{DL_low}	-	F_{DL_high}	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n28-n41	E-UTRA Band 2, 3, 5, 8, 25,	E		E	-50	1	
	26, 27, 34	F_{DL_low}	-	F _{DL_high}	-50	I	
	E-UTRA Band 4, 42, 50, 51,						
	52, 65, 66, 73, 74	FDL_low	-	F_{DL_high}	-50	1	2
	NR Band n77, n78, n79						
	E-UTRA Band 18, 19	F _{DL_low}	-	FDL_high	-50	1	11
	E-UTRA Band 1	F _{DL_low}	-	F _{DL_high}	-50	1	11, 15
	E-UTRA Band 11, 21	F _{DL_low}	-	FDL_high	-50	1	11, 12
	Frequency range	470	-	694	-42	8	4, 14
	Frequency range	470	-	710	-26.2	6	13
	Frequency range	662	-	694	-26.2	6	4
	Frequency range	758	-	773	-32	1	4
	Frequency range	773	-	803	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3, 11
CA_n39-n40	E-UTRA Band 1, 8, 22, 26, 28,	100 1.0				0.0	5, 11
		1	1	Enury	-50	1	
1		EDI IOW	-				
	34, 41, 42, 44, 45, 50, 51, 52,	F _{DL_low}	-	F_{DL_high}	-50	I	
	34, 41, 42, 44, 45, 50, 51, 52, 73, 74						2
	34, 41, 42, 44, 45, 50, 51, 52, 73, 74 NR Band n77, n78, n79	Fdl_low	-	F _{DL_high}	-50	1	2
	34, 41, 42, 44, 45, 50, 51, 52, 73, 74 NR Band n77, n78, n79 Frequency range	F _{DL_low} 1805		F _{DL_high} 1855	-50 -40	1	8
CA p20 p44	34, 41, 42, 44, 45, 50, 51, 52, 73, 74 NR Band n77, n78, n79 Frequency range Frequency range	Fdl_low		F _{DL_high}	-50	1	
CA_n39-n41	34, 41, 42, 44, 45, 50, 51, 52, 73, 74 NR Band n77, n78, n79 Frequency range Frequency range E-UTRA Band 1, 8, 26, 28, 34,	F _{DL_low} 1805		F _{DL_high} 1855	-50 -40	1	8
CA_n39-n41	34, 41, 42, 44, 45, 50, 51, 52, 73, 74 NR Band n77, n78, n79 Frequency range Frequency range E-UTRA Band 1, 8, 26, 28, 34, 40, 42, 44, 45, 50, 51, 74	FDL_low 1805 1855 FDL_low	-	F _{DL_high} 1855 1880 F _{DL_high}	-50 -40 -15.5 -50	1 1 5 1	8 4, 7, 8
CA_n39-n41	34, 41, 42, 44, 45, 50, 51, 52, 73, 74 NR Band n77, n78, n79 Frequency range Frequency range E-UTRA Band 1, 8, 26, 28, 34, 40, 42, 44, 45, 50, 51, 74 NR Band n77, n78, n79	FDL_low 1805 1855 FDL_low FDL_low	-	FDL_high 1855 1880 FDL_high FDL_high	-50 -40 -15.5 -50 -50	1 1 5 1 1	8 4, 7, 8 2
CA_n39-n41	34, 41, 42, 44, 45, 50, 51, 52, 73, 74 NR Band n77, n78, n79 Frequency range Frequency range E-UTRA Band 1, 8, 26, 28, 34, 40, 42, 44, 45, 50, 51, 74	FDL_low 1805 1855 FDL_low	-	F _{DL_high} 1855 1880 F _{DL_high}	-50 -40 -15.5 -50	1 1 5 1	8 4, 7, 8

CA_n39-n79	E-UTRA Band 1, 8, 28, 34, 40, 41, 44, 45	FDL_low	-	F _{DL_high}	-50	1	
	NR Band n78	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1805	-	1855	-40	1	4, 8
	Frequency range	1855	-	1880	-15.5	5	4, 7, 8
	E-UTRA Band 1, 3, 5, 8, 11,						
CA_n41-n79	18, 19, 21, 28, 34, 42, 44, 45, 65	FDL_low	-	$F_{DL_{high}}$	-50	1	
CA_1141-1179	E-UTRA Band 40	F _{DL_low}	-	F _{DL_high}	-40	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
	E-UTRA Band 2, 4, 5, 7, 12,	FDL_low	-	FDL_high	-50	1	0
	13, 14, 17, 24, 25, 26, 27, 29,	I DL_IOW	_	I DL_nign	-30	1	
CA_n48-n66	30, 41, 50, 51, 66, 70, 71, 74,						
	85						
	E-UTRA Band 2, 4, 5, 12, 13,	FDL_low	-	FDL_high	-50	1	16
0.1 10 70	14, 17, 24, 25, 26, 29, 30, 66,	_		_ 0			
CA_n48-n70	70, 71, 85						
	E-UTRA Band 41	F _{DL_low}	-	FDL_high	-50	1	2, 16
	E-UTRA Band 4, 5, 12, 13, 14,	F _{DL_low}	-	FDL_high	-50	1	
	17, 24, 26, 30, 50, 51, 53, 66,						
CA_n48-n71	74, 85						
CA_1140-117 1	E-UTRA Band 2, 25, 41, 70	F _{DL_low}	-	$F_{DL_{high}}$	-50	1	2
	E-UTRA Band 29	F _{DL_low}	-	$F_{DL_{high}}$	-38	1	15
	E-UTRA Band 71	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	15
	E-UTRA Band 4, 5, 12, 13, 14,	F_{DL_low}	-	$F_{DL_{high}}$	-50	1	
	17, 26, 27, 30, 43, 50, 51, 53,						
	66, 74, 85						
CA_n66-n71	E-UTRA Band 2, 25, 41, 42,	F_{DL_low}	-	$F_{DL_{high}}$	-50	1	2
	48, 70						
	NR Band n77						
	E-UTRA Band 29	FDL_low	-	F_{DL_high}	-38	1	4
	E-UTRA Band 71	FDL_low	-	F_{DL_high}	-50	1	4
	E-UTRA Band 4, 5, 12, 13, 14,	FDL_low	-	$F_{DL_{high}}$	-50	1	
	17, 26, 27, 30, 48, 66, 74, 85			↓ ↓		. .	L
CA_n70-n71	E-UTRA Band 2, 7, 25, 41, 70, NR Band n77	FDL_low	-	$F_{DL_{high}}$	-50	1	2
	E-UTRA Band 29	F _{DL_low}	-	F _{DL_high}	-38	1	4
	E-UTRA Band 71	FDL_low	-	FDL_high	-38	1	4
		I DL_IOW	_	I DL_IIIgN	-00		

	FDL_low and FDL_high refer to each frequency band specified in Table 5.2-1 or Table 5.5-1 in TS 36.101 As exceptions, measurements with a level up to the applicable requirements defined in Table 6.5.3.1-2 are
	permitted for each assigned NR carrier used in the measurement due to 2nd, 3rd, 4th or 5th harmonic
	spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1
	MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission.
	This results in an overall exception interval centred at the harmonic emission of $(2MHz + N \times LCRB \times 100 \text{ Jm})$ where N is 2.2.4.5 for the 2nd 2nd 4th or 5th harmonic emission of (2MHz + N × LCRB × 100 \text{ Jm}).
	180kHz), where N is 2, 3, 4, 5 for the 2nd, 3rd, 4th or 5th harmonic respectively. The exception is allowed if the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.
NOTE 3	Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz
	These requirements also apply for the frequency ranges that are less than F _{OOB} (MHz) in Table 6.5.3.1-1
NOTE I.	and Table 6.5A.3.1-1 from the edge of the channel bandwidth.
NOTE 5:	
	This requirement is applicable for any channel bandwidths within the range 1920 – 1980 MHz with the
	following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range
	1927.5 - 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the
	range 1930 – 1938 MHz the requirement is applicable only for an uplink transmission bandwidth less than or equal to 54 RB.
NOTE 7:	For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in
	the protected operating band.
NOTE 8:	This requirement is only applicable for carriers with bandwidth confined within 1885-1920 MHz
	(requirement for carriers with at least 1RB confined within 1880 - 1885 MHz is not specified). This
	requirement applies for an uplink transmission bandwidth less than or equal to 54 RB for carriers of 15 MHz
	bandwidth when carrier centre frequency is within the range 1892.5 - 1894.5 MHz and for carriers of
	20 MHz bandwidth when carrier centre frequency is within the range 1895 - 1903 MHz.
NOTE 9: NOTE 10:	
	Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel
	bandwidth used is 5 or 10 MHz.
NOTE 12:	As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted
	for each assigned NR carrier used in the measurement due to 2 nd harmonic spurious emissions. An
	exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure
	5.3.1-1) for which the 2 nd harmonic totally or partially overlaps the measurement bandwidth (MBW).
NOTE 13:	This requirement is applicable for 5 and 10 MHz NR channel bandwidth allocated within 718 - 728 MHz.
	For carriers of 10 MHz bandwidth, this requirement applies for an uplink transmission bandwidth less than
	or equal to 30 RB with RBstart > 1 and Rbstart < 48.
NOTE 14:	This requirement is applicable in the case of a 10 MHz NR carrier confined within 703 MHz and 733 MHz,
	otherwise the requirement of -25 dBm with a measurement bandwidth of 8 MHz applies.
INUTE 15.	As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted for each assigned E-UTRA carrier used in the measurement due to 3rd harmonic spurious emissions. An
	exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-
	1) for which the 3rd harmonic totally or partially overlaps the measurement bandwidth (MBW).
NOTE 16:	The same configuration applies to corresponding NR-DC configuration in Table 4.3.1.1.7.1-1 in [5]. If UE
	supporting NR-DC configuration do not support the corresponding CA configuration, NR-DC configuration

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5A.3.2.

6.5A.3.2.1 Spurious emissions for UE co-existence for CA (2UL CA)

6.5A.3.2.1.1 Test purpose

is used in this test.

To verify that UE transmitter does not cause unacceptable interference to co-existing systems for the specified bands which has specific requirements in terms of transmitter spurious emissions for 2UL CA.

6.5A.3.2.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support 2UL CA.

6.5A.3.2.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in subclause 6.5A.3.2.0.

6.5A.3.2.1.4 Test description

6.5A.3.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, are shown in Table 6.5A.3.2.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5A.3.2.1.4.1-1: Inter band CA Test Configuration Table

					In	itial Condition	S					
Tes	t Enviro	nment as	specifie	ed in TS 38.508	3-1 [5] subclause		Normal					
		encies as CA in FR1		ed in TS 38.508	-1 [5] subclause	4.3.1.1.3 for	For test fr	requencie	es ref	er to "Ra	ange" colum	ns.
Tes	t Chann	el Bandw	idths as	specified in T	ຣີ 38.508-1 [5] ຣເ	ubclause 4.3.1	Refer to " columns	PCC NRE	3@SC	S"and "	SCC N _{RB} @	SCS "
Tes	t SCS a	s specifie	d in Tat	ble 5.5A.3-1				guration s	pecifi	c test po	nts. pints: Refer S " columns	to "PCC
	1				Test Paramet					1		
			CA Co	onfiguration /	N _{RB_agg} (Note 4)		DL A	llocation		UL A	llocation (Note 2,3)
ID		CA Co	onfigur	ation	PCC NRB @SCS	SCC N _{RB} @SCS	сс мор	PCC SC RE alloca	C B	CC MOD	PCC & SCC RB allocations	
	P	CC		SCC		NRB@3C3				WOD	(LCRB @ RB _{start})	
	Band	Range	Band	Range								
				Defa	ult Test Setting	s for a CA_XA	A-YA Configu	ration				
1	х	Low	Y	Low	Highest N _{RB} @SCS	Highest N _{RB} @SCS	CP-OFDM QPSK	NA		CP- DFDM QPSK	1@0	1@0
2	х	High	Y	High	Highest N _{RB} @SCS	Highest N _{RB} @SCS	CP-OFDM QPSK	NA		CP- DFDM QPSK	1@RB _{max}	1@RB _{max}
r		r	<u> </u>	Т	est Settings for	CA_n1A-n78	A Configurati	on			T	I
1	n1	High	n78	High	106@15kHz	273@30kHz	CP-OFDM QPSK	NA		CP- OFDM QPSK	1@105	1@272
2	n1	Low	n78	3455MHz	106@15kHz	273@30kHz	CP-OFDM QPSK	NA		CP- OFDM QPSK	1@0	1@0
3	n1	Low	n78	3475MHz	106@15kHz	273@30kHz	CP-OFDM QPSK	NIA		CP- OFDM QPSK	1@0	1@0
4	n1	High	n78	High	106@15kHz	106@30kHz	CP-OFDM QPSK	NA		CP- OFDM QPSK	1@105	106@0
5	n1	Low	n78	High	106@15kHz	106@30kHz	CP-OFDM QPSK	NA		CP- OFDM QPSK	1@0	106@0
				Т	est Settings for	CA_n2A-n77	A Configurati	on			-	-
1	n2	Low	n77	Mid	106@15kHz	273@30kHz	CP-OFDM QPSK	NA		CP- OFDM QPSK	1@0	1@272
2	n2	High	n77	3900MHz	106@15kHz	273@30kHz	CP-OFDM QPSK	NA		CP- OFDM QPSK	1@99	1@200
3	n2	Hlgh	n77	4000MHz	106@15kHz	273@30kHz	CP-OFDM QPSK	NA		CP- OFDM QPSK	1@99	1@272
				Т	est Settings for	CA_n3A-n78	A Configurati	on				
1	n3	Mid	n78	Mid	160@15kHz	270@15kHz	CP-OFDM QPSK	NA		CP- OFDM QPSK	1@160	1@270
2	n3	Mid	n78	Mid	78@30KHz	273@30KHz	CP-OFDM QPSK	NA		CP- OFDM QPSK	1@78	1@273

3	n3	Mid	n78	Mid	38@60KHz	135@60KHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@38	1@135
				Те	st Settings for	CA_n5A-n77A	Configurati	on			
1	n5	High	n77	Mid	106@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@105	1@29
2	n5	Low	n77	Mid	106@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@272
3	n5	Low	n77	4053.06MHz	106@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@0
4	n5	Low	n77	3600 <mark>MHz</mark>	106@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@0
5	n5	Low	n77	3658.14 <mark>MHz</mark>	106@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@0
6	n5	Low	n77	3540.54MHz	106@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@0
7	n5	High	n77	High	106@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@105	1@272
				Te	st Settings for	CA_n24A-n41	A Configurat	ion			
1	n24	High	n41	Low	52@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@136
2	n24	Low	n41	Low	52@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@52	1@108
3	n24	High	n41	Low	52@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@136
4	n24	Low	n41	Low	52@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@94
5	n24	High	n41	High	52@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@192
				Те	st Settings for	CA_n24A-n48	A Configurat	ion			
1	n24	High	n48	Mid	52@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@136
2	n24	High	n48	High	52@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@0
				Te	st Settings for	CA_n24A-n77	A Configurat	ion			
1	n24	Low	n77	Mid	52@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@136
2	n24	Low	n77	3930 MHz	52@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@273
3	n24	Low	n77	3930 MHz	52@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@262

	r				1		1			
n24	Low	n77	3930 MHz	52@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@52	1@196
			Те	st Settings for	CA_n26A-n66	A Configurat	ion			
n26	High	n66	High	106@15kHz	216@15kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@105	1@0
			Т	est Settings for	CA_n26A-n70	A Configuration	on	1		
n26	Low	n70	Low	106@15kHz	79@15kHz	QPSK/CP- OFDM QPSK	NA	QPSK / CP- OFDM QPSK	1@0	1@0
			Te	est Settings for	r CA_n8A-n78A	A Configurati	on			
n8	Mid	n78	Mid	106@15kHz	270@15kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@0
n8	Mid	n78	Mid	106@15kHz	270@15kHz	CP-OFDM QPSK	NA	OFDM QPSK	1@106	1@270
n8	Low	n78	Low	51@30KHz	273@30KHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@51	1@273
n8	Mid	n78	Mid	51@30KHz	273@30KHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@51	1@273
			Те	st Settings for	CA_n28A-n41	A Configurat	ion			
n28	High	n41	High	106@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@105	1@272
n28	Low	n41	Mid	106@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@0
n28	Low	n41	High	106@15kHz	273@30kHz	CP-OFDM QPSK	NA	OFDM QPSK	1@0	1@272
n28	Low	n41	High	106@15kHz	273@30kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@0
			Те	st Settings for	CA_n41A-n79	A Configurat	ion			
n41	High	n79	4870MHz	273@30KHz	273@30KHz	QPSK	NA	/ CP- OFDM QPSK	1@272	1@0
n41	Mid	n79	Low	273@30KHz	273@30KHz	QPSK	NA	/ CP- OFDM QPSK	1@136	1@136
n41	High	n79	Low	273@30KHz	273@30KHz	QPSK	NA	QPSK /CP- OFDM QPSK	1@272	1@272
n41	High	n79	4450MHz	273@30KHz	273@30KHz	QPSK	NA	QPSK /CP- OFDM QPSK	1@272	1@136
n41	High	n79	4500MHz	273@30KHz	273@30KHz	QPSK	NA	QPSK / CP- OFDM QPSK	1@272	1@136
	n26 n26 n8 n8 n8 n8 n8 n8 n8 n8 n8 n28 n28 n28	n26 High n26 Low n26 Mid n8 Mid n8 Mid n8 Mid n8 Mid n8 Low n8 Low n8 Low n8 Low n28 Low n28 Low n28 Low n28 Low n28 Low n41 High n41 Mid n41 High n41 High	n26 High n66 n26 Low n70 n8 Mid n78 n8 Low n41 n28 Low n41 n41 High n79 n41 High n79 n41 High n79	Image Image <thimage< th=""> <thimage< th=""> <thi< td=""><td>Image Image <thimage< th=""> <th< td=""><td>Image Image <thimage< th=""> Image <thi< td=""><td>124 Low 177 3930 MH2 S2@ 10KH2 273@30KH2 $QPSK$ Test Settings for CA_n26A-n664 Configuration n26 High n66 High 106@15KHz 216@15KHz $QPSK$ n26 Low n70 Low 106@15KHz 216@15KHz $QPSK$ n26 Low n70 Low 106@15KHz 79@15KHz $QPSK$ Test Settings for CA_n8A-n78A Configuration n8 Mid n78 Mid 106@15KHz 270@15KHz $QPOFDM$ n8 Mid n78 Mid 106@15KHz 270@15KHz $QPOFDM$ n8 Mid n78 Low 51@30KHz 273@30KHz $QPOFDM$ n8 Mid n78 Low 51@30KHz 273@30KHz $QPOFDM$ n8 Mid n78 Mid 106@15KHz 273@30KHz $QPOFDM$ n28 Low n41 High 106@15KHz 273@30KHz $QPOFDM$ n28</td><td>12.4 Low 11/1 39.30 MHZ 52.92 TSKH2 27.38.30 KHZ QPSK NA QPSK Mid 106@ 15KHz 216@ 15KHz CP-OFDM QPSK NA 126 High n66 High 106@ 15KHz 216@ 15KHz QPSK PA 126 Low N70 Low 106@ 15KHz 270@ 15KHz QPSK NA 126 Low N70 Low 106@ 15KHz 270@ 15KHz QPSK NA 188 Mid n78 Mid 106@ 15KHz 270@ 15KHz QP-OFDM QPSK NA 188 Mid n78 Mid 106@ 15KHz 273@ 30KHz CP-OFDM QPSK NA 188 Low n78 Low 51@ 30KHz 273@ 30KHz CP-OFDM QPSK NA 192 Low n78 Mid 106@ 15KHz 273@ 30KHz CP-OFDM QPSK NA 192 Low n41 High 106@ 15KHz 273@ 30KHz CP-OFDM QPSK NA</td><td>124 1260 117 3330 MR2 326 mR2 273@ 30HZ 0PSK NA 0PSM 0PSM 106 High n66 High 106@ 15kHz 216@ 15kHz CP-0FDM 0PSK NA 0PSK 0PSK 1026 Low n70 Low 106@ 15kHz 79@ 15kHz 0PSK NA 0PSK 0PSK 102 Low n70 Low 106@ 15kHz 720@ 15kHz 0PSK NA 0PSK 0PSK 108 Mid n78 Mid 106@ 15kHz 270@ 15kHz 0P-0FDM 0PSK NA 0PSK 0PSK 108 Mid n78 Low 106@ 15kHz 270@ 15kHz 0P-0FDM 0PSK NA 0PSK 108 Low n78 Low 51@ 30KHz 273@ 30KHz 0P-0FDM 0PSK NA 0PSK 108 Low n74 High 106@ 15kHz 273@ 30KHz 0P-0FDM 0PSK NA 0PSK 128 Low n41 High 106@ 15kHz</td><td>n24 Low n77 3330 MHz 52@15kHz 273@30kHz CP-OFIM CP-OFIM OPSK NA OFDM OPSK 16@22 OPSK n28 High n66 High 106@15kHz 216@15kHz 216@15kHz CP-OFIM OPSK NA CP-OFIM OPSK 100 n26 Low n70 Low 106@15kHz 79@15kHz OPSK/CP- OPSK NA CP-OFIM OPSK 100 n8 Low n70 Low 106@15kHz 270@15kHz CP-OFDM OPSK NA CP-OFDM OPSK 100 n8 Mid n78 Mid 106@15kHz 270@15kHz CP-OFDM OPSK NA CP-OFDM OPSK 1@0 n8 Mid n78 Mid 106@15kHz 270@15kHz CP-OFDM OPSK NA CP-OFDM OPSK 1@0 n8 Low n78 Mid 106@15kHz 273@30KHz CP-OFDM OPSK NA CP-OFDM OPSK 1@10 n28 Low n41 High 106@15kHz 273@30KHz CP-OFDM OPSK NA</td></thi<></thimage<></td></th<></thimage<></td></thi<></thimage<></thimage<>	Image Image <thimage< th=""> <th< td=""><td>Image Image <thimage< th=""> Image <thi< td=""><td>124 Low 177 3930 MH2 S2@ 10KH2 273@30KH2 $QPSK$ Test Settings for CA_n26A-n664 Configuration n26 High n66 High 106@15KHz 216@15KHz $QPSK$ n26 Low n70 Low 106@15KHz 216@15KHz $QPSK$ n26 Low n70 Low 106@15KHz 79@15KHz $QPSK$ Test Settings for CA_n8A-n78A Configuration n8 Mid n78 Mid 106@15KHz 270@15KHz $QPOFDM$ n8 Mid n78 Mid 106@15KHz 270@15KHz $QPOFDM$ n8 Mid n78 Low 51@30KHz 273@30KHz $QPOFDM$ n8 Mid n78 Low 51@30KHz 273@30KHz $QPOFDM$ n8 Mid n78 Mid 106@15KHz 273@30KHz $QPOFDM$ n28 Low n41 High 106@15KHz 273@30KHz $QPOFDM$ n28</td><td>12.4 Low 11/1 39.30 MHZ 52.92 TSKH2 27.38.30 KHZ QPSK NA QPSK Mid 106@ 15KHz 216@ 15KHz CP-OFDM QPSK NA 126 High n66 High 106@ 15KHz 216@ 15KHz QPSK PA 126 Low N70 Low 106@ 15KHz 270@ 15KHz QPSK NA 126 Low N70 Low 106@ 15KHz 270@ 15KHz QPSK NA 188 Mid n78 Mid 106@ 15KHz 270@ 15KHz QP-OFDM QPSK NA 188 Mid n78 Mid 106@ 15KHz 273@ 30KHz CP-OFDM QPSK NA 188 Low n78 Low 51@ 30KHz 273@ 30KHz CP-OFDM QPSK NA 192 Low n78 Mid 106@ 15KHz 273@ 30KHz CP-OFDM QPSK NA 192 Low n41 High 106@ 15KHz 273@ 30KHz CP-OFDM QPSK NA</td><td>124 1260 117 3330 MR2 326 mR2 273@ 30HZ 0PSK NA 0PSM 0PSM 106 High n66 High 106@ 15kHz 216@ 15kHz CP-0FDM 0PSK NA 0PSK 0PSK 1026 Low n70 Low 106@ 15kHz 79@ 15kHz 0PSK NA 0PSK 0PSK 102 Low n70 Low 106@ 15kHz 720@ 15kHz 0PSK NA 0PSK 0PSK 108 Mid n78 Mid 106@ 15kHz 270@ 15kHz 0P-0FDM 0PSK NA 0PSK 0PSK 108 Mid n78 Low 106@ 15kHz 270@ 15kHz 0P-0FDM 0PSK NA 0PSK 108 Low n78 Low 51@ 30KHz 273@ 30KHz 0P-0FDM 0PSK NA 0PSK 108 Low n74 High 106@ 15kHz 273@ 30KHz 0P-0FDM 0PSK NA 0PSK 128 Low n41 High 106@ 15kHz</td><td>n24 Low n77 3330 MHz 52@15kHz 273@30kHz CP-OFIM CP-OFIM OPSK NA OFDM OPSK 16@22 OPSK n28 High n66 High 106@15kHz 216@15kHz 216@15kHz CP-OFIM OPSK NA CP-OFIM OPSK 100 n26 Low n70 Low 106@15kHz 79@15kHz OPSK/CP- OPSK NA CP-OFIM OPSK 100 n8 Low n70 Low 106@15kHz 270@15kHz CP-OFDM OPSK NA CP-OFDM OPSK 100 n8 Mid n78 Mid 106@15kHz 270@15kHz CP-OFDM OPSK NA CP-OFDM OPSK 1@0 n8 Mid n78 Mid 106@15kHz 270@15kHz CP-OFDM OPSK NA CP-OFDM OPSK 1@0 n8 Low n78 Mid 106@15kHz 273@30KHz CP-OFDM OPSK NA CP-OFDM OPSK 1@10 n28 Low n41 High 106@15kHz 273@30KHz CP-OFDM OPSK NA</td></thi<></thimage<></td></th<></thimage<>	Image Image <thimage< th=""> Image <thi< td=""><td>124 Low 177 3930 MH2 S2@ 10KH2 273@30KH2 $QPSK$ Test Settings for CA_n26A-n664 Configuration n26 High n66 High 106@15KHz 216@15KHz $QPSK$ n26 Low n70 Low 106@15KHz 216@15KHz $QPSK$ n26 Low n70 Low 106@15KHz 79@15KHz $QPSK$ Test Settings for CA_n8A-n78A Configuration n8 Mid n78 Mid 106@15KHz 270@15KHz $QPOFDM$ n8 Mid n78 Mid 106@15KHz 270@15KHz $QPOFDM$ n8 Mid n78 Low 51@30KHz 273@30KHz $QPOFDM$ n8 Mid n78 Low 51@30KHz 273@30KHz $QPOFDM$ n8 Mid n78 Mid 106@15KHz 273@30KHz $QPOFDM$ n28 Low n41 High 106@15KHz 273@30KHz $QPOFDM$ n28</td><td>12.4 Low 11/1 39.30 MHZ 52.92 TSKH2 27.38.30 KHZ QPSK NA QPSK Mid 106@ 15KHz 216@ 15KHz CP-OFDM QPSK NA 126 High n66 High 106@ 15KHz 216@ 15KHz QPSK PA 126 Low N70 Low 106@ 15KHz 270@ 15KHz QPSK NA 126 Low N70 Low 106@ 15KHz 270@ 15KHz QPSK NA 188 Mid n78 Mid 106@ 15KHz 270@ 15KHz QP-OFDM QPSK NA 188 Mid n78 Mid 106@ 15KHz 273@ 30KHz CP-OFDM QPSK NA 188 Low n78 Low 51@ 30KHz 273@ 30KHz CP-OFDM QPSK NA 192 Low n78 Mid 106@ 15KHz 273@ 30KHz CP-OFDM QPSK NA 192 Low n41 High 106@ 15KHz 273@ 30KHz CP-OFDM QPSK NA</td><td>124 1260 117 3330 MR2 326 mR2 273@ 30HZ 0PSK NA 0PSM 0PSM 106 High n66 High 106@ 15kHz 216@ 15kHz CP-0FDM 0PSK NA 0PSK 0PSK 1026 Low n70 Low 106@ 15kHz 79@ 15kHz 0PSK NA 0PSK 0PSK 102 Low n70 Low 106@ 15kHz 720@ 15kHz 0PSK NA 0PSK 0PSK 108 Mid n78 Mid 106@ 15kHz 270@ 15kHz 0P-0FDM 0PSK NA 0PSK 0PSK 108 Mid n78 Low 106@ 15kHz 270@ 15kHz 0P-0FDM 0PSK NA 0PSK 108 Low n78 Low 51@ 30KHz 273@ 30KHz 0P-0FDM 0PSK NA 0PSK 108 Low n74 High 106@ 15kHz 273@ 30KHz 0P-0FDM 0PSK NA 0PSK 128 Low n41 High 106@ 15kHz</td><td>n24 Low n77 3330 MHz 52@15kHz 273@30kHz CP-OFIM CP-OFIM OPSK NA OFDM OPSK 16@22 OPSK n28 High n66 High 106@15kHz 216@15kHz 216@15kHz CP-OFIM OPSK NA CP-OFIM OPSK 100 n26 Low n70 Low 106@15kHz 79@15kHz OPSK/CP- OPSK NA CP-OFIM OPSK 100 n8 Low n70 Low 106@15kHz 270@15kHz CP-OFDM OPSK NA CP-OFDM OPSK 100 n8 Mid n78 Mid 106@15kHz 270@15kHz CP-OFDM OPSK NA CP-OFDM OPSK 1@0 n8 Mid n78 Mid 106@15kHz 270@15kHz CP-OFDM OPSK NA CP-OFDM OPSK 1@0 n8 Low n78 Mid 106@15kHz 273@30KHz CP-OFDM OPSK NA CP-OFDM OPSK 1@10 n28 Low n41 High 106@15kHz 273@30KHz CP-OFDM OPSK NA</td></thi<></thimage<>	124 Low 177 3930 MH2 S2@ 10KH2 273@30KH2 $QPSK$ Test Settings for CA_n26A-n664 Configuration n26 High n66 High 106@15KHz 216@15KHz $QPSK$ n26 Low n70 Low 106@15KHz 216@15KHz $QPSK$ n26 Low n70 Low 106@15KHz 79@15KHz $QPSK$ Test Settings for CA_n8A-n78A Configuration n8 Mid n78 Mid 106@15KHz 270@15KHz $QPOFDM$ n8 Mid n78 Mid 106@15KHz 270@15KHz $QPOFDM$ n8 Mid n78 Low 51@30KHz 273@30KHz $QPOFDM$ n8 Mid n78 Low 51@30KHz 273@30KHz $QPOFDM$ n8 Mid n78 Mid 106@15KHz 273@30KHz $QPOFDM$ n28 Low n41 High 106@15KHz 273@30KHz $QPOFDM$ n28	12.4 Low 11/1 39.30 MHZ 52.92 TSKH2 27.38.30 KHZ QPSK NA QPSK Mid 106@ 15KHz 216@ 15KHz CP-OFDM QPSK NA 126 High n66 High 106@ 15KHz 216@ 15KHz QPSK PA 126 Low N70 Low 106@ 15KHz 270@ 15KHz QPSK NA 126 Low N70 Low 106@ 15KHz 270@ 15KHz QPSK NA 188 Mid n78 Mid 106@ 15KHz 270@ 15KHz QP-OFDM QPSK NA 188 Mid n78 Mid 106@ 15KHz 273@ 30KHz CP-OFDM QPSK NA 188 Low n78 Low 51@ 30KHz 273@ 30KHz CP-OFDM QPSK NA 192 Low n78 Mid 106@ 15KHz 273@ 30KHz CP-OFDM QPSK NA 192 Low n41 High 106@ 15KHz 273@ 30KHz CP-OFDM QPSK NA	124 1260 117 3330 MR2 326 mR2 273@ 30HZ 0PSK NA 0PSM 0PSM 106 High n66 High 106@ 15kHz 216@ 15kHz CP-0FDM 0PSK NA 0PSK 0PSK 1026 Low n70 Low 106@ 15kHz 79@ 15kHz 0PSK NA 0PSK 0PSK 102 Low n70 Low 106@ 15kHz 720@ 15kHz 0PSK NA 0PSK 0PSK 108 Mid n78 Mid 106@ 15kHz 270@ 15kHz 0P-0FDM 0PSK NA 0PSK 0PSK 108 Mid n78 Low 106@ 15kHz 270@ 15kHz 0P-0FDM 0PSK NA 0PSK 108 Low n78 Low 51@ 30KHz 273@ 30KHz 0P-0FDM 0PSK NA 0PSK 108 Low n74 High 106@ 15kHz 273@ 30KHz 0P-0FDM 0PSK NA 0PSK 128 Low n41 High 106@ 15kHz	n24 Low n77 3330 MHz 52@15kHz 273@30kHz CP-OFIM CP-OFIM OPSK NA OFDM OPSK 16@22 OPSK n28 High n66 High 106@15kHz 216@15kHz 216@15kHz CP-OFIM OPSK NA CP-OFIM OPSK 100 n26 Low n70 Low 106@15kHz 79@15kHz OPSK/CP- OPSK NA CP-OFIM OPSK 100 n8 Low n70 Low 106@15kHz 270@15kHz CP-OFDM OPSK NA CP-OFDM OPSK 100 n8 Mid n78 Mid 106@15kHz 270@15kHz CP-OFDM OPSK NA CP-OFDM OPSK 1@0 n8 Mid n78 Mid 106@15kHz 270@15kHz CP-OFDM OPSK NA CP-OFDM OPSK 1@0 n8 Low n78 Mid 106@15kHz 273@30KHz CP-OFDM OPSK NA CP-OFDM OPSK 1@10 n28 Low n41 High 106@15kHz 273@30KHz CP-OFDM OPSK NA

			r	1	r	n					
6	n41	Mid	n79	Low	273@30KHz	273@30KHz	QPSK	NA	QPSK /CP- OFDM QPSK	1@136	1@0
7	n41	High	n79	Mid	273@30KHz	273@30KHz	QPSK	NA	QPSK / CP- OFDM QPSK	1@272	1@136
				Te	st Settings for	CA_n48A-n66	A Configurat	ion			
1	n48	High	n66	Low	216@30kHz	216@15kHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@215	1@0
				Te	st Settings for	CA n48A-n70	A Configurat	ion			
		·			J		3	-	QPSK		
1	n48	High	n70	High	216@15KHz	79@15KHz	QPSK	NA	/ CP- OFDM QPSK	1@215	1@78
2	n48	High	n70	Low	216@15KHz	79@15KHz	QPSK	NA	QPSK / CP- OFDM	1@215	1@0
		<u> </u>			st Settings for	CA n494 n74	A Configurat	ion	QPSK		
1	n48	3550	n71	698	216@30kHz	106@15kHz	QPSK/CP- OFDM QPSK	NA	QPSK / CP- OFDM QPSK	1@215	1@105
2	n48	High	n71	Mid	216@30kHz	106@15kHz	QPSK/CP- OFDM QPSK	NA	QPSK / CP- OFDM QPSK	1@215	1@0
	I			Te	st Settings for	CA_n66A-n71	A Configurat	ion			
1	n66	Low	n71	Low	216@15 KHz	216@15 KHz	QPSK/CP- OFDM QPSK	NA	QPSK / CP- OFDM QPSK	1@0	1@0
				Te	st Settings for	CA_n66A-n77	A Configurat	ion			
1	n66	High	n77	High	216@15kHz	273@30KHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@215	1@272
2	n66	Low	n77	High	216@15kHz	273@30KHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@119
3	n66	Low	n77	High	216@15kHz	273@30KHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@167
4	n66	Low	n77	High	216@15kHz	273@30KHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@231
5	n66	High	n77	Mid	216@15kHz	273@30KHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@215	1@100
6	n66	Low	n77	3892.11MHz	216@15kHz	273@30KHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@0
7	n66	High	n77	High	216@15kHz	273@30KHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@215	1@93
8	n66	Low	n77	High	216@15kHz	273@30KHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@198

9	n66	Low	n77	Mid	216@15kHz	273@30KHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@47
10	n66	Low	n77	Highd	216@15kHz	273@30KHz	CP-OFDM QPSK	NA	CP- OFDM QPSK	1@0	1@216
				Те	st Settings for	CA_n70A-n71	A Configurat	ion			
1	n70	Low	n71	Low	79@15 KHz	106@15 KHz	QPSK/CP- OFDM QPSK	NA	QPSK / CP- OFDM QPSK	1@0	1@0

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.3 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [6] subclause4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5A.3.2.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5A.3.2.1.4.3.

6.5A.3.2.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, and Annex C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause 5.5.1. Message contents are defined in clause 6.5A.3.2.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5A.3.2.1.4.1-1 on both PCC and SCC. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 5. Send continuously uplink power control "up" commands in every uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 6. Measure the power of the transmitted signal with a measurement filter of bandwidths according to Table 6.5.3.2.3-1. The centre frequency of the filter shall be stepped in contiguous steps according to Table 6.5.3.2.3-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5A.3.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with following exception.

Table 6.5A.3.2.1.4.3-1: FrequencyInfoUL-SIB

Derivation Path: TS 38.508-1 [5] Table 4.6.3-62 FrequencyInfoUL-SIB								
Information Element Value/remark Comment Condition								
p-Max	16		Power class 3 and Inter-band CA					

6.5A.3.2.1.5 Test requirement

Test requirements for Spurious Emissions UE Co-existence are the same as the minimum requirements. The measured average power of spurious emission, derived in step 6, shall not exceed the described value in Tables 6.5A.3.2.1.5-1, 6.5A.3.2.1.5-1a (Rel-16) and 6.5A.3.2.1.5-1 (Rel-17). The test requirement of configurations for CA operating band including Band n41 also apply for the corresponding CA operating bands with Band n90 replacing Band n41.

Table 6.5A.3.2.1.5-1: Requirements for uplink inter-band carrier aggregation (two bands) Rel-15

NR CA		Spur	ious en	nission			
Configuration	Protected Band	Frequen	cy rang		Maximum Level (dBm)	MBW (MHz)	NOTE
CA_n1-n28	E-UTRA Band 5, 7, 8, 18, 19, 20, 26, 27, 31, 38, 40, 41, 72, 73 NR band n79	F _{DL_low}	-	FDL_high	-50+TT	1	
	E-UTRA Band 1, 22, 32, 42, 43, 50, 51, 52, 65, 74, 75, 76 NR band n77, n78	F _{DL_low}	-	F _{DL_high}	-50+TT	1	2
	E-UTRA Band 3, 34	$F_{DL_{low}}$	-	F _{DL_high}	-50+TT	1	4
	E-UTRA Band 11, 21	FDL low	-	FDL_high	-50+TT	1	11, 12
	E-UTRA Band 1, 65	FDL_low	-	FDL_high	-50+TT	1	11, 15
	Frequency range	470	-	694	-42+TT	8	4, 14
	Frequency range	470	-	710	-26.2+TT	6	15
	Frequency range	758	-	773	-30+TT	1	4
	Frequency range	773	-	803	-50+TT	1	
	Frequency range	662	-	694	-26.2+TT	6	4
	Frequency range	1880	-	1895	-40+TT	1	4, 6
	Frequency range	1895	-	1915	-15.5+TT	5	4, 6, 7
	Frequency range	1915	-	1920	+1.6+TT	5	4, 6, 7
CA_n1-n40	E-UTRA Band 1, 5, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 32, 38, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 68, 69, 72, 73, 74, 75, 76	F _{DL_low}	-	F _{DL_high}	-50+TT	1	
	NR band n78						
	Band 3, 34	FDL_low	-	FDL_high	-50+TT	1	4
	NR band n77, n79	F _{DL_low}	-	F _{DL_high}	-50+TT	1	2
	Frequency range	1880		1895	-40+TT	1	4, 14
	Frequency range	1895		1915	-15.5+TT	5	4, 7, 14
	Frequency range	1915		1920	+1.6+TT	5	4, 7, 14
	Frequency range	1884.5	-	1915.7	-41+TT	0.3	3
CA_n1-n78	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 40, 41, 65, 74	Fdl_low	-	FDL_high	-50+TT	1	
	Frequency range	1880	-	1895	-40+TT	1	4, 6
	Frequency range	1895	-	1915	-15.5+TT	5	4, 6, 7
	Frequency range	1915	-	1920	+1.6+TT	5	4, 6, 7
CA_n1-n79	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 21, 26, 28, 34, 40, 41, 42, 65, 74	F _{DL_low}	-	FDL_high	-50+TT	1	
	Frequency range	1880	-	1895	-40+TT	1	4, 6
	Frequency range	1895	-	1915	-15.5+TT	5	4, 6, 7
04 =0 =00	Frequency range	1915	-	1920	+1.6+TT	5	4, 6, 7
CA_n3-n28	E-UTRA Band 5, 7, 8, 18, 19, 20, 26, 27, 31 38, 40, 41, 72 E-UTRA Band 32, 42, 43, 50,	FDL_low	-	F _{DL_high} F _{DL_high}	-50+TT -50+TT	1	2
	51, 74, 75, 76 NR band n77, n78, n79						
	E-UTRA Band 3, 34	FDL_low	-	FDL_high	-50+TT	1	4
	E-UTRA Band 11, 21	FDL_low	-	FDL_high	-50+TT	1	11, 12
	E-UTRA Band 1, 65	FDL_low	-	FDL_high	-50+TT	1	11, 15
	Frequency range	470	-	694	-42+TT	8	4, 14
	Frequency range	470	-	710	-26.2+TT	6	15
	Frequency range	758	-	773	-30+TT	1	4
	Frequency range	773	-	803	-50+TT	1	-
	Frequency range	662 1880	-	694 1895	-26.2+TT	<u>6</u> 1	4

4, 6, 7 4 3 3, 11 4 4	5 5 1 0.3 1	-15.5+TT +1.6+TT -50+TT -41+TT -50+TT	1915 1920 1879.9 1915.7	-	1895 1915 1839.9	Frequency range Frequency range	
4 3 3, 11 4	1 0.3	-50+TT -41+TT	1879.9 1915.7	-			
3 3, 11	0.3	-41+TT	1915.7			Frequency range	
4				-	1884.5	Frequency range	
			FDL_high	-	FDL_low	E-UTRA Band 1, 5, 7, 8, 11, 18,	CA_n3-n40
			- <u></u> g.			19, 20, 21, 26, 27, 28, 31, 32,	
						33, 34, 38, 39, 41, 43, 44. 45,	
						50, 51, 65, 67, 68, 69, 72, 73,	
						74, 75, 76	
2	1	-50+TT	$F_{DL_{high}}$	-	F_{DL_low}	E-UTRA Band 3	
	1	-50+TT	F _{DL_high}	-	$F_{DL_{low}}$	UTRA Band 22, 42, 52	
			_ 0		_	NR Band n77, n78, n79	
3 3	0.3	-41+TT	1915.7	-	1884.5	Frequency range	
	1	-50+TT	F_{DL_high}	-	F_{DL_low}	E-UTRA Band 3, 34, 39	CA_n3-n78
3 3	0.3	-41+TT	1915.7	-	1884.5	Frequency range	
	4	50.TT	_		L	E-UTRA Band 8, 20, 28, 34, 39,	CA_n8-n78
	1	-50+11	►DL_high	-	FDL_low	40	
2	1	-50+TT	FDL_high	-	FDL_low	E-UTRA Band 3, 7,41	
3 3	0.3	-41+TT	1915.7	-	1884.5	Frequency range	
	1	-50+TT	FDL_high	-	FDL_low	UTRA Band 1, 3, 5, 7, 8, 11, 18,	CA_n40-n78
						19, 20, 21, 26, 27, 28, 31, 32,	
						33, 34, 38, 39, 41, 44, 45, 50,	
						51, 65, 67, 68, 69, 72, 73, 74,	
	-			-		NR Band n79	
3 3	0.3		1915.7	-	1884.5	Frequency range	
	1	-50+TT	F_{DL_high}	-	$F_{DL_{low}}$		CA_n40-n79
				-			
	1	-50+TT	FDL_high	-	FDL_low		CA_n78-n79
-				-			
•						•	•
	u.						
						requirements also apply for the free	
6.5.3.1-1 and	n Table 6.5 (
	0.3 1 1 0.3 1 0.3 1 0.3 1 0.3 5.5-1 in Table 6. 5 th harr the first nic emis LCRB x allowed I.	-41+TT -50+TT -50+TT -41+TT -50+TT -50+TT -41+TT 2-1 or Table 5. ts defined in T nd, 3rd, 4th or o allowed for th of the harmor (2MHz + N x I e exception is a seption interval .7MHz	1915.7 F_{DL_high} 0.00000000000000000000000000000000000	- - - - - - - - - - - - - - - - - - -	1884.5 FDL_low FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 FDL_low 1884.5 rome 1884.5 rome 1884.5 rome armonic emission armonic emission	40 E-UTRA Band 3, 7,41 Frequency range UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 27, 28, 31, 32, 33, 34, 38, 39, 41, 44, 45, 50, 51, 65, 67, 68, 69, 72, 73, 74, 75, 76 NR Band n79 Frequency range E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 21, 26, 28, 34, 39, 41, 42, 65, 74, NR band n78 Frequency range E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 21, 26, 28, 34, 39, 41, 42, 65, 74, NR band n78 Frequency range E-UTRA Band 1, 3, 5, 8, 11, 18, 19, 21, 28, 34, 40, 41, 65, 74 Frequency range ow and FDL_high refer to each frequency range ow and FDL_high refer to each frequency range on and FDL_high refer to each frequency range ited for each assigned NR carrier use ited for each assigned NR carrier use ited for each assigned NR carrier use ited so an overall exception interval cent N is 2, 3, 4, 5 for the 2nd, 3rd, 4th course itement bandwidth (MBW) totally or able when co-existence with PHS sy	CA_n40-n78 CA_n40-n79 CA_n78-n79 CA_n78-n79 NOTE 1: FDL_l0 NOTE 2: As exc permitt emissi freque results where measu NOTE 3: Applica

NR CA		Տրւ	irious e	emission			
Configuration	Protected Band	Frequer	ncy ran	ge (Mhz)	Maximum Level (dBm)	MBW (MHz)	NOTE
CA_n1-n28	E-UTRA Band 5, 7, 8, 18, 19, 20, 26, 27, 31, 38, 40, 41, 72, 73 NR band n79	F_{DL_low}	-	F _{DL_high}	-50+TT	1	
	E-UTRA Band 1, 22, 32, 42, 43, 50, 51, 52, 65, 74, 75, 76 NR band n77, n78	F _{DL_low}	-	F _{DL_high}	-50+TT	1	2
	E-UTRA Band 3, 34	F_{DL_low}	-	$F_{DL_{high}}$	-50+TT	1	4
	E-UTRA Band 11, 21	$F_{DL_{low}}$	-	F_{DL_high}	-50+TT	1	11, 12
	E-UTRA Band 1, 65	F_{DL_low}	-	F_{DL_high}	-50+TT	1	11, 15
	Frequency range	470	-	694	-42+TT	8	4, 14
	Frequency range	470	-	710	-26.2+TT	6	15
	Frequency range	758	-	773	-30+TT	1	4
	Frequency range	773	-	803	-50+TT	1	
	Frequency range	662	-	694	-26.2+TT	6	4
	Frequency range	1880	-	1895	-40+TT	1	4, 6
	Frequency range	1895	-	1915	-15.5+TT	5	4, 6, 7
	Frequency range	1915	-	1920	+1.6+TT	5	4, 6, 7
CA_n1-n40	E-UTRA Band 1, 5, 7, 8, 11, 18, 19, 20, 21, 22, 26, 27, 28, 31, 32, 38, 41, 42, 43, 44, 45, 50, 51, 52, 65, 67, 68, 69, 72, 73, 74, 75, 76 NR band n78	F _{DL_low}	-	F _{DL_high}	-50+TT	1	
	Band 3, 34	F_{DL_low}	-	$F_{DL_{high}}$	-50+TT	1	4
	NR band n77, n79	$F_{DL_{low}}$	-	F_{DL_high}	-50+TT	1	2
	Frequency range	1880		1895	-40+TT	1	4, 14
	Frequency range	1895		1915	-15.5+TT	5	4, 7, 14
	Frequency range	1915		1920	+1.6+TT	5	4, 7, 1
	Frequency range	1884.5	-	1915.7	-41+TT	0.3	3
CA_n1-n78	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 40, 41, 65, 74	F_{DL_low}	-	F_{DL_high}	-50+TT	1	
	Frequency range	1880	-	1895	-40+TT	1	4, 6
	Frequency range	1895	-	1915	-15.5+TT	5	4, 6, 7
	Frequency range	1915	-	1920	+1.6+TT	5	4, 6, 7

Table 6.5A.3.2.1.5-1a: Requirements for uplink inter-band carrier aggregation (two bands) Rel-16

CA_n1-n79	E-UTRA Band 1, 3, 5, 7, 8,	$F_{DL_{low}}$	-	F _{DL_high}	-50+TT	1	
0A_111-1179	11, 18, 19, 21, 26, 28, 34, 40,	DL_low	-	DL_nign	-30+11	1	
	41, 42, 65, 74						
	Frequency range	1880	-	1895	-40+TT	1	4,6
	Frequency range	1895	-	1915	-15.5+TT	5	4, 6, 7
	Frequency range	1915	-	1920	+1.6+TT	5	4, 6, 7
CA_n2A-n77A	E-UTRA Band 4, 65, 66, 70	FDL_low	-	FDL_high	-50 +TT	1	4, 0, 7
	E-UTRA Band 2, 25	FDL_low	_	FDL_high	-50 +TT	1	2
CA_n3-n40	E-UTRA Band 1, 5, 7, 8, 11,	FDL low	-	FDL_high	-50	1	2
07_113-1140	18, 19, 20, 21, 26, 27, 28, 31,	I DL_IOW	-	I DL_nign	-50	1	
	32, 33, 34, 38, 39, 41, 43, 44.						
	45, 50, 51, 65, 67, 68, 69, 72,						
	73, 74, 75, 76						
	E-UTRA Band 3	FDL_low	-	FDL_high	-50	1	4
	UTRA Band 22, 42, 52	FDL low	-	FDL_high	-50	1	2
	NR Band n77, n78, n79	I DL_IOW		I DE_mign	00	•	-
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n3-n78	E-UTRA Band 1, 3, 5, 7, 8,	100 1.0		1010.7		0.0	- U
0/(_10 11/0	11, 18, 19, 20, 21, 26, 28, 34,	FDL low	-	F _{DL_high}	-50+TT	1	
	39, 40, 41, 65, 74	I DL_IOW		I DE_mign	00111	•	
	Frequency range	1884.5	-	1915.7	-41+TT	0.3	3
CA_n5-n77	E-UTRA Band 1, 2, 3, 4, 8,	FDL_low	-	FDL_high	-50+TT	1	- U
	11, 12, 13, 14, 17, 18, 19, 21,	· DL_IOW		· DE_mgn	00111	•	
	25, 26, 28, 29, 30, 34, 40, 65,						
	66, 70, 71, 74						
	E-UTRA Band 41	FDL_low	-	FDL_high	-50+TT	1	2
	Frequency range	1884.5	-	1915.7	-41+TT	0.3	3
CA_n8-n39	E-UTRA Band 1, 34, 40, 50,						-
	51, 74	FDL_low	-	FDL_high	-50+TT	1	
	E-UTRA Band 22, 41, 42	_		_			
	NR Band n77, n78, n79	FDL_low	-	$F_{DL_{high}}$	-50+TT	1	2
	E-UTRA Band 8	F _{DL_low}	-	F _{DL_high}	-50+TT	1	4
CA_n8-n40	E-UTRA Bands 1, 5, 11, 18,	F _{DL_low}	-	FDL_high	-50	1	
_	19, 20, 21, 26, 28, 31, 32, 33,			_ 0			
	34, 38, 39, 45, 50, 51, 65, 67,						
	68, 69, 72, 73, 74, 75, 76						
	E-UTRA Bands 3, 7, 22, 41,	FDL_low	-	FDL_high	-50	1	2
	42, 43, 52						
	NR Bands n77, n78, n79						
	E-UTRA Band 8	F _{DL_low}	-	F_{DL_high}	-50	1	4
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n8-n78	E-UTRA Band 1, 8, 11, 20,	F	-	E	-50+TT	1	
	21, 28, 34, 39, 40, 65, 74	F _{DL_low}	-	F _{DL_high}	-30+11	I	
	E-UTRA Band 3, 7,41	F _{DL_low}	-	F_{DL_high}	-50+TT	1	2
	Frequency range	1884.5	-	1915.7	-41+TT	0.3	3
CA_n28-n40	E-UTRA Band 1, 3, 5, 7, 8,	FDL_low	-	FDL_high	-50	1	
	18, 19, 20, 26, 27, 28, 31, 34,						
	38, 41, 72						
	E-UTRA Band 11, 21, 22, 32,	F _{DL_low}	-	F_{DL_high}	-50	1	2
	42, 43, 50, 51, 52, 65, 73, 74,						
	75, 76						
	NR band n77, n78, n79						
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n28-n41	E-UTRA Band 2, 3, 5, 8, 25,	F _{DL_low}	-	FDL_high	-50	1	
	26, 27, 34	• DL_10W		· DL_mgn			
	E-UTRA Band 4, 42, 50, 51,	_					
	52, 65, 66, 73, 74	FDL_low	-	F_{DL_high}	-50	1	2
	NR Band n77, n78, n79						
	E-UTRA Band 18, 19	FDL_low	-	FDL_high	-50	1	11
	E-UTRA Band 1	FDL_low	-	FDL_high	-50	1	11, 15

3GPP TS 38.521-1 V17.6.1 (2022-10)

	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	11, 12
	Frequency range	470	-	694	-42	8	4, 14
	Frequency range	470	_	710	-26.2	6	13
	Frequency range	662	-	694	-26.2	6	4
	Frequency range	758	-	773	-20.2	1	4
	Frequency range	73	-	803	-50	1	4
	Frequency range	1884.5	-	1915.7	-30	0.3	3, 11
CA_n39-n40	E-UTRA Band 1, 8, 22, 26,	1004.5	-	1915.7	-41	0.3	3, 11
0A_1139-1140	28, 34, 41, 42, 44, 45, 50, 51,	FDL low	-	F _{DL_high}	-50	1	
	52, 73, 74	I DL_IOW	-	I DL_nign	-30		
	NR Band n77, n78, n79	F _{DL_low}	-	FDL_high	-50	1	2
	Frequency range	1805		1855	-40	1	8
	Frequency range	1855		1880	-40	5	4, 7, 8
CA_n39-n41		1000		1000	-15.5	5	4, 7, 0
CA_1139-1141	E-UTRA Band 1, 8, 26, 28,	$F_{DL_{low}}$	-	F_{DL_high}	-50	1	
	34, 40, 42, 44, 45, 50, 51, 74				-50	4	2
	NR Band n77, n78, n79	F _{DL_low}	-	FDL_high		1	4
	Frequency range	1805	-	1855	-40	1	
0.0 00 70	Frequency range	1855	-	1880	-15.5	5	4, 7, 8
CA_n39-n79	E-UTRA Band 1, 8, 28, 34, 40, 41, 44, 45	F_{DL_low}	-	F_{DL_high}	-50	1	
	NR Band n78	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1805	-	1855	-40	1	4, 8
	Frequency range	1855	-	1880	-15.5	5	4, 7, 8
CA_n40-n41	E-UTRA Band 1, 3, 5, 8, 11,	F _{DL_low}	-	FDL_high	-50	1	
	18, 19, 21, 26, 27, 28, 34, 39,	1 22_1011		bg.i			
	42, 44, 45, 50, 51, 65, 73, 74,						
	NR Band n77, n78						
	NR Band n79	FDL_low	-	FDL_high	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n40-n78	UTRA Band 1, 3, 5, 7, 8, 11,	FDL low	-	FDL_high	-50	1	-
• <u>_</u> •	18, 19, 20, 21, 26, 27, 28, 31,	1 DL_10W		· DL_mgn			
	32, 33, 34, 38, 39, 41, 44, 45,						
	50, 51, 65, 67, 68, 69, 72, 73,						
	74, 75, 76						
	NR Band n79	F _{DL_low}	-	FDL_high	-50	1	2
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n40-n79	E-UTRA Band 1, 3, 5, 8, 11,	FDL_low	-	FDL_high	-50	1	
	18, 19, 21, 26, 28, 34, 39, 41,	· DL_IOW		· DL_IIIgII			
	42, 65, 74,						
	NR band n78						
	Frequency range	1884.5	-	1915.7	-41	0.3	3
	E-UTRA Band 1, 3, 5, 8, 11,	1007.0		1010.7	TI	0.0	
	18, 19, 21, 28, 34, 42, 44, 45,	F _{DL_low}	-	F _{DL_high}	-50	1	
CA_n41-n79	65	I DL_IOW	_	I DL_nign	-50		
5/ <u>1</u> +121/3	E-UTRA Band 40	F _{DL_low}	-	FDL_high	-40	1	
	Frequency range	1884.5	_	1915.7	-40	0.3	3
CA_n48-n66	E-UTRA Band 5, 25	FDL_low	-		-41	1	5
CA_n46-n66 CA_n66-n71	NR Band n77		-	FDL_high	-50	1	2
		FDL_low	-	FDL_high		1	2
CA_n66-n77	E-UTRA Band 2, 4, 12, 13,	FDL_low	-	F_{DL_high}	-50 +TT	1	
	14, 17, 29, 30, 65, 66, 70, 71, 103						
	E-UTRA Band 30	En. (En ····	-50	1	
CA_n70-n71		FDL_low	-	FDL_high			<u> </u>
	NR Band n77	$F_{DL_{low}}$	-	F _{DL_high}	-50	1	2

r	
	FDL_low and FDL_high refer to each frequency band specified in Table 5.2-1 or Table 5.5-1 in TS 36.101 As exceptions, measurements with a level up to the applicable requirements defined in Table 6.5.3.1-2 are
	permitted for each assigned NR carrier used in the measurement due to 2nd, 3rd, 4th or 5 th harmonic
	spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1
	MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission.
	This results in an overall exception interval centred at the harmonic emission of (2MHz + N x LCRB x
	180kHz), where N is 2, 3, 4, 5 for the 2nd, 3rd, 4th or 5th harmonic respectively. The exception is allowed if
	the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.
NOTE 3:	Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz
	These requirements also apply for the frequency ranges that are less than FOOB (MHz) in Table 6.5.3.1-1
	and Table 6.5A.3.1-1 from the edge of the channel bandwidth.
NOTE 5:	This requirement is applicable only for the following cases: - for carriers of 5 MHz channel bandwidth when
	carrier centre frequency (Fc) is within the range 902.5 MHz ≤ Fc < 907.5 MHz with an uplink transmission
	bandwidth less than or equal to 20 RB - for carriers of 5 MHz channel bandwidth when carrier centre
	frequency (Fc) is within the range 907.5 MHz \leq Fc \leq 912.5 MHz without any restriction on uplink
	transmission bandwidth for carriers of 10 MHz channel bandwidth when carrier centre frequency (Fc) is
	Fc = 910 MHz with an uplink transmission bandwidth less than or equal to 32 RB with RBstart> 3.
NOTE 6:	This requirement is applicable for any channel bandwidths within the range 1920 – 1980 MHz with the
	following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range
	1927.5 - 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the
	range 1930 – 1938 MHz the requirement is applicable only for an uplink transmission bandwidth less than
	or equal to 54 RB.
NOTE 7:	For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in
	the protected operating band.
NOTE 8:	This requirement is only applicable for carriers with bandwidth confined within 1885-1920 MHz
	(requirement for carriers with at least 1RB confined within 1880 - 1885 MHz is not specified). This
	requirement applies for an uplink transmission bandwidth less than or equal to 54 RB for carriers of 15 MHz
	bandwidth when carrier centre frequency is within the range 1892.5 - 1894.5 MHz and for carriers of
NOTE 9:	20 MHz bandwidth when carrier centre frequency is within the range 1895 - 1903 MHz.
NOTE 9.	
	Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel
	bandwidth used is 5 or 10 MHz.
NOTE 12	As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted
_	for each assigned NR carrier used in the measurement due to 2 nd harmonic spurious emissions. An
	exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure
	5.3.1-1) for which the 2 nd harmonic totally or partially overlaps the measurement bandwidth (MBW).
NOTE 13	This requirement is applicable for 5 and 10 MHz NR channel bandwidth allocated within 718 - 728 MHz.
	For carriers of 10 MHz bandwidth, this requirement applies for an uplink transmission bandwidth less than
	or equal to 30 RB with RBstart > 1 and Rbstart < 48.
NOTE 14	This requirement is applicable in the case of a 10 MHz NR carrier confined within 703 MHz and 733 MHz,
	otherwise the requirement of -25 dBm with a measurement bandwidth of 8 MHz applies.
NOTE 15	As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted
	for each assigned E-UTRA carrier used in the measurement due to 3rd harmonic spurious emissions. An
	exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-
	1) for which the 3rd harmonic totally or partially overlaps the measurement bandwidth (MBW).

NR CA		Spu	rious e	mission			
Configuration	Protected Band	Frequer	ncy rang	ge (Mhz)	Maximum Level (dBm)	MBW (MHz)	NOTE
CA_n1-n78	E-UTRA Band 1, 3, 5, 7, 8, 11, 18, 19, 20, 21, 26, 28, 34, 40, 41, 65, 74	$F_{DL_{low}}$	-	F_{DL_high}	-50+TT	1	
	Frequency range	1880	-	1895	-40+TT	1	4, 6
	Frequency range	1895	-	1915	-15.5+TT	5	4, 6, 7
	Frequency range	1915	-	1920	+1.6+TT	5	4, 6, 7

Table 6.5A.3.2.1.5-1b: Requirements for uplink inter-band carrier aggregation (two bands) Rel-17

0.0 1 70		-		-	50 TT	4	T
CA_n1-n79	E-UTRA Band 1, 3, 5, 7, 8,	$F_{DL_{low}}$	-	F_{DL_high}	-50+TT	1	
	11, 18, 19, 21, 26, 28, 34, 40,						
	41, 42, 65, 74						
	Frequency range	1880	-	1895	-40+TT	1	4, 6
	Frequency range	1895	-	1915	-15.5+TT	5	4, 6, 7
	Frequency range	1915	-	1920	+1.6+TT	5	4, 6, 7
CA_n3-n78	E-UTRA Band 1, 3, 5, 7, 8,						
	11, 18, 19, 20, 21, 26, 28, 34,	F_{DL_low}	-	F_{DL_high}	-50+TT	1	
	39, 40, 41, 65, 74						
	Frequency range	1884.5	-	1915.7	-41+TT	0.3	3
CA_n8-n39	E-UTRA Band 1, 34, 40, 50,	E	-	E	-50+TT	1	
	51, 74	FDL_low	-	$F_{DL_{high}}$	-30+11		
	E-UTRA Band 22, 41, 42	E	-	E	-50+TT	1	2
	NR Band n77, n78, n79	FDL_low	-	$F_{DL_{high}}$	-50+11	1	2
	E-UTRA Band 8	FDL_low	-	FDL_high	-50+TT	1	4
CA_n8-n78	E-UTRA Band 1, 8, 11, 20,	_		_	50 · TT	4	
	21, 28, 34, 39, 40, 65, 74	F _{DL_low}	-	F_{DL_high}	-50+TT	1	
	E-UTRA Band 3, 7,41	F _{DL_low}	-	F_{DL_high}	-50+TT	1	2
	Frequency range	1884.5	-	1915.7	-41+TT	0.3	3
CA_n24-n41	E-UTRA Band 2, 4, 5, 10, 12,						1
	13, 14, 17, 25, 26, 29, 30, 48,	$F_{DL_{low}}$	-	F _{DL high}	-50+TT	1	
	66, 70, 71, 85	22_1011		2 2g.:			
	NR Band n77	F _{DL_low}	-	F _{DL_high}	-50+TT	1	2
CA_n24-n48	E-UTRA Band 2, 4, 5, 10, 12,	DL_IOW		DL_mgn			_
•••• <u>-</u> ··-	13, 14, 17, 25, 26, 29, 30, 41,	F _{DL} low	-	F_{DL_high}	-50+TT	1	
	66, 70, 71, 85	· DL_IOW		· DE_mgn	00111		
CA_n24-n77	E-UTRA Band 2, 4, 5, 10, 12,						
0//_1/24 11//	13, 14, 17, 25, 26, 29, 30, 41,	FDL low	_	F _{DL_high}	-50+TT	1	
	66, 70, 71, 85	I DL_IOW		I DE_Ilight	00111	•	
CA_n26-n66	E-UTRA Band 5, 26	F _{DL_low}	_	F _{DL_high}	-50	1	
0/120 1100	E-UTRA Band 42	FDL low		F _{DL_high}	-50	1	2
	NR band 77	I DL_IOW	_	• DL_nigh	-30		2
CA_n26-n70	E-UTRA Band 5	F _{DL_low}	-	F _{DL_high}	-50	1	
0A_1120-1170	E-UTRA Band 41	FDL_low	-	FDL_high	-50	1	2
CA_n28-n41	E-UTRA Band 2, 3, 5, 8, 25,	I DL_IOW	-	UL_nign	-30	- 1	2
CA_1120-1141	26, 27, 34	F _{DL_low}	-	F _{DL_high}	-50	1	
	E-UTRA Band 4, 42, 50, 51,	F		F	50	4	2
	52, 65, 66, 73, 74	FDL_low	-	$F_{DL_{high}}$	-50	1	2
	NR Band n77, n78, n79			EDL bish	50	4	
	E-UTRA Band 18, 19	FDL_low	-	FDL_high	-50	1	11
	E-UTRA Band 1		-	FDL_high	-50	1	11, 15
	E-UTRA Band 11, 21	F _{DL_low}	-	F _{DL_high}	-50	1	11, 12
	Frequency range	470	-	694	-42	8	4, 14
	Frequency range	470	-	710	-26.2	6	13
	Frequency range	662	-	694	-26.2	6	4
	Frequency range	758	-	773	-32	1	4
	Frequency range	773	-	803	-50	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3, 11
CA_n39-n40	E-UTRA Band 1, 8, 22, 26,						
	28, 34, 41, 42, 44, 45, 50, 51,	F _{DL_low}	-	F_{DL} high	-50	1	
	52, 73, 74						
	NR Band n77, n78, n79	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1805		1855	-40	1	8
	Frequency range	1855		1880	-15.5	5	4, 7, 8
CA_n39-n41	E-UTRA Band 1, 8, 26, 28,	E · ·		E · ·	50	4	
	34, 40, 42, 44, 45, 50, 51, 74	FDL_low	-	F_{DL_high}	-50	1	
	NR Band n77, n78, n79	F _{DL_low}	-	F _{DL_high}	-50	1	2
	Frequency range	1805	-	1855	-40	1	4
	Frequency range	1855	-	1880	-15.5	5	4, 7, 8
L			1			-	, , -

CA_n39-n79	E-UTRA Band 1, 8, 28, 34, 40, 41, 44, 45	F _{DL_low}	-	F_{DL_high}	-50	1	
	NR Band n78	F _{DL_low}	-	F_{DL_high}	-50	1	2
	Frequency range	1805	-	1855	-40	1	4, 8
	Frequency range	1855	-	1880	-15.5	5	4, 7, 8
	E-UTRA Band 1, 3, 5, 8, 11,						
	18, 19, 21, 28, 34, 42, 44, 45,	F _{DL_low}	-	$F_{DL_{high}}$	-50	1	
CA_n41-n79	65						
	E-UTRA Band 40	F _{DL_low}	-	$F_{DL_{high}}$	-40	1	
	Frequency range	1884.5	-	1915.7	-41	0.3	3
CA_n48-n66	E-UTRA Band 2, 25	FDL_low	-	$F_{DL_{high}}$	-50	1	
	E-UTRA Band 2, 4, 5, 12, 13,	FDL_low	-	$F_{DL_{high}}$	-50+TT	1	16
CA n48-n70	14, 17, 24, 25, 26, 29, 30, 66,						
CA_1140-1170	70, 71, 85						
	E-UTRA Band 41	F _{DL_low}	-	$F_{DL_{high}}$	-50+TT	1	2, 16
CA_n48-n71	E-UTRA Band 4, 30, 66	F _{DL_low}	-	$F_{DL_{high}}$	-50	1	
CA_n66-n71	NR Band n77	F _{DL_low}	-	$F_{DL_{high}}$	-50	1	2
CA n70-n71	E-UTRA Band 30	F _{DL_low}	-	$F_{DL_{high}}$	-50	1	
UK_11/0-11/1	NR Band n77	FDL_low	-	$F_{DL_{high}}$	-50	1	2

NOTE	
	FDL_low and FDL_high refer to each frequency band specified in Table 5.2-1 or Table 5.5-1 in TS 36.101
NOTE 2:	As exceptions, measurements with a level up to the applicable requirements defined in Table 6.5.3.1-2 are
	permitted for each assigned NR carrier used in the measurement due to 2nd, 3rd, 4th or 5 th harmonic
	spurious emissions. Due to spreading of the harmonic emission the exception is also allowed for the first 1
	MHz frequency range immediately outside the harmonic emission on both sides of the harmonic emission.
	This results in an overall exception interval centred at the harmonic emission of (2MHz + N x LCRB x
	180kHz), where N is 2, 3, 4, 5 for the 2nd, 3rd, 4th or 5th harmonic respectively. The exception is allowed if
	the measurement bandwidth (MBW) totally or partially overlaps the overall exception interval.
NOTE 3:	Applicable when co-existence with PHS system operating in 1884.5 -1915.7MHz
NOTE 4:	These requirements also apply for the frequency ranges that are less than F _{OOB} (MHz) in Table 6.5.3.1-1
	and Table 6.5A.3.1-1 from the edge of the channel bandwidth.
NOTE 5:	This requirement is applicable only for the following cases: - for carriers of 5 MHz channel bandwidth when
	carrier centre frequency (Fc) is within the range 902.5 MHz \leq Fc $<$ 907.5 MHz with an uplink transmission
	bandwidth less than or equal to 20 RB - for carriers of 5 MHz channel bandwidth when carrier centre
	frequency (Fc) is within the range 907.5 MHz \leq Fc \leq 912.5 MHz without any restriction on uplink
	transmission bandwidth for carriers of 10 MHz channel bandwidth when carrier centre frequency (Fc) is
	Fc = 910 MHz with an uplink transmission bandwidth less than or equal to 32 RB with RBstart> 3.
NOTE 6:	This requirement is applicable for any channel bandwidths within the range 1920 – 1980 MHz with the
	following restriction: for carriers of 15 MHz bandwidth when carrier centre frequency is within the range
	1927.5 - 1929.5 MHz and for carriers of 20 MHz bandwidth when carrier centre frequency is within the
	range 1930 – 1938 MHz the requirement is applicable only for an uplink transmission bandwidth less than
	or equal to 54 RB.
NOTE 7	For these adjacent bands, the emission limit could imply risk of harmful interference to UE(s) operating in
NOTE /.	the protected operating band.
NOTE 8:	This requirement is only applicable for carriers with bandwidth confined within 1885-1920 MHz
	(requirement for carriers with at least 1RB confined within 1880 - 1885 MHz is not specified). This
	requirement applies for an uplink transmission bandwidth less than or equal to 54 RB for carriers of 15 MHz
	bandwidth when carrier centre frequency is within the range 1892.5 - 1894.5 MHz and for carriers of
	20 MHz bandwidth when carrier centre frequency is within the range 1895 - 1903 MHz.
NOTE 9:	Void.
NOTE 10	Void.
NOTE 11	Applicable when the assigned NR carrier is confined within 718 MHz and 748 MHz and when the channel
	bandwidth used is 5 or 10 MHz.
NOTE 12	As exceptions, measurements with a level up to the applicable requirement of -38 dBm/MHz is permitted
	for each assigned NR carrier used in the measurement due to 2 nd harmonic spurious emissions. An
1	
1	exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure
	5.3.1-1) for which the 2 nd harmonic totally or partially overlaps the measurement bandwidth (MBW).
NOTE 13	This requirement is applicable for 5 and 10 MHz NR channel bandwidth allocated within 718 - 728 MHz.
1	For carriers of 10 MHz bandwidth, this requirement applies for an uplink transmission bandwidth less than
1	or equal to 30 RB with RBstart > 1 and Rbstart < 48.
NOTE 14	This requirement is applicable in the case of a 10 MHz NR carrier confined within 703 MHz and 733 MHz,
1	otherwise the requirement of -25 dBm with a measurement bandwidth of 8 MHz applies.
NOTE 15	As exceptions, measurements with a level up to the applicable requirement of -36 dBm/MHz is permitted
	for each assigned E-UTRA carrier used in the measurement due to 3rd harmonic spurious emissions. An
1	
	exception is allowed if there is at least one individual RB within the transmission bandwidth (see Figure 5.6-
	1) for which the 3rd harmonic totally or partially overlaps the measurement bandwidth (MBW).
NOTE 16	The same configuration applies to corresponding NR-DC configuration in Table 4.3.1.1.7.1-1 in [5]. If UE
1	supporting NR-DC configuration do not support the corresponding CA configuration, NR-DC configuration
	is used in this test.

Table 6.5A.3.2.1.5-2: Test Tolerance for uplink inter-band carrier aggregation (two bands)

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	0	0
40MHz < BW ≤ 100MHz	0	0

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) in Table 6.5.3.2.3-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.5.3.2.3-1 apply for all transmitter band configurations (NRB) and channel bandwidths for all CC combinations.

6.5A.4 Transmit intermodulation for CA

Editor's Note: The following aspects are either missing or not yet determined:

- Extending the coverage of the TCs with intra-band CA scenarios is FFS

6.5A.4.0 Minimum conformance requirements

For inter-band carrier aggregation with uplink assigned to two NR bands, the transmit intermodulation requirement is specified in Table 6.5.4-1 which shall apply on each component carrier with both component carriers active.

6.5A.4.1 Transmit intermodulation for CA (2UL CA)

6.5A.4.1.1 Test purpose

To verify that the UE transmit intermodulation does not exceed the described value in the test requirement.

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non-linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

6.5A.4.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports 2UL CA.

6.5A.4.1.3 Minimum conformance requirements

The minimum conformance requirements are defined in subclause 6.5A.4.0.

6.5A.4.1.4	Test description
------------	------------------

6.5A.4.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR CA configuration specified in clause 5.5A. All of these configurations shall be tested with applicable test parameters for each CA configuration, are shown in Table 6.5A.4.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

		nitial Conditions					
Test Envir	onment as specified in TS 38.508-1	Normal					
[5] subclau	use 4.1						
Test Frequ	uencies as specified in TS 38.508-1	Mid range for PCC and SC	CC (NOTE 4)				
[5] subclau	use4.3.1.1.3 for inter band CA in FR1						
Test Chan	nel Bandwidths as specified in TS	Lowest NRB_agg for both PC	CC and SCC				
38.508-1 [5] subclause 4.3.1	Highest NRB_agg for both P	CC and SCC				
Test SCS	as specified in Table 5.5A.3-1	Smallest and biggest supp	orted SCS per Cha	nnel Bandwidth			
	-	Test Parameters					
Test ID	Downlink Configuration	Uplir	nk Configuration				
		Modulation(NOTE 3) RB allocation (NOTE 1)					
			PCC	SCC			
1 ³	N/A	DFT-s-OFDM PI/2	Inner Full	Inner Full			
		BPSK					
2		DFT-s-OFDM QPSK	Inner Full	Inner Full			
NOTE 1:	The specific configuration of each RB a	Illocation is defined in Table	6.1-1.	•			
NOTE 2:	Test Channel Bandwidths and Test SC	S are checked separately for	r each NR CA band	d combination,			
	which applicable channel bandwidths a	nd SCS are specified in Tab	ole 5.5A3-1.				
NOTE 3:	DFT-s-OFDM PI/2 BPSK test applies o	nly for UEs which supports I	half Pi BPSK in FR1	l.			
NOTE 4:	For NR band n28, 30MHz test channel	bandwidth is tested with Lov	w range test freque	ncies.			

Table 6.5A.4.1.4.1-1: Inter-band CA Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.1.3 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals for PCC are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5A.4.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5A.4.1.4.3.

6.5A.4.1.4.2 Test procedure

- 1. Configure SCC according to Annex C.0, C.1, C.2 for all downlink physical channels.
- 2. The SS shall configure SCC as per TS 38.508-1 [5] clause 5.5.1. Message contents are defined in clause 6.5A.4.1.4.3.
- 3. SS activates SCC by sending the activation MAC CE (Refer TS 38.321 [18], clauses 5.9, 6.1.3.10). Wait for at least 2 seconds (Refer TS 38.133[19], clause9.3).
- 4. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5A.4.1.4.1-1 on both PCC and SCC. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 5. Send continuously uplink power control "up" commands on PCC and SCC to the UE until the UE transmits at its P_{UMAX} level; allow at least 200ms starting from the first TPC command in this step for the UE to reach P_{UMAX} level
- 6. Measure the rectangular filtered mean power of the UE. For TDD slots with transient periods are not under test for the wanted signal and for the intermodulation product.

- 7. Set the interference signal frequency below the UL carrier frequency of the PCC using the first offset in Table 6.5A.4.1.5-1.
- 8. Set the interference CW signal level according to Table 6.5A.4.1.5-1.
- 9. Search the intermodulation product signals below and above the UL carrier frequency of the PCC, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 6.
- 10. Set the interference signal frequency above the UL carrier frequency of the PCC using the first offset in Table 6.5A.4.1.5-1.
- 11. Search the intermodulation product signals below and above the UL carrier frequency of the PCC, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 6.
- 12. Set the interference signal frequency below the UL carrier frequency of the SCC using the first offset in Table 6.5A.4.1.5-1.
- 13. Search the intermodulation product signals below and above the UL carrier frequency of the SCC, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 6.
- 14. Set the interference signal frequency above the UL carrier frequency of the SCC using the first offset in Table 6.5A.4.1.5-1.
- 15. Search the intermodulation product signals below and above the UL carrier frequency of the SCC, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 6.
- 16. Repeat the measurement using the second offset in Table 6.5A.4.1.5-1.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration table 6.5.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5A.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5A.4.1.5 Test requirement

The ratio derived in steps9, 11, 13 and 15, shall not exceed the described value in Table 6.5A.4.1.5-1.

Wanted signal channel bandwidth	BW _{Channel}				
Interference signal frequency offset from channel centre	BW _{Channel}	2*BW _{Channel}			
Interference CW signal level	-40dBc				
Intermodulation product	<-29dBc+TT	< -35dBc+TT			
Measurement bandwidth	The maximum transmissi among the different SCS defined in Table 6.5.2.2.3				
Measurement offset from channel	BW _{Channel} and	2*BW _{Channel} and			
centre	2*BW _{Channel} 4*BW _{Channel}				

	f ≤ 3.0GHz	3.0GHz < f ≤ 6GHz
BW ≤ 40MHz	0dB	0dB
40MHz < BW ≤ 100MHz	0dB	0dB

Table6.5A.4.1.5-2: Test Tolerance for Transmit Intermodulation

6.5B Output RF spectrum emissions for NR-DC

For inter-band NR-DC with one uplink carrier assigned per NR band, the output RF spectrum emissions for the corresponding inter-band CA configuration as specified in clause 6.5A applies.

Note: For NR-DC testing, replace CA by NR-DC, PCC by PCell, and SCC by PSCell in clause 6.5A.

6.5B.1 Occupied bandwidth for NR-DC

For inter-band dual connectivity, the occupied bandwidth for the corresponding inter-band CA configuration as specified in clause 6.5A.1 applies.

Note: For NR-DC testing, replace CA by NR-DC, PCC by PCell, and SCC by PSCell in clause 6.5A.1.

6.5B.2 Out of band emission for NR-DC

6.5B.2.1 General

This clause contains requirements for out of band emissions for UE configured of dual connectivity.

6.5B.2.2 Spectrum emission mask

For inter-band dual connectivity, the Spectrum emission mask for the corresponding inter-band CA configuration as specified in clause 6.5A.2.2 applies.

Note: For NR-DC testing, replace CA by NR-DC, PCC by PCell, and SCC by PSCell in clause 6.5A.2.2.

6.5B.2.4 Adjacent channel leakage ratio

For inter-band dual connectivity, the Adjacent Channel Leakage power Ratio (ACLR) for the corresponding inter-band CA configuration as specified in clause 6.5A.2.4 applies.

Note: For NR-DC testing, replace CA by NR-DC, PCC by PCell, and SCC by PSCell in clause 6.5A.2.4.

6.5B.3 Spurious emission for NR-DC

For inter-band dual connectivity, the spurious emissions for the corresponding inter-band CA configuration as specified in clause 6.5A.3 applies.

Note: For NR-DC testing, replace CA by NR-DC, PCC by PCell, and SCC by PSCell in clause 6.5A.3.

6.5B.4 Transmit intermodulation for NR-DC

For inter-band dual connectivity, the transmit intermodulation for the corresponding inter-band CA configuration as specified in clause 6.5A.4 applies.

Note: For NR-DC testing, replace CA by NR-DC, PCC by PCell, and SCC by PSCell in clause 6.5A.4.

6.5C Output RF spectrum emissions for SUL

For a terminal that supports SUL for the band combination specified in Table 5.2C-1, the current version of the specification assumes the terminal is configured with active transmission either on UL carrier or SUL carrier at any time in one serving cell and the UE requirements for single carrier shall apply for the active UL or SUL carrier accordingly

6.5C.1 Occupied bandwidth for SUL

6.5C.1.1 Test purpose

To verify that the UE occupied bandwidth for all transmission bandwidth configurations supported by the UE supporting SUL are less than their specific limits when UE is configured using SUL transmission.

6.5C.1.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.5C.1.3 Minimum conformance requirements

Same minimum conformance requirements as in clause 6.5.1.3

6.5C.1.4 Test description

Same test description as specified in clause 6.5.1.4 with following exceptions:

- Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1
- Instead of table 6.5.1.4.1-1→ use Table 6.5C.1.4-1

Table 6.5C.1.4.1-1: Test Configuration Table

Initial Co	nditions							
Test Env	Test Environment as specified in TS			Normal				
38.508-1	[5] subclause 4.1							
Test Free	quencies as specified in TS	3	Low Range,	Mid Range, High Range for S	SUL carrier			
38.508-1	[5] subclause 4.3.1		Mid Range fo	or Non-SUL carrier				
Test Cha	nnel Bandwidths as specifi	ied in	All for SUL ca	arrier				
TS 38.50	8-1 [5] subclause 4.3.1		Lowest for No	on-SUL carrier				
Test SCS	S as specified in Table 5.3.	5-1	15kHz for SUL carrier and Lowest supported SCS for					
			Non-SUL carrier					
	Test Pa	ramete	ers for Channe	el Bandwidths				
	Downlink	UL C	onfiguration	SUL Configurat	tion			
	Configuration							
Test ID	N/A		N/A	Modulation	RB			
					allocation			
1	1 CP-OFDM QPSK Outer_full							
Note 1:	Note 1: Test Channel Bandwidths are checked separately for each SUL band combination, the							
	applicable channel bandwidths are specified in Table 5.5C-1.							
Note 2:	The specific configuration	n of ead	ch RB allocatio	n is defined in Table 6.1-1.				

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.
- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause 4.4.3
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.
- Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Tables 4.6.1-28 with condition SUL AND (RF OR RRM), 4.6.3-14 with condition SUL_SUL for SUL carrier, with condition SUL, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL.

6.5C.1.5 Test requirement

The measured Occupied Bandwidth on SUL carrier shall not exceed values in Table 6.5C.1.5-1.

		NR channel bandwidth											
	5	10	15	20	25	30	40	50	60	70	80	90	100
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
Occupied channel bandwidth (MHz)	5	10	15	20	25	30	40	50	60	70	80	90	100

Table 6.5C.1.5-1: Occupied channel bandwidth

6.5C.2 Out of band emission for SUL

6.5C.2.1 General

Void

6.5C.2.2 Spectrum emission mask for SUL

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the ± edge of the assigned NR channel bandwidth. For frequencies greater than (Δf_{OOB}) the spurious requirements in subclause 6.5.3 are applicable.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5C.2.2.1 Test purpose

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth.

6.5C.2.2.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.5C.2.2.3 Minimum conformance requirements

Same minimum conformance requirements as in the clause 6.5.2.2.3.

6.5C.2.2.4 Test description

Same test description as PC 3 with contiguous allocation specified in clause 6.5.2.2 with following exceptions:

- Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1
- Instead of table 6.5.2.2.4.1-1 → use Table 6.5C.2.2.4.1-1

Table 6.5C.2.2.4.1-1: Test Configuration Table

				Conditions				
4.1	-	becified in TS 38.50		Normal				
4.3.1		ecified in TS 38.50		Low range, High range for SUL carrier Mid range for Non-SUL carrier				
Fest Char	nnel Bandwidt	hs as specified in T	S 38.508-1 [5]	Lowest, Highest for SUL carrie	er			
ubclause	-			Lowest for Non-SUL carrier				
Test SCS	as specified i	in Table 5.5C-1		15kHz for SUL carrier and Lov SUL carrier	west supported SCS for Non-			
		Т	est Parameters fo	r Channel Bandwidths				
Fest ID	Freq	Downlink	UL	SUL Config	guration			
		Configuration	Configurati on					
		N/A	N/A	Modulation	RB allocation			
1	Low			DFT-s-OFDM PI/2 BPSK	Edge_1RB_Left			
2	High			DFT-s-OFDM PI/2 BPSK	Edge_1RB_Right			
3	Default			DFT-s-OFDM PI/2 BPSK	Outer_Full			
4	Low			DFT-s-OFDM QPSK	Edger_1RB_Left			
5	High			DFT-s-OFDM QPSK	Edge_1RB_Right			
6	Default			DFT-s-OFDM QPSK	Outer_Full			
7	Low			DFT-s-OFDM 16 QAM	Edge_1RB_Left			
8	High			DFT-s-OFDM 16 QAM	Edge_1RB_Right			
9	Default			DFT-s-OFDM 16 QAM	Outer_Full			
10	Low			DFT-s-OFDM 64 QAM	Edge_1RB_Left			
11	High			DFT-s-OFDM 64 QAM	Edge_1RB_Right			
12	Default			DFT-s-OFDM 64 QAM	Outer_Full			
13	Low			DFT-s-OFDM 256 QAM	Edge_1RB_Left			
14	High			DFT-s-OFDM 256 QAM	Edge_1RB_Right			
15	Default			DFT-s-OFDM 256 QAM	Outer_Full			
16	Low			CP-OFDM QPSK	Edge_1RB_Left			
17	High			CP-OFDM QPSK	Edge_1RB_Right			
18	Default			CP-OFDM QPSK	Outer_Full			
19	Low			CP-OFDM 16 QAM	Edge_1RB_Left			
20	High			CP-OFDM 16 QAM	Edge_1RB_Right			
21	Default			CP-OFDM 16 QAM	Outer_Full			
22	Low			CP-OFDM 64 QAM	Edge_1RB_Left			
23	High			CP-OFDM 64 QAM	Edge_1RB_Right			
24	Default			CP-OFDM 64 QAM	Outer_Full			
25	Low			CP-OFDM 256 QAM	Edge_1RB_Left			
26	High]		CP-OFDM 256 QAM	Edge_1RB_Right			

27	Default			CP-OFDM 256 QAM	Outer_Full			
284	Low			DFT-s-OFDM Pi/2 BPSK w Pi/2	Edge_1RB_Left			
				BPSK DMRS				
29 ⁴	High			DFT-s-OFDM Pi/2 BPSK w Pi/2	Edge_1RB_Right			
	-			BPSK DMRS				
30 ⁴	Default			DFT-s-OFDM Pi/2 BPSK w Pi/2	Outer Full			
				BPSK DMRS				
Note 1:	Test Channel	Bandwidths are c	hecked separat	ely for each SUL band combination	, the applicable channel			
	bandwidths a	re specified in Tab	ole 5.5C-1.					
Note 2:	The specific o	configuration of ea	ch RF allocatior	is defined in Table 6.1-1.				
Note 3:	DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.							
Note 4:	Applicable to	Applicable to UEs indicating support for UE capability <i>lowPAPR-DMRS-PUSCHwithPrecoding-r16</i> .						

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.
- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause 4.4.3
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.
- Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Table 4.6.1-28 with condition SUL AND (RF OR RRM), Tables 4.6.3-14 with condition SUL_NUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL. Message contents in Table 6.5.2.2.4.3-2 in clause 6.5.2.2 only apply to Test ID 28-30 in Table 6.5C.2.2.4.1-1.

6.5C.2.2.5 Test requirement

The measured sum of the UE mean power in the channel bandwidth on the SUL carrier, derived in step 3, shall fulfil requirements in Tables 6.2C.4.5-1 as appropriate, and the power of any UE emission shall fulfil requirements in Table 6.5C.2.2.5-1.

Spectrum emission limit (dBm) / Channel bandwidth ΔfooB 5 10 15 20 25 30 40 50 60 70 80 90 100 Measurement														
(MHz)	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	bandwidth
± 0-1	- 13+	- 13+	- 13+	- 13+	-13+TT	-13+TT	-13+TT							1 % channel bandwidth
	TT	TT	TT	TT										
± 0-1								-		-24+TT		-24+TT	-	30 kHz
								24+ TT	-24+TT		-24+TT		24+ TT	
± 1-5	-	-	-	-		-10+TT		-		-10+TT		-10+TT	-	
	10+	10+	10+	10+	-10+TT		-10+TT	10+	-10+TT		-10+TT		10+	
± 5-6	TT	TT	TT	TT				TT					TT	
± 0-0	- 13+													
	TT	- 13+												
± 6-10	-	TT	-											
	25+ TT		13+ TT	-										
± 10-15	11	-		13+ 										
		25+		TT	-13+TT	-13+TT								
45.00		TT				10111	-13+TT	-						
± 15-20			- 25+					13+						
			TT					TT						
± 20-25				-					-13+TT	-13+TT				
				25+ TT						-13+11	-13+TT			
± 25-30				TT	-25+TT							-13+TT	-	
± 30-35					20.11	-25+TT							13+	1 MHz
± 35-40													TT	
± 40-45							-25+TT							
± 45-50 ± 50-55								-	-					
± 00-00								25+						
								TT						
± 55-60									05.77					
± 60-65 ± 65-70									-25+TT					
± 70-75										-25+TT				
± 75-80														
± 80-85											-25+TT			
± 85-90 ± 90-95												-25+TT		
± 95-100												-23+11		
± 100-105													-	
													25+ TT	
Note 1: T	he firet a	and last	measur	ement n	l osition v	l vith a २∩	kH⁊ filta	er is et /		l Muale to	0.015	√Hz and	TT 0.985 M	/Н7
														he inside of
	0.5MHz									_				
ote 3: T	he meas	suremen	its are to	be per	formed a	above th	e upper	edge of	f the cha	nnel an	d below	the lowe	r edae	of the channel.

Table 6.5C.2.2.5-1: NR General spectrum emission mask

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5C.2.3 Additional spectrum emission mask for SUL

6.5C.2.3.1 Test purpose

Same test purpose as in clause 6.5.2.3.1

6.5C.2.3.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.5C.2.3.3 Minimum conformance requirements

Same minimum conformance requirements as in the clause 6.5.2.3.3 with consideration of the NS_03 applicable to the SUL bands.

6.5C.2.3.4 Test description

Same test description as specified in clause 6.5.2.3.4 with following exceptions:

- Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1
- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.
- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause [4.4.3]
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.
- Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Tables 4.6.1-28 with condition SUL AND (RF OR RRM), 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL. All the AdditionalSpectrumEmission in 6.2.3.4.3 are sent in *SIB1* as part of *supplementaryUplink* instead of *uplinkConfigCommon*.

6.5C.2.3.5 Test requirement

6.5C.2.3.5.1 Test requirements (network signalling value "NS_03")

When "NS_03" is indicated in the cell:

- the measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in table 6.2C.5.5-1 for a NR UE.

and

- the power of any UE emission shall fulfil requirements in table 6.5C.2.3.5-1, as applicable.

	Spectrum emission limit (dBm)/ Channel bandwidth									
ΔfOOB (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	40 MHz	Measurement bandwidth				
± 0-1	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	1 % of channel BW				
± 1-6	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	1 MHz				
± 6-10	-25+ TT	-13+ TT	-13 + TT	-13 + TT	-13 + TT	1 MHz				
± 10-15		-25+ TT	-13 + TT	-13 + TT	-13 + TT	1 MHz				
± 15-20			-25+ TT	-13 + TT	-13 + TT	1 MHz				
± 20-25				-25+ TT	-13+ TT	1 MHz				
± 25-40					-13+ TT	1 MHz				
± 40-45					-25+ TT	1 MHz				
NOTE 1: T	T for each fre	quency and	channel ban	dwidth is spe	ecified in Tab	le 6.5.2.3.5-1.				

Table 6.5C.2.3.5-1: Additional requirements for "NS_03"

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5C.2.4 Adjacent channel leakage ratio for SUL

Adjacent channel leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

6.5C.2.4.1 NR ACLR for SUL

6.5C.2.4.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5C.2.4.1.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.5C.2.4.1.3 Minimum conformance requirements

The minimum conformance requirements specified in Clause 6.5.2.4.1.3 applies to the UE that support SUL operating on the SUL bands.

The normative reference for this requirement is TS 38.101-1 clauses 6.5.2.4.1.

6.5C.2.4.1.4 Test description

Same test description as PC 3 with contiguous allocation specified in clause 6.5.2.4.1.4 with following exceptions:

- Instead of Table 5.3.5-1 \rightarrow use Table 5.5C-1
- Instead of the test configuration tables in clause $6.2.2.4.1 \rightarrow$ use the test configuration tables in clause 6.2C.4.4
- Instead of the requirements described in clause $6.2.2.5 \rightarrow$ use the requirements described in clause 6.2C.4.5

Table 6.5C.2.4.1.4-1: Void

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.
- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause 4.4.3

Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.

1065

- Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Table 4.6.1-28 with condition SUL AND (RF OR RRM), Tables 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL. Message contents in Table 6.5.2.4.1.4.3-3 in clause 6.5.2.4.1.4 only apply to Test ID 33-35 in Table 6.2C.4.4-1.

6.5C.2.4.1.5 Test requirement

The measured UE mean power in the channel bandwidth on SUL carrier, derived in step 3, shall fulfil requirements in Clause 6.2C.4.5 as appropriate, and if the measured adjacent channel power is greater than -50 dBm then the measured NR ACLR, derived in step 6, shall be higher than the limits in Table 6.5C.2.4.1.5-1.

	NR channel bandwidth / NR ACLR measurement bandwidth											
	5	10	15	20	25	30	40	50	60	80	90	100
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
NR ACLR												
measurement	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	78.15	88.23	98.31
bandwidth												

Table 6.5C.2.4.1.5-2: NR ACLR requirement

	Power class 1	Power class 2	Power class 3			
NR ACLR			30 + TT dB			
NOTE 1: TT = 0.8 dB for $f \le 4.0$ GHz, TT = 1.0 dB for 4.0 GHz < $f \le 6.0$ GHz,						

6.5C.2.4.2 UTRA ACLR for SUL

6.5C.2.4.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5C.2.4.2.2 Test applicability

This test applies for network signalling values NS_3U, NS_5U, NS_43U, and NS_100 to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.5C.2.4.2.3 Minimum conformance requirements

The minimum conformance requirements specified in Clause 6.5.2.4.2.3 applies to the UE that support SUL operating on the SUL bands.

The normative reference for this requirement is TS 38.101-clause 6.5.2.4.2.

6.5C.2.4.2.4 Test description

Same test description as specified in clause 6.5.2.4.2.4 with following exceptions:

Initial conditions are same as in subclause 6.2C.5.4 with the following exceptions:

- Only network signalling values NS_3U, NS_5U, NS_43U, and NS_100 with the corresponding SUL band defined in Table 6.2.3.3.1-1 need to perform UTRA ACLR test.
- Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.6 ensuring Tables 4.6.1-28 with condition SUL AND (RF OR RRM), Tables 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table

4.6.3-167 with condition PUSCH_PUCCH_ON_SUL, together with the exceptions as specified in Table 6.5C.2.4.2.4-2

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1 AdditionalSpectrumEmission							
Information Element	Value/remark	Comment	Condition				
AdditionalSpectrumEmission	3 (NS_03U)	For SUL band n86					
	3 (NS_05U)	For SUL band n84					
	1 (NS_100)	For SUL band n84 and					
		n86					

6.5C.2.4.2.5 Test requirement

UTRA ACLR requirement is applicable when signalled by the network with network signalling value indicated by the field *additionalSpectrumEmission*.

The measured UE mean total power in the channel bandwidth on SUL carrier, derived in step 3, shall fulfil requirements in Clause 6.2C.5.5 as appropriate, and if the measured adjacent channel power is greater than -50 dBm then the measured UTRA ACLR, derived in step 6, shall be higher than the limits in Table 6.5C.2.4.2.5-1.

Table 6.5C.2.4.2.5-1: NR ACLR requirement

	Power class 3
UTRA _{ACLR1}	33 dB - TT
UTRA _{ACLR2}	36 dB - TT
NOTE 1: TT = 0.8	dB

6.5C.3 Spurious emissions for SUL

6.5C.3.1 General spurious emissions for SUL

6.5C.3.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5C.3.1.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.5C.3.1.3 Minimum conformance requirements

The general spurious emission requirement specified in clause 6.5.3.1.3 applies to the UE that support SUL operating on the SUL bands.

The normative reference for this requirement is TS 38.101-1 [2] subclauses 6.5.3.1

6.5C.3.1.4 Test description

Same test description as specified in clause 6.5.3.1.4 with following exceptions:

- Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1
- Instead of table 6.5.3.1.4.1-1 \rightarrow use Table 6.5C.3.1.4-1

	Initial Conditions							
Test Enviro	onment as specified in TS 38.5 4.1	508-1 [5]	Normal					
Test Frequ	encies as specified in TS 38.5	08-1 [5]	Low range	e, Mid range, High range for S	SUL carrier			
subclause	4.3.1		Mid range	ofor Non-SUL carrier				
Test Chanr	nel Bandwidths as specified in	TS	Lowest, N	1id, Highest for SUL carrier				
38.508-1 [5	5] subclause 4.3.1		Lowest fo	r Non-SUL carrier				
Test SCS a	as specified in Table 5.3.5-1		15kHz for SUL carrier and Lowest supported SCS for Non-SUL					
			carrier					
	Те	est Parame	eters for Ch	nannel Bandwidths				
Test ID	Downlink Configuration	UL Conf	iguration	SUL Configuration				
	N/A	N	/A	Modulation	RB allocation (NOTE 2)			
1				CP-OFDM QPSK	OuterFull			
2				CP-OFDM QPSK	Edge_1RB_Left			
3				CP-OFDM QPSK	Edge_1RB_Right			
NOTE 1:	Test Channel Bandwidths are	checked s	eparately fo	r each SUL band combination	n, the applicable channel			
	bandwidths are specified in Ta	able 5.5C-1						
NOTE 2:	The specific configuration of e	ach RB alle	ocation is d	efined in Table 6.1-1.				
NOTE 3:	Void							

Table 6.5C.3.1.4-1: Test Configuration Table

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.
- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause 4.4.3
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.
- Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Tables 4.6.1-28 with condition SUL AND (RF OR RRM), 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL.

6.5C.3.1.5 Test requirement

The measured average power of spurious emission on the SUL carrier, derived in step 3, shall not exceed the described value in Table 6.5C.3.1.5-1.

The spurious emission limits apply for the frequency ranges that are more than Δ fOOB (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency Range	Maximum Level	Measurement bandwidth	NOTE				
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz					
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz					
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz					
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz					
12.75 GHz ≤ f < 5th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	1				
12.75 GHz < f < 26 GHz	-30 dBm	1 MHz	2				
 NOTE 1: Applies for Band that the upper frequency edge of the UL Band more than 2.69 GHz NOTE 2: Applies for Band that the upper frequency edge of the UL Band more than 5.2 GHz 							

Table 6.5C.3.1.5-1: General spurious emissions test requirements

6.5C.3.2 Spurious emissions for UE co-existence for SUL

6.5C.3.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to co-existing systems for the specified bands which has specific requirements in terms of transmitter spurious emissions.

6.5C.3.2.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.5C.3.2.3 Minimum conformance requirements

The requirements for NR bands for coexistence with protected bands specified in subclause 6.5.3.2.3 apply to the UE that support SUL operating on the SUL bands

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5.3.2.

6.5C.3.2.4 Test description

Same test description as specified in clause 6.5.3.2.4 with following exceptions:

- Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1
- Instead of table 6.5.3.2.4.1-1 \rightarrow use Table 6.5C.3.2.4-1

		Ir	nitial Con	ditions				
Test Enviro	Test Environment as specified in TS 38.508-1 [5]			Normal				
subclause	4.1							
Test Frequ	encies as specified in TS 38.5	508-1 [5]	Low range	e, Mid range, High range for S	SUL carrier			
subclause	4.3.1		Mid range	e for Non-SUL carrier				
Test Channel Bandwidths as specified in TS			Lowest, N	1id, Highest for SUL carrier				
38.508-1 [5] subclause 4.3.1			Lowest fo	r Non-SUL carrier				
Test SCS as specified in Table 5.3.5-1			15kHz for SUL carrier and Lowest supported SCS for Non-SUL					
			carrier					
	Te	est Paramet	ers for Ch	nannel Bandwidths				
Test ID	Downlink Configuration	UL Config	guration	SUL Configuration				
	N/A	N/A	4	Modulation	RB allocation (NOTE 1)			
1				CP-OFDM QPSK	OuterFull			
2				CP-OFDM QPSK	Edge_1RB_Left			
3				CP-OFDM QPSK	Edge_1RB_Right			
NOTE 1:	The specific configuration of e	ach RB alloo	cation is d	efined in Table 6.1-1 Commo	n UL configuration.			
NOTE 2:	Test Channel Bandwidths are	checked sep	parately fo	r each SUL band combination	n, the applicable channel			
	bandwidths are specified in Ta	able 5.5C-1.						

Table 6.5C.3.2.4-1: Test Configuration Table

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.
- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause 4.4.3
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.
- Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Tables 4.6.1-28 with condition SUL AND (RF OR RRM), 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL.

6.5C.3.2.5 Test requirement

Test requirements for Spurious Emissions UE Co-existence are the same as specified in clause 6.5.3.2.3.

The measured average power of spurious emission, derived in step 3, shall not exceed the described value in Table 6.5.3.2.3-1 to Table 6.5.3.2.3-3. If the UE support a band, which is not defined in the table corresponding UE's release, the requirements for this band are taken from the table of earliest release where requirements for this band are defined. This has been described in following Table 6.5C.3.2.5-1.

Table 6.5C.3.2.5-1: UE Requirements according to UE NR release and supported NR band

	UE Requirements per release										
NR Band	Rel-15	Rel-16	R17								
n80	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3								
n81	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3								
n82	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3								
n83	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3								
n84	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3								
n86	Table 6.5.3.2.3-1	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3								
n89	Table 6.5.3.2.3-2	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3								
n95	Table 6.5.3.2.3-2	Table 6.5.3.2.3-2	Table 6.5.3.2.3-3								
n97	Table 6.5.3.2.3-3	Table 6.5.3.2.3-3	Table 6.5.3.2.3-3								
n98	Table 6.5.3.2.3-3	Table 6.5.3.2.3-3	Table 6.5.3.2.3-3								
n99	Table 6.5.3.2.3-3	Table 6.5.3.2.3-3	Table 6.5.3.2.3-3								

6.5C.3.3 Additional spurious emissions for SUL

6.5C.3.3.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions under the deployment scenarios where additional requirements are specified.

6.5C.3.3.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.5C.3.3.3 Minimum conformance requirements

The additional spurious emission requirements specified in 6.5.3.3.3 apply to the UE operating on SUL bands.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.3.3

6.5C.3.3.4 Test description

Same test description as specified in clause 6.5.3.3.4 with following exceptions:

- Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1
- For NS_05, instead of table 6.5.3.3.4.1-4→ use Table 6.5C.3.3.4-1
- For NS_43, instead of table $6.5.3.3.4.1-5 \rightarrow$ use Table 6.5C.3.3.4-2
- For NS_18, instead of table 6.5.3.3.4.1-3→ use Table 6.5C.3.3.4-3
- For NS_48, instead of table 6.5.3.3.4.1-22→ use Table 6.5C.3.3.4-4
- For NS_49, instead of table 6.5.3.3.4.1-23→ use Table 6.5C.3.3.4-5
- For NS_56, instead of table 6.5.3.3.4.1-27→ use Table 6.5C.3.3.4-6

Table 6.5C.3.3.4-1: Test Configuration Table (network signalling value "NS_05")

			itial Condi							
	Environment as specified in TS oclause 4.1	Norma	Normal							
Test F	Frequencies as specified in TS (poclause 4.3.1	param	Use centre frequency (Fc) as specified in test parameters for SUL carrier Mid range for Non-SUL carrier							
	Channel Bandwidths as specifie	d in TS	5 MHz	, 10 MHz, 1	5 MH	lz, 20	MHz for SUL ca	arrier		
	8-1 [5] subclause 4.3.1 SCS as specified in Table 5.3.5-	.1		t for Non-S			owest supported	SCS for		
	·		Non-S	UL carrier						
	Additional S	Spurious [·]	for SUL te	st paramet Uplink	ers fo	or NS	SUL Configu	ration		
Tes t ID	Fc (MHz)	SUL ChBw (MHz)	Downli nk Config.	Config	A-MPR		Modulation (NOTE 2)	RB allocatio n (Note 1)		
1	1922.5	5			A 3		PI/2 BPSK	Outer_Full		
2	1925	10			A 1		PI/2 BPSK	Outer_Full		
3	1925	10			A 7		PI/2 BPSK	40@10		
4	1925	10			A 2		PI/2 BPSK	6@40		
5	1935	10			A 4		PI/2 BPSK	Outer_Full		
6	1927.5	15			A 1		PI/2 BPSK	Outer_Full		
7	1927.5	15			A 7		PI/2 BPSK	60@19		
8	1927.5	15			A 2		PI/2 BPSK	6@56		
9	1932.5	15			A 1		PI/2 BPSK	Outer_Full		
10	1932.5	15			A 2	5	PI/2 BPSK	6@68		
11	1942.5	15	N/A	N/A	А 5	DFT-s-OFDM	PI/2 BPSK	Outer_Full		
12	1930	20		14,7 (A 1	DFT-s	PI/2 BPSK	Outer_Full		
13	1930	20			A 7		PI/2 BPSK	72@28		
14	1930	20			A 2		PI/2 BPSK	6@76		
15	1950	20			A 6		PI/2 BPSK	Outer_Full		
16	1922.5	5			А 3		QPSK	Outer_Full		
17	1925	10			A 1		QPSK	Outer_Full		
18	1925	10			A 7		QPSK	40@10		
19	1925	10			A 2		QPSK	6@40		
20	1927.5	15			A 1		QPSK	Outer_Full		
21	1927.5	15			A 7		QPSK	60@19		
22	1927.5	15			A 2		QPSK	6@56		

Outer_Full

6@68

Outer_Full

Outer_Full

72@28

6@76

Outer_Full

Outer_Full

Outer_Full

40@10

6@40

Outer_Full

60@19

6@56

Outer_Full

6@68

Outer_Full

72@28

6@76

Outer_Full

Outer_Full

40@10

6@40

Outer_Full

60@19

6@56

Outer_Full

6@68

Outer_Full

72@28

23	1932.5	15	A 1	QPSK
24	1932.5	15	A 2	QPSK
25	1942.5	15	A 5	QPSK
26	1930	20	A 1	QPSK
27	1930	20	A 7	QPSK
28	1930	20	A 2	QPSK
29	1950	20	A 6	QPSK
30	1922.5	5	A 3	16 QAM
31	1925	10	A 1	16 QAM
32	1925	10	A 7	16 QAM
33	1925	10	A 2	16 QAM
34	1927.5	15	A 1	16 QAM
35	1927.5	15	A 7	16 QAM
36	1927.5	15	A 2	16 QAM
37	1932.5	15	A 1	16 QAM
38	1932.5	15	A 2	16 QAM
39	1930	20	A 1	16 QAM
40	1930	20	A 7	16 QAM
41	1930	20	A 2	16 QAM
42	1922.5	5	A 3	64 QAM
43	1925	10	A 1	64 QAM
44	1925	10	A 7	64 QAM
45	1925	10	A 2	64 QAM
46	1927.5	15	A 1	64 QAM
47	1927.5	15	A 7	64 QAM
48	1927.5	15	A 2	64 QAM
49	1932.5	15	A 1	64 QAM
50	1932.5	15	A 2	64 QAM
51	1930	20	A 1	64 QAM
52	1930	20	A 7	64 QAM

6@76

Outer_Full

Outer_Full

40@10

6@40

Outer_Full

60@19

6@56

Outer_Full

6@68

Outer_Full

72@28

6@76

Outer_Full

Outer_Full

42@10

6@40

Outer_Full

Outer_Full

60@19

6@56

Outer_Full

6@68

Outer_Full

Outer_Full

78@28

6@76

Outer_Full

Outer_Full

Outer_Full

53	1930	20	A 2		64 QAM
54	1922.5	5	A 3		256 QAM
55	1925	10	A 1		256 QAM
56	1925	10	A 7		256 QAM
57	1925	10	A 2		256 QAM
58	1927.5	15	A 1		256 QAM
59	1927.5	15	A 7		256 QAM
60	1927.5	15	A 2		256 QAM
61	1932.5	15	A 1		256 QAM
62	1932.5	15	A 2		256 QAM
63	1930	20	A 1		256 QAM
64	1930	20	A 7		256 QAM
65	1930	20	A 2		256 QAM
66	1922.5	5	A 3		QPSK
67	1925	10	A 1		QPSK
68	1925	10	A 7		QPSK
69	1925	10	A 2		QPSK
70	1935	10	A 4		QPSK
71	1927.5	15	A 1		QPSK
72	1927.5	15	A 7		QPSK
73	1927.5	15	A 2	Σ	QPSK
74	1932.5	15	A 1	CP-OFDM	QPSK
75	1932.5	15	A 2	CP	QPSK
76	1942.5	15	A 5		QPSK
77	1930	20	A 1		QPSK
78	1930	20	A 7		QPSK
79	1930	20	A 2		QPSK
	1950	20	A 6	1	QPSK
80	1888			1	
80	1922.5	5	A 3		16 QAM

42@10

6@40

Outer_Full

Outer_Full

60@19

6@56

Outer_Full

6@68

Outer_Full

Outer_Full

78@28

6@76

Outer_Full

Outer_Full

Outer_Full

42@10

6@40

Outer_Full

60@19

6@56

Outer_Full

6@68

Outer_Full

78@28

6@76

Outer_Full

Outer_Full

42@10

Outer_Full

60@19

83	1925	10	A 7	16 QAM
84	1925	10	A 2	16 QAM
85	1935	10	A 4	16 QAM
86	1927 5	15	A 1	16 QAM
87	1927 5	15	A 7	16 QAM
88	1927 5	15	A 2	16 QAM
89	1932.5	15	A 1	16 QAM
90	1932.5	15	A 2	16 QAM
91	1942.5	15	A 5	16 QAM
92	1930	20	A 1	16 QAM
93	1930	20	A 7	16 QAM
94	1930	20	A 2	16 QAM
95	1950	20	A 6	16 QAM
96	1922 5	5	A 3	64 QAM
97	1925	10	A 1	64 QAM
98	1925	10	A 7	64 QAM
99	1925	10	A 2	64 QAM
100	1927 5	15	A 1	64 QAM
101	1927 5	15	A 7	64 QAM
102	1927 5	15	A 2	64 QAM
103	1032 5	15	A 1	64 QAM
104	1932 5	15	A 2	64 QAM
105	1930	20	A 1	64 QAM
106	1930	20	A 7	64 QAM
107	1930	20	A 2	64 QAM
108	1922 5	5	A 3	256 QAM
109	1925	10	A 1	256 QAM
110	1025	10	A 7	256 QAM
111	1927 5	15	A 1	256 QAM
112	1927 5	15	A 7	256 QAM
	I	1		

113	1932.5	15			A 1		256 QAM	Outer_Full		
114	1930	20			A 1		256 QAM	Outer_Full		
115	1930	20			A 7		256 QAM	78@28		
NOTE	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 unless otherwise stated in this table.									
NOTE	NOTE 2: DFT-s-OFDM PI/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.									
NOTE	NOTE 3: AMPR requirement for NS_05 is specified in 6.2.3.3.4.									

Table 6.5C.3.3.4-2: Test Configuration Table (network signalling value "NS_43")

				Initial Con	ditio	าร					
Test Env	rironment as	specified	in TS 38.508-1	Normal							
Test Free	quencies as	specified i	n TS 38.508-1	Use carrier centre frequency (F _c) as specified in test parameters for SUL carrier Mid range for Non-SUL carrier							
Test Cha	annel Bandw	idths as sp	pecified in TS 3		5 MHz for SUL carrier						
subclaus						Lowest for Non-SU					
Toot SC		d in Toble	E 2 E 1			15 kHz for SUL car	rrier and Lowest supported				
Test SC	S as specifie		5.3.5-1			SCS for Non-SUL	carrier				
		Α	dditional Spu	rious for SUL	test p	parameters for NS_4					
Test	F۵	SUL	Downlink	Uplink		SUL C	onfiguration				
ID	(MHz)	Ch BW (MHz)	Configurati on	Configurati on		Modulation (Note 2)	RB allocation (Note 1)				
1	910	10				PI/2 BPSK	Outer_Full (A2)				
2	907.5	15				PI/2 BPSK	Edge_1RB_Left (A6)				
3	907.5	15					PI/2 BPSK	Outer_Full (A6)			
4	902.5	5				QPSK	Outer_Full (A1)				
5	910	10				QPSK	Outer_Full (A4)				
6	907.5	15				Z	QPSK	Edge_1RB_Left (A6)			
7	907.5	15				DFT-sOFDM	QPSK	Outer_Full (A6)			
8	910	10			O L	16 QAM	Outer_Full (A5)				
9	907.5	15			- - -	16 QAM	Edge_1RB_Left (A6)				
10	907.5	15			Н	16 QAM	Outer_Full (A6)				
11	910	10				64 QAM	Outer_Full (A3)				
12	907.5	15				64 QAM	Edge_1RB_Left (A6)				
13	907.5	15		N1/A	N/A	N/A		64 QAM	Outer_Full (A6)		
14	907.5	15	N1/A				N/A	N/A	NI/A		256 QAM
15	907.5	15		N/A					N/A	256 QAM	Outer_Full (A6)
16	902.5	5				QPSK	Outer_Full (A1)				
17	910	10				QPSK	Outer_Full (A5)				
18	907.5	15				QPSK	Edge_1RB_Left (A6)				
19	907.5	15				QPSK	Outer_Full (A6)				
20	902.5	5			_	16 QAM	Outer_Full (A1)				
21	910	10			DN	16 QAM	Outer_Full (A5)				
22	907.5	15	1		CP-OFDM	16 QAM	Edge_1RB_Left (A6)				
23	907.5	15	1		Ā	16 QAM	Outer_Full (A6)				
24	910	10	1		0	64 QAM	Outer_Full (A3)				
25	907.5	15	1			64 QAM	Edge_1RB_Left (A6)				
26	907.5	15	1			64 QAM	Outer_Full (A6)				
27	907.5	15	1			256 QAM	Edge_1RB_Left (A6)				
28	907.5	15	1			256 QAM	Outer_Full (A6)				
NOTE 1:	The speci table.	-					ess otherwise stated in this				
NOTE 2:						h supports half Pi BP	SK in FR1.				
NOTE 2:	AMPR rec	quirement f	or NS_43 is sp	ecified in 6.2.3	.3.6.						

			Initi	al Conditions						
Test Env subclaus	ironment as e 4.1	specified in TS 38.8	508-1 [5]	Normal						
Test Frequencies as specified in TS 38.508-1 [5]				Low range for SUL of	arrier					
subclaus	e 4.3.1			Mid range for Non-S	UL carrier					
Test Cha	nnel Bandw	idths as specified in	TS	5MHz 10MHz 20MH	z 30MHz for SUL carrier					
38.508-1	[5] subclaus	se 4.3.1		Lowest for Non-SUL						
Test SCS	S as specifie	d in Table 5.3.5-1		15 kHz for SUL carri SUL carrier	er and Lowest supported	SCS for Non-				
		A-N	IPR test	parameters for NS_	18					
	ChBw	Downlink			Configuration					
Test ID	SCS	Configuration		Modulation (Note 2)	RB allocation (Note 1)	Comment				
1				QPSK	Edge_1RB_Left	A1, A2				
2			5	QPSK	Outer_Full	A1, A2				
3			DFT-s OFDM	16 QAM	Edge_1RB_Left	A1, A2				
4				16 QAM	Outer_Full	A1, A2				
5			ုံဂု	64 QAM	Edge_1RB_Left	A1, A2				
6			E 64 QAM		Outer_Full	A1, A2				
7	5MHz,			256 QAM	Edge_1RB_Left	A1, A2				
8	10MHz,			256 QAM	Outer_Full	A1, A2				
9	20MHz			QPSK	Edge_1RB_Left	A1, A2				
10	20101112		_	QPSK	Outer_Full	A1, A2				
11		N/A	DZ	16 QAM	Edge_1RB_Left	A1, A2				
12			ЦО	16 QAM	Outer_Full	A1, A2				
13			CP-s OFDM	64 QAM	Edge_1RB_Left	A1, A2				
14			СЪ	64 QAM	Outer_Full	A1, A2				
15				256 QAM	Edge_1RB_Left	A1, A2				
16				256 QAM	Outer_Full	A1, A2				
17			DFT-s OFD	256 QAM	81@70	A3				
18	30MHz			256 QAM	Outer_Full	A4				
19	30IVIHZ		CP-s OFDM	256 QAM	87@73	A3				
20				256 QAM	Outer_Full	A4				
NOTE 1:	The specif	•	ach RB a	allocation is defined ir	Table 6.1-1 unless other	wise stated				

Table 6.5C.3.3.4-3: Test Configuration Table (network signalling value "NS_18")

Table 6.5C.3.3.4-4: Test Configuration Table (network signalling value "NS_48")

				Initial Co	nditions				
Test Env [5] subcl	/ironment as a	specified	in TS 38	8.508-1	Normal				
	quencies as s	specified	in TS 38		Low range, High range for SUL carrier Mid range for non-SUL carrier				
						,	40MHz, 50MHz for SUL		
	annel Bandwi		pecified	carri					
38.508-1	I [5] subclaus	e 4.3.1				est for non-SL	JL carrier		
T (00	o						rrier and Lowest supported		
Test SC	S as specified	in lable	5.3.5-1			6 for Non-SUL			
			A-MPR	test parar	neters	for NS_48			
			Uplink	Downli		SUL	Configuration		
Test ID	Fc	Ch BW	Config	nk	м	odulation			
I COLID	(MHz)	(MHz)	uration	Config		(Note 2)	RB allocation (Note 1)		
			aration	uration		· · ·			
1	Default	25				QPSK	Outer_Full (A3)		
2	Default	25				QPSK	Edge_1RB_Right (A3)		
3	Default	30				QPSK	Outer_Full (A3)		
4	Default	30				QPSK	Edge_1RB_Right (A5)		
5	Default	40				QPSK	16@0 (A2)		
6	Default	40				QPSK	90@0 (A3)		
7	Default	40				QPSK	150@0 (A4)		
8	Default	40				QPSK	192@0 (A2)		
9	Default	40				QPSK	5@187 (A3)		
10	Default	40				QPSK	Outer_Full (A1)		
11	Default	50				QPSK	32@0 (A2)		
12	Default	50				QPSK	108@0 (A4)		
13	Default	50			~	QPSK	225@0 (A2)		
14	Default	50			2	QPSK	5@223 (A5)		
15	Default	50			Ч	QPSK	Outer_Full (A1)		
16	Default	25			Ņ	256 QAM	Outer_Full (A3)		
17	Default	25			DFT-s-OFDM	256 QAM	Edge_1RB_Right (A3)		
18	Default	30				256 QAM	Outer_Full (A3)		
19	Default	30				256 QAM	Edge_1RB_Right (A5)		
20	Default	40				256 QAM	16@0 (A2)		
21	Default	40				256 QAM	90@0 (A3)		
22	Default	40				256 QAM	150@0 (A4)		
23	Default	40	N/A	N/A		256 QAM	192@0 (A2)		
24	Default	40				256 QAM	5@187 (A3)		
25	Default	40				256 QAM	Outer_Full (A1)		
26	Default	50				256 QAM	32@0 (A2)		
27	Default	50				256 QAM	108@0 (A4)		
28	Default	50				256 QAM	225@0 (A2)		
29	Default	50				256 QAM	5@223 (A5)		
30	Default	50				256 QAM	Outer_Full (A1)		
31	Default	25		[QPSK	Outer_Full (A3)		
32	Default	25				QPSK	Edge_1RB_Right (A3)		
33	Default	30				QPSK	Outer_Full (A3)		
34	Default	30				QPSK	Edge_1RB_Right (A5)		
35	Default	40				QPSK	16@0 (A2)		
36	Default	40			F	QPSK	95@0 (A3)		
37	Default	40			CP-OFDM	QPSK	152@0 (A4)		
38	Default	40			Ы	QPSK	192@0 (A2)		
39	Default	40			Ę	QPSK	5@187 (A3)		
40	Default	40	1		0	QPSK	Outer_Full (A1)		
41	Default	50				QPSK	34@0 (A2)		
42	Default	50				QPSK	115@0 (A4)		
43	Default	50				QPSK	228@0 (A2)		
44	Default	50	1			QPSK	5@223 (A5)		
45	Default	50	1			QPSK	Outer_Full (A1)		

46	Default	25				256 QAM	Outer_Full (A3)		
47	Default	25				256 QAM	Edge_1RB_Right (A3)		
48	Default	30				256 QAM	Outer_Full (A3)		
49	Default	30				256 QAM	Edge_1RB_Right (A5)		
50	Default	40				256 QAM	16@0 (A2)		
51	Default	40				256 QAM	95@0 (A3)		
52	Default	40				256 QAM	152@0 (A4)		
53	Default	40				256 QAM	192@0 (A2)		
54	Default	40				256 QAM	5@187 (A3)		
55	Default	40				256 QAM	Outer_Full (A1)		
56	Default	50				256 QAM	34@0 (A2)		
57	Default	50				256 QAM	115@0 (A4)		
58	Default	50				256 QAM	228@0 (A2)		
59	Default	50				256 QAM	5@223 (A5)		
60	Default	50				256 QAM	Outer_Full (A1)		
NOTE 1	The specific	configu	ration of	each RB	alloca	tion is defined	in Table 6.1-1 unless		
	otherwise stated in this table.								

Table 6.5C.3.3.4-5: Test Configuration Table (network signalling value "NS_49")

			Init	ial Conditi	ons					
Test Environmen	t as specified	d in TS								
1 [5] subclause 4				Normal						
Test Frequencies		in TS	38.508-	Low range, High range for SUL carrier						
1 [5] subclause 4				Mid range for non-SUL carrier						
Test Channel Ba	ndwidths as	specifie	ed in TS	25 MHz, 3	80MH	z, 40MHz, 50N	/Hz for SUL carrier			
38.508-1 [5] subc	lause 4.3.1			Lowest fo	r non·	-SUL carrier				
Test SCS as spe	cified in Tabl	0535	_1	15 kHz for	' SUL	. carrier and Lo	owest supported SCS for			
Test SCS as spe				Non-SUL						
	•	A-I		t parameter	s for					
	_	Ch	Downli	Uplink		SUL C	Configuration			
Test ID	Fc	BW	nk	Configur	N	odulation				
	(MHz)	(MHz)	Config	ation		(Note 2)	RB allocation (Note 1)			
1	Default	25	uration				Outor Full (A2)			
1 2	Default	25 25				QPSK QPSK	Outer_Full (A3)			
3	Default	25				QPSK	Edge_1RB_Right (A3) Edge_1RB_Left (A3)			
4						QPSK	0 = ()			
<u>4</u> 5	Default Default	30 30				QPSK QPSK	20@0 (A1) 36@0 (A5)			
6	Default Default	30				QPSK	~ /			
6	Default					QPSK QPSK	80@0 (A3)			
8	Default Default	30 30				QPSK QPSK	120@0 (A4) Outer_Full (A2)			
	Default									
9	Default	30 40				QPSK	Edge_1RB_Right (A5)			
10	Default					QPSK	40@0 (A1)			
11	Default	40				QPSK	5@53 (A5)			
12	Default	40				QPSK	100@0 (A4)			
13	Default	40				QPSK	150@33 (A2)			
14	Default	40				QPSK	5@187 (A5)			
15	Default	40				QPSK	192@0 (A1)			
16	Default	40				QPSK	Outer_Full (A1)			
17	Default	50				QPSK	5@75 (A5)			
18	Default	50				QPSK	5@215 (A5)			
19	Default	50			Σ	QPSK	162@45 (A2)			
20	Default	50			DFT-s-OFDM	QPSK	220@0 (A1)			
21	Default	50			Q	QPSK	Outer_Full (A1)			
22	Default	25			1-8	256 QAM	Outer_Full (A3)			
23	Default	25	N/A	N/A	DF	256 QAM	Edge_1RB_Right (A3)			
24	Default	25				256 QAM	Edge_1RB_Left (A3)			
25	Default	30				256 QAM	20@0 (A1)			
26	Default	30				256 QAM	36@0 (A5)			
27	Default	30				256 QAM	80@0 (A3)			
28	Default	30				256 QAM	120@0 (A4)			
29	Default	30				256 QAM	Outer_Full (A2)			
30	Default	30				256 QAM	Edge_1RB_Right (A5)			
31	Default	40				256 QAM	40@0 (A1)			
32	Default	40				256 QAM	5@53 (A5)			
33	Default	40				256 QAM	100@0 (A4)			
34	Default	40				256 QAM	150@33 (A2)			
35	Default	40				256 QAM	5@187 (A5)			
36	Default	40				256 QAM	192@0 (A1)			
37	Default	40				256 QAM	Outer_Full (A1)			
38	Default	50				256 QAM	5@75 (A5)			
39	Default	50				256 QAM	5@215 (A5)			
40	Default	50				256 QAM	162@45 (A2)			
41	Default	50				256 QAM	216@0 (A1)			
42	Default	50				256 QAM	Outer_Full (A1)			
43	Default	25			N	QPSK	Outer_Full (A3)			
44	Default	25			Ε	QPSK	Edge_1RB_Right (A3)			
45	Default	25			CP-OFDM	QPSK	Edge_1RB_Left (A3)			
46	Default					QPSK	20@0 (A1)			

47	Default	30				QPSK	36@0 (A5)
48	Default	30				QPSK	80@0 (A3)
49	Default	30				QPSK	120@0 (A4)
50	Default	30				QPSK	Outer_Full (A2)
51	Default	30				QPSK	Edge_1RB_Right (A5)
52	Default	40				QPSK	40@0 (A1)
53	Default	40				QPSK	5@53 (A5)
54	Default	40				QPSK	100@0 (A4)
55	Default	40				QPSK	159@33 (A2)
56	Default	40				QPSK	5@187 (A5)
57	Default	40				QPSK	192@0 (A1)
58	Default	40				QPSK	Outer_Full (A1)
59	Default	50				QPSK	5@75 (A5)
60	Default	50				QPSK	5@215 (A5)
61	Default	50				QPSK	175@45 (A2)
62	Default	50				QPSK	216@0 (A1)
63	Default	50				QPSK	Outer_Full (A1)
64	Default	25				256 QAM	Outer_Full (A3)
65		25 25				256 QAM 256 QAM	Edge_1RB_Right (A3)
	Default					256 QAM 256 QAM	Edge_1RB_Right (A3)
66	Default	25					J ()
67	Default	30				256 QAM	20@0 (A1)
68	Default	30				256 QAM	36@0 (A5)
69	Default	30				256 QAM	80@0 (A3)
70	Default	30				256 QAM	120@0 (A4)
71	Default	30				256 QAM	Outer_Full (A2)
72	Default	30				256 QAM	Edge_1RB_Right (A5)
73	Default	40				256 QAM	40@0 (A1)
74	Default	40				256 QAM	5@53 (A5)
75	Default	40				256 QAM	100@0 (A4)
76	Default	40				256 QAM	150@33 (A2)
77	Default	40				256 QAM	5@187 (A5)
78	Default	40				256 QAM	192@0 (A1)
79	Default	40				256 QAM	Outer_Full (A1)
80	Default	50				256 QAM	5@75 (A5)
81	Default	50				256 QAM	5@215 (A5)
82	Default	50				256 QAM	175@45 (A2)
83	Default	50				256 QAM	220@0 (A1)
84	Default	50				256 QAM	Outer_Full (A1)
	-	uration	of each	RB allocation	on is d	defined in Tabl	e 6.1-1 unless otherwise
stated in this table.							

Table 6.5C.3.3.4-6: Test Configuration Table (network signalled value "NS_56")

				Initial C	onditior	าร				
Test E	nvironme	nt as spe	ecified in TS 38	.508-1 [5] sub	clause	4.1	Normal			
	Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1							Use uplink carrier centre frequency		
							(Fc) as spec	cified in test parameters		
Test C	hannel B	andwidth	s as specified i	in TS 38.508-	1 [5]		5 MHz, 10 N	IHz as specified in test		
subcla	use 4.3.1							for SUL carrier		
								on-SUL carrier		
Test S	CS as sp	ecified in	Table 5.3.5-1					SUL carrier and Lowest		
						(CS for Non-SUL carrier		
			A-IV	IPR test para	meters	TOT N		Configuration		
Test	Fc	ChB	Downlink	Uplink	R	м	odulation	RB allocation (Note 1)		
ID	(MHz)	w	Configurat	Configura	A-MPR		NOTE 2)	SCS		
	()	(MHz)	ion	tion	Ă	``		15 kHz		
1	Low	5			14		PI/2 BPSK	Edge_1RB_Left		
2	Low	5			6		PI/2 BPSK	Outer_Full		
3	Low	5			4		PI/2 BPSK	20@4		
4	Low	5			4		PI/2 BPSK	1@4		
5	Low	5			14		QPSK	Edge_1RB_Left		
6	Low	5]		6		QPSK	Outer_Full		
7	Low	5]		4		QPSK	20@4		
8	Low	5			4		QPSK	1@4		
9	Low	5			14		16 QAM	Edge_1RB_Left		
10	Low	5			6		16 QAM	Outer_Full		
11	Low	5			4		16 QAM	20@4		
12	Low	5			4		16 QAM	1@4		
13	Low	5			14		64 QAM	Edge_1RB_Left		
14	Low	5			6		64 QAM	Outer_Full		
15	Low	5			4		64 QAM	20@4		
16	Low	5			4		64 QAM	1@4		
17	Low	5			14		256 QAM	Edge_1RB_Left		
18	Low	5			6		256 QAM	Outer_Full		
19	Low	5			4		256 QAM	20@4		
20	Low	5			4		256 QAM	1@4		
21	Low	10			12	MC	PI/2 BPSK	Edge_1RB_Left		
22	Low	10	N/A for A-		8	DFT-s-OFDM	PI/2 BPSK	Outer_Full		
23	Low	10	MPR testing	N/A	6	-s-	PI/2 BPSK	1@3		
24	Low	10			6	Ē	PI/2 BPSK	40@9		
25	Low	10			4	Δ	PI/2 BPSK	1@35		
26	Low	10	4		2		PI/2 BPSK	16@35		
27	Low	10	4		5		PI/2 BPSK	Edge_1RB_Right		
28	Low	10	{		5		PI/2 BPSK	1@40		
29	Low	10	4		3		PI/2 BPSK	8@44		
30	Low	10	4		12		QPSK QPSK	Edge_1RB_Left		
31	Low	10	4		8			Outer_Full		
32	Low	10	4		6		QPSK	1@3		
33	Low	10	4		6		QPSK	40@9		
34	Low	10	4		4		QPSK	1@35		
35	Low	10	4		2		QPSK	16@35 Edgo 1PB Pight		
36 37	Low	10	4		5 5		QPSK QPSK	Edge_1RB_Right 1@40		
37	Low	10 10	4		5 3		QPSK	8@44		
30	Low	10	1		3 12			Edge_1RB_Left		
<u> </u>	Low	10	4				16 QAM			
40	Low	10	4		8 6		16 QAM 16 QAM	Outer_Full 1@3		
41	Low		4		6 6					
42	Low	10 10	4		6 4		16 QAM	40@9 1@35		
43	Low Low	10	4		4		16 QAM 16 QAM	16@35		
			4		2 5			Edge_1RB_Right		
45	Low	10			3		16 QAM			

				1				
46	Low	10			5		16 QAM	1@40
47	Low	10			3		16 QAM	8@44
48	Low	10			12		64 QAM	Edge_1RB_Left
49	Low	10			8		64 QAM	Outer_Full
50	Low	10			6		64 QAM	1@3
51	Low	10			6		64 QAM	40@9
52	Low	10			4		64 QAM	1@35
53	Low	10			2		64 QAM	16@35
54	Low	10			5		64 QAM	Edge_1RB_Right
55	Low	10			5		64 QAM	1@40
56	Low	10			3		64 QAM	8@44
57	Low	10			12		256 QAM	Edge_1RB_Left
58	Low	10			8		256 QAM	Outer_Full
59	Low	10			6		256 QAM	1@3
60	Low	10			6		256 QAM	40@9
61	Low	10			4		256 QAM	1@35
62	Low	10			2		256 QAM	16@35
63	Low	10			5		256 QAM	Edge_1RB_Right
64	Low	10			5		256 QAM	1@40
65	Low	10			3		256 QAM	8@44
66	Low	5			14		QPSK	Edge_1RB_Left
67	Low	5			6		QPSK	Outer_Full
68	Low	5			4		QPSK	21@4
69	Low	5			4		QPSK	1@4
70	Low	5			14		16 QAM	Edge_1RB_Left
71	Low	5			6		16 QAM	Outer_Full
72	Low	5			4		16 QAM	21@4
73	Low	5			4		16 QAM	1@4
74	Low	5			14		64 QAM	Edge_1RB_Left
75	Low	5			6		64 QAM	Outer_Full
76	Low	5			4		64 QAM	21@4
77	Low	5	_		4		64 QAM	1@4
78	Low	5	_		14		256 QAM	Edge_1RB_Left
79	Low	5	_		6		256 QAM	Outer_Full
80	Low	5	_		4		256 QAM	21@4
81	Low	5			4		256 QAM	1@4
82	Low	10			12		QPSK	Edge_1RB_Left
83	Low	10	_		8	5	QPSK	Outer_Full
84	Low	10	N/A for A-		6	Ō	QPSK	1@3
85	Low	10	MPR testing	N/A	6	Ģ	QPSK	43@9
86	Low	10			4	CP-OFDM	QPSK	1@35
87	Low	10			2		QPSK	17@35
88	Low	10			5		QPSK	Edge_1RB_Right
89	Low	10			5		QPSK	1@40
90	Low	10			3		QPSK	8@44
91	Low	10			12		16 QAM	Edge_1RB_Left
92	Low	10			8		16 QAM	Outer_Full
93	Low	10			6		16 QAM	1@3
94	Low	10			6		16 QAM	43@9
95	Low	10			4		16 QAM	1@35
96	Low	10			2		16 QAM	17@35
97	Low	10			5		16 QAM	Edge_1RB_Right
98	Low	10			5		16 QAM	1@40
99	Low	10			3		16 QAM	8@44
100	Low	10			12		64 QAM	Edge_1RB_Left
101	Low	10			8		64 QAM	Outer_Full
102	Low	10			6		64 QAM	1@3
103	Low	10			6		64 QAM	43@9
104	Low	10			4		64 QAM	1@35

105	Low	10			2		64 QAM	17@35
106	Low	10			5		64 QAM	Edge_1RB_Right
107	Low	10			5		64 QAM	1@40
108	Low	10			3		64 QAM	8@44
109	Low	10			12		256 QAM	Edge_1RB_Left
110	Low	10			8		256 QAM	Outer_Full
111	Low	10			6		256 QAM	1@3
112	Low	10			6		256 QAM	43@9
113	Low	10			4		256 QAM	1@35
114	Low	10			2		256 QAM	17@35
115	Low	10			5		256 QAM	Edge_1RB_Right
116	Low	10			5		256 QAM	1@40
117	Low	10			3		256 QAM	8@44
NOTE '	NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1 unless otherwise stated							
	in this	table.						
NOTE 2	2: DFT-s	-OFDM I	PI/2 BPSK test	applies only f	for UEs	which	supports half	Pi BPSK in FR1.

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.4 for TE diagram and section A.3.2 for UE diagram.
- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause 4.4.3
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.

Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Table 4.6.1-28 with condition SUL AND (RF OR RRM), Tables 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL, together with exceptions as specified in clause 6.5.3.3.4.3 as appropriate for different NS values.

Table 6.5C.3.3.4-2: Void

6.5C.3.3.5 Test requirement

For SUL operation, the Additional Spurious emission requirement specified in clause 6.5.3.3.5 shall be met for specific NS values.

Table 6.5C.3.3.5-1: Void

6.5C.4 Transmit intermodulation for SUL

6.5C.4.1 Test purpose

To verify that the UE transmit intermodulation does not exceed the described value in the test requirement.

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non-linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

6.5C.4.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support SUL operating on the SUL bands.

6.5C.4.3 Minimum conformance requirements

The requirements in subclause 6.5.4 apply to the UE operating on SUL bands

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5.4.

6.5C.4.4 Test description

Same test description as specified in clause 6.2.4.4 with following exceptions:

- Instead of table 5.3.5-1 \rightarrow use Table 5.5C-1
- Instead of table 6.5.4.4.1-1 \rightarrow use Table 6.5C.4.4-1

Table 6.5C.4.4-1: Test Configuration Table

			Initial Con	ditions				
	onment as specified in TS 38.	508-1 [5]	Normal					
subclause	4.1							
Test Frequ	Test Frequencies as specified in TS 38.508-1 [5]			e for both SUL carrier and Nor	n-SUL carrier			
subclause	4.3.1							
Test Chan	nel Bandwidths as specified ir	ח TS	Mid, High	nest for SUL carrier				
38.508-1 [5	5] subclause 4.3.1		Lowest for	or Non-SUL carrier				
Test SCS a	as specified in Table 5.3.5-1		15kHz fo	r SUL carrier and Lowest supp	ported SCS for Non-SUL			
			carrier	carrier				
	Tes	st Parame	ters for C	hannel Bandwidths				
Test ID	Downlink Configuration	U	IL SUL Configuration					
		Config	uration					
	N/A	N	/A	Modulation	RB allocation (NOTE 2)			
1				DFT-s-OFDM Pi/2 BPSK	Inner Full			
2				DFT-s-OFDM QPSK	Inner Full			
NOTE 1:	Test Channel Bandwidths are	checked	separately	for each SUL band combination	on, the applicable channel			
bandwidths are specified in Table 5.5C-1.								
NOTE 2:	NOTE 2: The specific configuration of each RB allocation is defined in Table 6.1-1.							
NOTE 3:	DFT-s-OFDM PI/2 BPSK test	applies or	nly for UEs	which supports half Pi BPSK	in FR1.			

- Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.3.4 for TE diagram and section A.3.2 for UE diagram.
- The parameter setting for the cell are set up according to the TS 38.508-1 [5] subclause 4.4.3
- Downlink signals are initially setup according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, and G.3.0 with consideration of supplementary uplink physical channels.
- Instead of table 6.5.4.5-1 \rightarrow use Table 6.5C.4.5-1
- Message contents in initial conditions are according to TS 38.508-1 [5] subclause 4.3.6.1.1.2 ensuring UL/SUL indicator in Table 4.3.6.1.1.2-1 with condition SUL, subclause 4.6 ensuring Tables 4.6.1-28 with condition SUL AND (RF OR RRM), 4.6.3-14 with condition SUL_SUL for SUL carrier, and Table 4.6.3-167 with condition PUSCH_PUCCH_ON_SUL.

6.5C.4.5 Test requirement

The ratio derived in step 6 and 8, shall not exceed the described value in table 6.5C.4.5-1.

Table 6.5C.4.5-1: Transmit Intermodulation

Wanted signal channel bandwidth	BWChannel					
Interference signal frequency offset from channel centre	BW _{Channel} 2*BW _{Channel}					
Interference CW signal level	-40dBc					
Intermodulation product	< -29dBc	< -35dBc				
Measurement bandwidth	The maximum transmission bandwidth configuration among the differe channel BW as defined in Table 6.5.2.4.1.3-1					
Measurement offset from channel centre	BWChannel and 2*BWChannel	2*BWChannel and 4*BWChannel				

6.5D Output RF spectrum emissions for UL MIMO

6.5D.1 Occupied bandwidth for UL MIMO

6.5D.1.1 Test purpose

To verify that the UE occupied bandwidth for all transmission bandwidth configurations supported by the UE supporting UL MIMO are less than their specific limits when UE is configured using UL MIMO transmission.

6.5D.1.2 Test applicability

This test applies to all types of NR UE release 15 and forward that support UL MIMO.

6.5D.1.3 Minimum conformance requirements

For UE supporting UL MIMO, the requirements for occupied bandwidth apply to the sum of the powers from both UE transmit antenna connectors. The occupied bandwidth is defined as the bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel at each transmit antenna connector.

For UE with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the occupied bandwidth at each transmitter antenna shall be less than the channel bandwidth specified in table 6.5.1.3-1. The requirements shall be met with UL MIMO configurations described in sub-clause 6.2D.1.3.

If UE is configured for transmission on single-antenna port by DCI format 0_0 or by DCI format 0_1 for single antenna port codebook based transmission, the requirements in subclause 6.5.1.3 apply

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5D.1.

6.5D.1.4 Test description

6.5D.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5D.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Initial Conditions								
Test Environment as specified in TS 38.508-1 [[5] Normal	Normal						
subclause 4.1								
Test Frequencies as specified in TS 38.508-1 [5] Mid range by default, exce	ptions listed in Table 6.5D.1.4.1-2						
subclause 4.3.1								
Test Channel Bandwidths as specified in TS	All							
38.508-1 [5] subclause 4.3.1								
Test SCS as specified in Table 5.3.5-1	Lowest SCS	Lowest SCS						
	Test Parameters							
Test ID Downlink Configuration	Uplin	k Configuration						
N/A for occupied bandwidth test	Modulation	RB allocation (NOTE 1)						
1 case	CP-OFDM QPSK	CP-OFDM QPSK Outer_full						
NOTE 1: The specific configuration of each RI	B allocation is defined in Table 6	5.1-1.						

Table 6.5D.1.4.1-1: Test Configuration Table

Table 6.5D.1.4.1-2: Test frequency exceptions for Occupied Bandwidth

5G NR Band	Test Frequency
n77	Low Range, Mid Range, High Range
n78	Low Range, Mid Range, High Range
n79	Low Range, Mid Range, High Range

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5D.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5D.1.4.3

6.5D.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5D.1.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2
- 2. Send continuously power control "up" commands to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the power spectrum distribution as the sum of the powers from both UE transmit antenna connectors within two times or more range over the requirement for Occupied Bandwidth specification centring on the current carrier frequency. The characteristics of the filter shall be approximately Gaussian (typical spectrum analyser filter). Other methods to measure the power spectrum distribution are allowed. The measuring duration is 1ms over consecutive active uplink slots. For TDD, only slots consisting of only UL symbols are under test.
- 4. Calculate the total power within the range of all frequencies measured in step 3 and save this value as "Total power".

- 5. Sum up the power upward from the lower boundary of the measured frequency range in step 3 and seek the limit frequency point by which this sum becomes 0.5% of "Total power" and save this point as "Lower Frequency".
- 6. Sum up the power downward from the upper boundary of the measured frequency range in step 3 and seek the limit frequency point by which this sum becomes 0.5% of "Total power" and save this point as "Upper Frequency".
- 7. Calculate the difference "Upper Frequency" "Lower Frequency" = "Occupied Bandwidth" between the two limit frequencies obtained in step 5 and step 6.

6.5D.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO

6.5D.1.5 Test requirement

The measured Occupied Bandwidth in step 7 shall not exceed values in Table 6.5D.1.5-1.

		NR channel bandwidth												
	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	45 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
Occupied channel bandwidth (MHz)	5	10	15	20	25	30	40	45	50	60	70	80	90	100

6.5D.1_1 Void

6.5D.2 Out of band emission for UL MIMO

6.5D.2.1 General

For UE supporting UL MIMO, the requirements for Out of band emissions resulting from the modulation process and non-linearity in the transmitters are specified as the sum of the emissions from both UE transmit antenna connectors.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.5.2 apply. The requirements shall be met with UL MIMO configurations described in sub-clause 6.2D.1.3

If UE is scheduled for single antenna-port PUSCH transmission by DCI format 0_0 or by DCI format 0_1 for single antenna port codebook based transmission, the requirements in subclause 6.5.2 apply.

6.5D.2.2 Spectrum emission mask for UL MIMO

6.5D.2.2.1 Test purpose

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth.

6.5D.2.2.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports UL MIMO.

6.5D.2.2.3 Minimum conformance requirements

The sum of power of any UE emission shall not exceed the levels specified in Table 6.5.2.2.3-1 for the specified channel bandwidth from both transmit antenna connectors.

3GPP TS 38.521-1 V17.6.1 (2022-10)

1092

For UE support uplink full power transmission (ULFPTx) for UL MIMO, the requirements in clause 6.5.2.2 shall apply. The requirements shall be met with the PUSCH configurations specified in Table 6.2D.1.3-3, based upon UE's support of uplink full power transmission mode.

If UE is scheduled for single antenna-port PUSCH transmission by DCI format 0_0 or by DCI format 0_1 for single antenna port codebook based transmission, the requirements in clause 6.5.2.2 apply.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5D.2 and 6.5.2.2

6.5D.2.2.4 Test description

6.5D.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in tables 6.5D.2.2.4.1-1 to 6.5D.2.2.4.1-3. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

				Default Condi	tions		
Test E	Invironme	nt as spec	ified in TS	Normal			
subclause 4.1							
Test Frequencies as specified in TS 38.508-1 [5]					Low range, High range		
subcla	ause 4.3.1						
Test C	Channel Ba	andwidths	as specifi	ied in TS	Lowest, Highest		
	8-1 [5] sub						
Test S	SCS as sp	ecified in ⁻			Lowest and Highes	st	
			Test Para	ameters for Char	nnel Bandwidths		
Test	Freq	ChBw	SCS	Downlink	Uplink	Configuration	
ID				Configuration			
		Default	Default	N/A for	Modulation	RB allocation (NOTE	
				Spectrum		1)	
1	Low			Emission	CP-OFDM	Edge_1RB_Left	
				Mask test case	QPSK		
2	High				CP-OFDM	Edge_1RB_Right	
					QPSK		
3	Default				CP-OFDM	Outer_Full	
					QPSK		
4	Low				CP-OFDM 16	Edge_1RB_Left	
					QAM		
5	High				CP-OFDM 16	Edge_1RB_Right	
					QAM		
6	Default				CP-OFDM 16	Outer_Full	
					QAM		
7	Low				CP-OFDM 64	Edge_1RB_Left	
					QAM		
8	High				CP-OFDM 64	Edge_1RB_Right	
-					QAM		
9	Default				CP-OFDM 64	Outer_Full	
10	Law				QAM		
10	Low				CP-OFDM 256	Edge_1RB_Left	
11	Lliab				QAM CP-OFDM 256	Edge 1DD Dight	
11	High					Edge_1RB_Right	
10	Default				QAM CP-OFDM 256	Outer_Full	
12	Derault				QAM	Outer_Full	
NOTE	1. The -	no oifio co	n figuration	a of each DE alles			
NOTE	I. INES	specific co	miguration	TOT Each KF alloc	ation is defined in T		

Table 6.5D.2.2.4.1-1: Test Configuration Table for power class 3 and power class 2

			Initial Conditions						
		s specified in TS 38.508-1	Normal						
[5] subcla									
	Test Frequencies as specified in TS 38.508-1 [5] subclause 4.3.1		Low range, High range						
	Test Channel Bandwidths as specified in TS 38.508-1 [5] subclause 4.3.1		Lowest, Highest						
		ied in Table 5.3.5-1	Lowest, Highest						
			neters for Channel Bandwidths						
Test ID	Freq	Downlink Configuration	Uplink Configu	uration					
		N/A for Maximum Power Reduction (MPR) test	Modulation (NOTE 2)	RB allocation (NOTE 1)					
1 ⁴	Low	case							
1* 2 ⁴	Low		DFT-s-OFDM Pi/2 BPSK DFT-s-OFDM Pi/2 BPSK	Edge_1RB_Left					
21 34	High Default		DFT-s-OFDM Pi/2 BPSK	Edge_1RB_Right Outer Full					
3 4 ⁴	Low		DFT-s-OFDM P#2 BF3K	Edge_1RB_Left					
5	High		DFT-s-OFDM QPSK	Edge_1RB_Right					
6	Default		DFT-s-OFDM QPSK	Outer Full					
7	Low		DFT-s-OFDM 16 QAM	Edge_1RB_Left					
8	High		DFT-s-OFDM 16 QAM	Edge_1RB_Right					
9	Default		DFT-s-OFDM 16 QAM	Outer Full					
10	Low		DFT-s-OFDM 64 QAM	Edge_1RB_Left					
11	High		DFT-s-OFDM 64 QAM	Edge_1RB_Right					
12	Default		DFT-s-OFDM 64 QAM	Outer Full					
13	Low		DFT-s-OFDM 256 QAM	Edge_1RB_Left					
14	High		DFT-s-OFDM 256 QAM	Edge_1RB_Right					
15	Default		DFT-s-OFDM 256 QAM	Outer Full					
16	Low		CP-OFDM QPSK	Edge_1RB_Left					
17	High		CP-OFDM QPSK	Edge_1RB_Right					
18	Default		CP-OFDM QPSK	Outer Full					
19	Low		CP-OFDM 16 QAM	Edge_1RB_Left					
20	High		CP-OFDM 16 QAM	Edge_1RB_Right					
21	Default		CP-OFDM 16 QAM	Outer Full					
22	Low		CP-OFDM 64 QAM	Edge_1RB_Left					
23	High		CP-OFDM 64 QAM	Edge_1RB_Right					
24	Default		CP-OFDM 64 QAM	Outer Full					
25	Low		CP-OFDM 256 QAM	Edge_1RB_Left					
26	High		CP-OFDM 256 QAM	Edge_1RB_Right					
27	Default	ifie configuration of as -1. DD	CP-OFDM 256 QAM	Outer Full					
NOTE 1: NOTE 2:	•	5	allocation is defined in Table 6.1-1.	K in ED1					
-	Test ID 1	6 ~ 27 with CP-OFDM modu	only for UEs which supports half Pi BPS lation are not needed if PDCCH DCI forr						
NOTE 4:		ating in FDD mode, or in TDD) mode in bands other than n40, n41, n7 set to 0 for bands n40, n41, n77, n78 and						

Table 6.5D.2.2.4.1-2: Test Configuration Table for power class 3 with supporting ULFPTx

			Initial Conditions	
Test Environment as specified in TS 38.508-1			Normal	
[5] subclause 4.1				
Test Frequencies as specified in TS 38.508-1			Low range, High range	
[5] subclause 4.3.1				
Test Channel Bandwidths as specified in TS			Lowest, Highest	
38.508-1 [5] subclause 4.3.1				
Test SC	S as specif	ied in Table 5.3.5-1	Lowest, Highest	
Test Parameters for Channel Bandwidths				
Test ID	Freq	Downlink Configuration	Uplink Configuration	
		N/A for Maximum Power Reduction (MPR) test case	Modulation (NOTE 2)	RB allocation (NOTE 1)
1	Low		DFT-s-OFDM Pi/2 BPSK	Edge_1RB_Left
2	High		DFT-s-OFDM Pi/2 BPSK	Edge_1RB_Right
3	Default		DFT-s-OFDM Pi/2 BPSK	Outer Full
4	Low		DFT-s-OFDM QPSK	Edge_1RB_Left
5	High		DFT-s-OFDM QPSK	Edge_1RB_Right
6	Default		DFT-s-OFDM QPSK	Outer Full
7	Low		DFT-s-OFDM 16 QAM	Edge_1RB_Left
8	High		DFT-s-OFDM 16 QAM	Edge_1RB_Right
9	Default		DFT-s-OFDM 16 QAM	Outer Full
10	Low		DFT-s-OFDM 64 QAM	Edge_1RB_Left
11	High		DFT-s-OFDM 64 QAM	Edge_1RB_Right
12	Default		DFT-s-OFDM 64 QAM	Outer Full
13	Low		DFT-s-OFDM 256 QAM	Edge_1RB_Left
14	High		DFT-s-OFDM 256 QAM	Edge_1RB_Right
15	Default		DFT-s-OFDM 256 QAM	Outer Full
16	Low		CP-OFDM QPSK	Edge_1RB_Left
17	High		CP-OFDM QPSK	Edge_1RB_Right
18	Default		CP-OFDM QPSK	Outer Full
19	Low		CP-OFDM 16 QAM	Edge_1RB_Left
20	High		CP-OFDM 16 QAM	Edge_1RB_Right
21	Default		CP-OFDM 16 QAM	Outer Full
22	Low		CP-OFDM 64 QAM	Edge_1RB_Left
23	High		CP-OFDM 64 QAM	Edge_1RB_Right
24	Default		CP-OFDM 64 QAM	Outer Full
25	Low		CP-OFDM 256 QAM	Edge_1RB_Left
26	High		CP-OFDM 256 QAM	Edge_1RB_Right
27	Default		CP-OFDM 256 QAM	Outer Full
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1-1. NOTE 2: DFT-s-OFDM Pi/2 BPSK test applies only for UEs which supports half Pi BPSK in FR1.				
NOTE 3: Test ID 16 ~ 27 with CP-OFDM modulation are not needed if PDCCH DCI format 0_1 indicates				
ULFPTx_Mode1.				

Table 6.5D.2.2.4.1-3: Test Configuration Table for power class 2 with supporting ULFPTx

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to tables 6.5D.2.2.4.1-1 to 6.5D.2.2.4.1-3.
- 5. Propagation conditions are set according to Annex B.0.

- 1096
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5D.2.2.4.3

6.5D.2.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5D.2.2.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2
- 2. Send continuously power control "up" commands to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the sum of the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Tables 6.2D.2.5-1 or 6.2D.2.5-2 as appropriate. The period of the measurement shall be at least the continuous duration of 1ms over consecutive active uplink slots and uplink symbols. For TDD, only slots consisting of only UL symbols are under test.
- 4. Measure the sum of power of the transmitted signal from both antenna connectors with a measurement filter of bandwidths according to Table 6.5D.2.2.5-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.
- 5. If UE supports ULFPTx, repeat test steps 1~3 with UL RMC according to Table 6.5D.2.2.4.1-2 and Table 6.5D.2.2.4.1-3 as appropriate. The PDCCH DCI format 0_1 is specified with the condition ULFPTx_Mode1, ULFPTx_Mode2 or ULFPTx_ModeFull in 38.508-1 [5] subclause 4.3.6.1.1.2 depending on UE reported capability. Message contents are according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 with condition TRANSFORM_PRECODER_ENABLED.NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration Table 6.5D.2.2.4.1-2, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5D.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO.

6.5D.2.2.5 Test requirement

The measured sum of the UE mean power in the channel bandwidth, derived in step 3, shall fulfill requirements in Tables 6.2D.2.5-1, 6.2D.2.5-2, 6.2D.2.5-2a and 6.2D.2.5-2b as appropriate, and the sum of power of any UE emission measured from both antennas in step 4 and step 5 shall fulfill requirements in Table 6.5D.2.2.5-1.

∆f _{оов} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz	Measurement bandwidth
± 0-1	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT							1 % channel bandwidth
± 0-1								-24 + TT	-24 + TT	-24 + TT	-24 + TT	-24 + TT	-24 + TT	30 kHz
± 1-5	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	
± 5-6	-13 + TT	-13												
± 6-10	-25 + TT	+ TT	-13 + TT	-13										
± 10-15		-25 + TT		+ TT	-13 + TT	-13 +								
± 15-20			-25 + TT			TT	-13 +							
± 20-25				-25 + TT			TT	-13 + TT						
± 25-30					-25 + TT				-13 + TT	-13 +				
± 30-35						-25 + TT				TT	-13 +			
± 35-40											TT	-13 +		
± 40-45							-25 + TT					TT	-13	1 MHz
± 45-50													+ TT	
± 50-55								-25 + TT						
± 55-60														
± 60-65									-25 + TT					
± 65-70										05	-			
± 70-75										-25 + TT				
± 75-80											05.	-		
± 80-85											-25 + TT			
± 85-90												-25 +		
± 90-95												-25 + TT		
± 95-100													05	
± 100-105													-25 + TT	
ote 2: At +0	the bour .5MHz a	ndary of nd -0.5N	spectru MHz, res	m emiss	sion limit y.	, the firs	t and la	st meas	urement			z and 0. 1 MHz fi	985 MH	z. e inside of

Table 6.5D.2.2.5-1: NR General spectrum emission mask

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5D.2.3 Additional spectrum emission mask for UL MIMO

Editor's note:

-Test coverage for the NS_XXs other than NS_03, NS_03U, NS_04 and NS_35 is FFS

- Supporting of ULFPTx is only completed for NS_04 in A-MPR

6.5D.2.3.1 Test purpose

To verify that the sum of power of any UE emission from both transmit antennas shall not exceed specified lever for the specified channel bandwidth under the deployment scenarios where additional requirements are specified.

6.5D.2.3.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports UL MIMO.

6.5D.2.3.3 Minimum conformance requirements

The sum of power of any UE emission shall not exceed the levels specified in Table 6.5.2.3.3-1 for NS_35, Table 6.5.2.3.3.2-1 for NS_04, and Table 6.5.2.3.3.3 for NS_03 and NS_03U for the specified channel bandwidth from both transmit antenna connectors.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5D.2 and 6.5.2.3

6.5D.2.3.4 Test description

6.5D.2.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 6.5D.2.3.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5D.2.3.4.1-1 to 6.5D.2.3.4.1-3: Void

Table 6.5D.2.3.4.1-2: Test Configuration Table for NS_04 for band n41

		Initial Condition	s	
Test E	Environment as specified in TS 38.50	Normal		
Test F	Frequencies as specified in TS 38.50	(See Freq column)		
Test (4.3.1	Channel Bandwidths as specified in T	S 38.508-1 [5] subclause	E Lowest, Highest	
Test S	SCS as specified in Table 5.3.5-1		Lowest, Highest	
A-SEI	M test parameters for NS_04		· · · · ·	
		Downlink	Uplink Config	guration
Test	Freq	Configuration		-
ID	Fieq		Modulation	RB allocation (NOTE 1)
1	Low		CP-OFDM QPSK	Edge_1RB_Left
2	2496 + 3/2 × BW _{Channel} – 6 MHz		CP-OFDM QPSK	Edge_1RB_Left
3	2496 + BW _{Channel} /2 +		CP-OFDM QPSK	Inner Full
4	MAX(10 MHz, 0.25 × BW _{Channel})	N/A	CP-OFDM QPSK	Outer Full
5	High		CP-OFDM QPSK	Edge_1RB_Right
6	High		CP-OFDM QPSK	Inner Full
7	High		CP-OFDM QPSK	Outer Full
8	Low		CP-OFDM 16 QAM	Edge_1RB_Left
9	2496 + 3/2 × BW _{Channel} – 6 MHz		CP-OFDM 16 QAM	Edge_1RB_Left
10	2496 + BW _{Channel} /2 +		CP-OFDM 16 QAM	Inner Full
11	MAX(10 MHz, 0.25 × BW _{Channel})		CP-OFDM 16 QAM	Outer Full
12	High		CP-OFDM 16 QAM	Edge_1RB_Right
13	High		CP-OFDM 16 QAM	Inner Full
14	High		CP-OFDM 16 QAM	Outer Full
15	Low		CP-OFDM 64 QAM	Edge_1RB_Left
16	2496 + 3/2 × BW _{Channel} – 6 MHz		CP-OFDM 64 QAM	Edge_1RB_Left
17	2496 + BW _{Channel} /2 + MAX(10 MHz, 0.25 × BW _{Channel})		CP-OFDM 64 QAM	Outer Full
18	High		CP-OFDM 64 QAM	Edge_1RB_Right
19	High		CP-OFDM 64 QAM	Outer Full
20	Low		CP-OFDM 256 QAM	Edge_1RB_Left
21	2496 + 3/2 × BW _{Channel} – 6 MHz		CP-OFDM 256 QAM	Edge_1RB_Left
22	2496 + BW _{Channel} /2 + MAX(10 MHz, 0.25 × BW _{Channel})		CP-OFDM 256 QAM	Outer Full
23	High		CP-OFDM 256 QAM	Edge_1RB_Right
24	High		CP-OFDM 256 QAM	Outer Full
NOTE	1: The specific configuration of each	ch RB allocation is define	ed in Table 6.1-1.	

Test Enviror	nment as spe	Normal													
Test Freque	encies as spe	Low range, High range													
Test Chann	el Bandwidth	s as specifie	ed in TS 38.	508-1 [5] subclaus	se 4.3	3.1	Lowest, Highest								
Test SCS a	s specified in	Table 5.3.5	-1				Lowest, Highest								
A-MPR test	parameters	for NS_03 a	nd NS_03U												
Tastip	Free			Downlink		Upli	nk Configuration								
Test ID	Freq	ChBw	SCS	Configuration	Modulation		RB allocation (Note 1)								
1	Low	Default	Default			QPSK	Edge_1RB_Left								
2	High	Default	Default	1		QPSK	Edge_1RB_Right								
3	Default	Default	Default	N/A for A-MPR	t t		QPSK	Outer_Full							
4	Low	Default	Default			N/A for A-MPR	-	-	-	-				16 QAM	Edge_1RB_Left
5	High	Default	Default								FDM	16 QAM	Edge_1RB_Right		
6	Default	Default	Default				E	16 QAM	Outer_Full						
7	Low	Default	Default	test cases	0	64 QAM	Edge_1RB_Left								
8	High	Default	Default		СР	64 QAM	Edge_1RB_Right								
9	Default	Default	Default]		64 QAM	Outer_Full								
10	Low	Default	Default			256 QAM	Edge_1RB_Left								
11	High	Default	Default]		256 QAM	Edge_1RB_Right								
12	Default	Default	Default]		256 QAM	Outer_Full								
	he specific c able.	onfiguration	of each RB	allocation is defin	ed in	Table 6.1-1 un	less otherwise stated in this								

Table 6.5D.2.3.4.1-3: Test Configuration table for NS_03 and NS_03U

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Tables 6.5D.2.3.4.1-1 as appropriate for NS_35.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release On, Test Mode On and Test Loop Function On according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5D.2.3.4.3.

6.5D.2.3.4.2 Test procedure

Same test procedure as defined in clause 6.5D.2.2.4.2 with the following exceptions:

- Instead of Table 6.2D.2.5-1, test requirements in clause 6.2D.3.5 are applied in step 3;
- Instead of Table 6.5D.2.2.5-1, test requirements in clause 6.5D.2.2.5 are applied in step 4;
- Instead of Table 6.5D.2.2.4.1-2 and Table 6.5D.2.2.4.1-3, test configurations for ULFPTx in clause 6.2D.3 are applied in step 5;

6.5D.2.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO and exceptions listed in clause 6.2D.3.4.3.

6.5D.2.3.5 Test requirement

The measured sum of the UE mean power in the channel bandwidth, derived in step 3 and step 5 shall fulfill the requirements as specified in clause 6.2D.3.5 for NS_35, NS_04, NS_03 and NS_03U as appropriate, and the sum of power of any UE emission measured from both antennas in step 4 and step 5 shall fulfill requirements in current subclause.

Spec	trum emis	sion limit	(dBm) / C	Channel b	andwidth					
Δf _{оов} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	Measurement bandwidth (unless otherwise stated)					
± 0-0.1	-15 + TT	-18 + TT	-20 + TT	-21 + TT	30 kHz					
± 0.1-6	-13 + TT	-13 + TT	-13 + TT	-13 + TT	100 kHz					
± 6-10	-25 ¹ + TT	-13 + TT	-13 + TT	-13 + TT	100 kHz					
± 10-15		-25 ¹ + TT	-13 + TT	-13 + TT	100 kHz					
± 15-20			-25 ¹ + TT	-13 + TT	100 kHz					
± 20-25	± 20-25 -25 + 1 MHz TT									
NOTE 2: T	NOTE 1: The measurement bandwidth shall be 1 MHz; NOTE 2: TT for each frequency and channel bandwidth is specified in Table 6.5D.2.3.5-2									

Table 6.5D.2.3.5-1: Additional requirements for "NS_35"

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 100MHz	1.5 dB	1.8 dB	1.8 dB

Table 6.5D.2.3	.5-3: Additional	requirements	for "NS	04"

Spectrum emission limit (dBm) / measurement bandwidth for each channel bandwidth								dth					
Δf _{ooв} MHz	10 MHz	15 MHz	20 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Measurement bandwidth			
±0-1	-10 + TT	-10 + TT	-10 + TT	-10 + TT						2 % channel bandwidth			
						-10 + TT				1 MHz			
±1-5			•	-10	+ TT								
± 5 - X				-13	+ TT					1 MHz			
± X - (BW _{Channel} + 5 MHz) -25 + TT													
NOTE 1: X is defined in	Table 6.5D	.2.3.5-3a for	CP-OFDM										
NOTE 2: TT for each fre	equency and	l channel ba	ndwidth is s	specified in	NOTE 2: TT for each frequency and channel bandwidth is specified in Table 6.5D.2.3.5-2.								

SCS		Channel bandwidths (MHz)							
(kHz)	10	15	20	40	50	60	80	90	100
15	9.36	14.22	19.08	38.88	48.6	N/A	N/A	N/A	N/A
30	8.64	13.68	18.36	38.16	47.88	58.32	78.12	88.02	98.28
60	7.92	12.96	17.28	36.72	46.8	56.88	77.04	87.12	97.20

Table 6.5D.2.3.5-3a: n41 maximum transmission bandwidths (MHz) for CP-OFDM

Table 6.5D.2.3.5-4: Additional requirements for "NS_03 and NS_03U"

∆f _{оов} MHz	Cha	annel band	width (MH	z) / Spectr	um emissi	ion limit (dBm)	Measurement bandwidth
	5	10	15	20	25	30	40	
± 0-1	-13 +	-13 +	-13 +	-13 +	-13 +	-13 +	-13 +	1 % of channel BW
	TT	TT	TT	TT	TT	TT	TT	
± 1-6	-13 +	-13 +	-13 +	-13 +	-13 +	-13 +	-13 +	1 MHz
	TT	TT	TT	TT	TT	TT	TT	
± 6-10	-25 +	-13 +	-13 +	-13 +	-13 +	-13 +	-13 +	1 MHz
	TT	TT	TT	TT	TT	TT	TT	
± 10-15		-25 +	-13 +	-13 +	-13 +	-13 +	-13 +	1 MHz
		TT	TT	TT	TT	TT	TT	
± 15-20			-25 +	-13 +	-13 +	-13 +	-13 +	1 MHz
			TT	TT	TT	TT	TT	
± 20-25				-25 +	-13 +	-13 +	-13 +	1 MHz
				TT	TT	TT	TT	
\pm 25-30					-25 +	-13 +	-13 +	1 MHz
					TT	TT	TT	
\pm 30-35						-25 +	-13 +	1 MHz
						TT	TT	
± 35-40							-13 +	1 MHz
							TT	
± 40-45							-25 +	1 MHz
							TT	
NOTE 1: 1	T for each	frequency a	and channe	el bandwidt	h is specifi	ed in Table	e 6.5.2.3.5	i-1.

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5D.2.4 Adjacent channel leakage ratio for UL MIMO

Adjacent channel leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

6.5D.2.4.1 NR ACLR for UL MIMO

6.5D.2.4.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5D.2.4.1.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that supports UL MIMO.

6.5D.2.4.1.3 Minimum conformance requirements

For UE supporting UL MIMO, the requirements for Out of band emissions resulting from the modulation process and non-linearity in the transmitters is defined as the sum of the emissions from both UEtransmit antenna connectors.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.5.2.4.2.3 apply. The requirements shall be met with UL MIMO configurations described in clause 6.2D.1.3.

For UE support uplink full power transmission (ULFPTx) for UL MIMO, the requirements in clause 6.5.2.4.2.3 shall apply. The requirements shall be met with the PUSCH configurations specified in Table 6.2D.1.3-3, based upon UE's support of uplink full power transmission mode.

If UE is scheduled for single antenna-port PUSCH transmission by DCI format 0_0 or by DCI format 0_1 for single antenna port codebook based transmission, the requirements in clause 6.5.2.4.2.3 apply.

The normative reference for this requirement is TS 38.101-1 [2] clauses and 6.5D.2 and 6.5.2.4.1.

6.5D.2.4.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in the test configuration tables in clause 6.2D.2. 4.1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

Table 6.5D.2.4.1.4.1-1: Void

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to the test configuration tables in clause 6.2D.2.4.1.
- 5. Propagation conditions are set according to Annex B.0
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5D.2.4.1.4.3 (If UE supports ULFPTx. The PDCCH DCI format 0_1 is specified with the condition ULFPTx_Mode1, ULFPTx_Mode2 or ULFPTx_ModeFull in 38.508-1 [5] subclause 4.3.6.1.1.2 depending on UE reported capability.)

6.5D.2.4.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to the test configuration tables in clause 6.2D.2. 4.1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2
- 2. Send continuously power control "up" commands to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the sum of the mean power of the UE at from both antenna connectors in the channel bandwidth of the radio access mode according to the test configuration, as measured in step 3 of 6.2D.2.4.2, which shall meet the requirements described in clauses 6.2D.2.5 as appropriate.

- 4. Measure the sum of the rectangular filtered mean power for the assigned NR channel at each antenna connector of UE.
- 5. Measure the sum of rectangular filtered mean power of the first NR adjacent channel at each antenna connector of UE on both lower and upper side of the assigned NR channel, respectively.
- 6. Calculate the ratios of the power between the values measured in step 4 over step 5 for lower and upper NR ACLR at each antenna connector of UE, respectively.
- If UE supports ULFPTx, repeat test steps 1~6 with UL RMC according to Table 6.2D.2.4.1-1a. The PDCCH DCI format 0_1 is specified with the condition ULFPTx_Mode1, ULFPTx_Mode2 or ULFPTx_ModeFull in 38.508-1 [5] subclause 4.3.6.1.1.2 depending on UE reported capability.

6.5D.2.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO.

6.5D.2.4.1.5 Test requirement

The measured UE mean total power derived in step 3, shall fulfil requirements in Clause 6.2D.2.5 as appropriate, and if the measured adjacent channel power is greater than -50 dBm then the measured NR ACLR, derived in step 6 for each antenna connector, shall be higher than the limits in Table 6.5D.2.4.1.5-2.

Table 6.5D.2.4.1.5-1: Void

Table 6.5D.2.4.1.5-2: NR ACLR requirement

	Power class 1	Power class 2	Power class 3
NR ACLR		31 - TT dB	30 - TT dB
NOTE 1: TT	Г = 0.8 dB		

6.5D.2.4.2 UTRA ACLR for UL MIMO

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- Test point analysis for NS_05Uand NS_100 is FFS

6.5D.2.4.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5D.2.4.2.2 Test applicability

This test case applies for NS_03U, NS_05U, and NS_100 to all types of NR UE release 15 and forward that supports UL MIMO.

6.5D.2.4.2.3 Minimum conformance requirements

For UE supporting UL MIMO, the requirements for Out of band emissions resulting from the modulation process and non-linearity in the transmitters is defined as the sum of the emissions from both UEtransmit antenna connectors.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements in subclause 6.5.2.4.2.3 apply. The requirements shall be met with UL MIMO configurations described in clause 6.2D.1.3.

For UE support uplink full power transmission (ULFPTx) for UL MIMO, the requirements in clause 6.5.2.4.2.3 shall apply. The requirements shall be met with the PUSCH configurations specified in Table 6.2D.1.3-3, based upon UE's support of uplink full power transmission mode.

If UE is scheduled for single antenna-port PUSCH transmission by DCI format 0_0 or by DCI format 0_1 for single antenna port codebook based transmission, the requirements in clause 6.5.2.4.2.3 apply.

The normative reference for this requirement is TS 38.101-1 [2] clauses 6.5D.2 and 6.5.2.4.2.

6.5D.2.4.2.4	Test description

6.5D.2.4.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5D.2.4.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

Table 6.5D.2.4.2.4.1-1: Test Configuration Table for NS_03U

				Default Cond	itions			
Test E	Invironme	nt as spec	ified in TS	Normal				
subclause 4.1								
Test Frequencies as specified in TS 38.508-1 [5]				Low range, High ran	ige			
subcla	ause 4.3.1					•		
Test C	Channel Ba	andwidths	as specifi	ied in TS	Lowest, Highest			
	3-1 [5] sub							
Test S	SCS as sp	ecified in ⁻	Table 5.3.	5-1	Lowest, Highest			
				rameters for Cha	nnel Bandwidths			
Test	Freq	ChBw	SCS	Downlink	Uplink C	onfiguration		
ID				Configuration				
		Default	Default	N/A for	Modulation	RB allocation (NOTE		
				Adjacent		1)		
1	Low			Channel	CP-OFDM QPSK	Edge_1RB_Left		
2	High			Leakage Ratio	CP-OFDM QPSK	Edge_1RB_Right		
3	Default			test case	CP-OFDM QPSK	Outer_Full		
4	Low				CP-OFDM 16	Edge_1RB_Left		
					QAM			
5	High				CP-OFDM 16	Edge_1RB_Right		
					QAM			
6	Default				CP-OFDM 16	Outer_Full		
					QAM			
7	Low				CP-OFDM 64	Edge_1RB_Left		
					QAM			
8	High				CP-OFDM 64	Edge_1RB_Right		
					QAM			
9	Default				CP-OFDM 64	Outer_Full		
					QAM			
10	Low				CP-OFDM 256	Edge_1RB_Left		
					QAM			
11 High				CP-OFDM 256 Edge_1RB_Righ				
					QAM			
12	Default				CP-OFDM 256 Outer_Full			
					QAM	-		
NOTE	1: The s	specific co	nfiguratior	n of each RF alloc	ation is defined in Tab	ble 6.1-1.		

				Initial Condition	ns		
Test Enviror	nment as spe	ecified in TS	38.508-1 [5] subclause 4.1			Normal
				subclause 4.3.1			Low range, High range
•				508-1 [5] subclaus	se 4 3	3 1	Lowest, Highest
	s specified in	-					Lowest, Highest
1631 000 a	s specified in			parameters for		211	Lowest, Highest
			1631	parameters for	N3_0		
Test ID	Freq	ChBw	SCS	Downlink		-	nk Configuration
				Configuration	Modulation (Note 2)		RB allocation (Note 1)
1	Low	Default	Default			PI/2 BPSK	Edge_1RB_Left
2	High	Default	Default			PI/2 BPSK	Edge_1RB_Right
3	Default	Default	Default			PI/2 BPSK	Outer_Full
4	Low	Default	Default			QPSK	Edge_1RB_Left
5	High	Default	Default	1		QPSK	Edge_1RB_Right
6	Default	Default	Default		MC	QPSK	Outer_Full
7	Low	Default	Default		DFT-s OFDM	16 QAM	Edge_1RB_Left
8	High	Default	Default			16 QAM	Edge_1RB_Right
9	Default	Default	Default			16 QAM	Outer_Full
10	Low	Default	Default			64 QAM	Edge_1RB_Left
11	High	Default	Default			64 QAM	Edge_1RB_Right
12	Default	Default	Default	N/A		64 QAM	Outer_Full
13	Low	Default	Default			256 QAM	Edge_1RB_Left
14	High	Default	Default			256 QAM	Edge_1RB_Right
15	Default	Default	Default			256 QAM	Outer_Full
16	Low	Default	Default			QPSK	Edge_1RB_Left
17	High	Default	Default			QPSK	Edge_1RB_Right
18	Default	Default	Default			QPSK	Outer_Full
19	Low	Default	Default			16 QAM	Edge_1RB_Left
20	High	Default	Default		Σ	16 QAM	Edge_1RB_Right
20	Default	Default	Default		OFDM	16 QAM	Outer_Full
22	Low	Default	Default		0 %	64 QAM	Edge_1RB_Left
23	High	Default	Default		CP-s	64 QAM	Edge_1RB_Right
24	Default	Default	Default		0	64 QAM	Outer_Full
25	Low	Default	Default	1		256 QAM	Edge_1RB_Left
26	High	Default	Default			256 QAM	Edge_1RB_Right
27	Default	Default	Default	1		256 QAM	Outer_Full
NOTE 1: T	he specific c able.	onfiguration	of each RB			Table 6.1-1 un	less otherwise stated in this
NOTE 2: D NOTE 3: V NOTE 4: V	/oid.	PI/2 BPSK	test applies	only for UEs whic	h sup	ports half Pi BF	PSK in FR1.

Table 6.5D.2.4.2.4.1-2: Test Configuration Table for NS_03U for UEs supporting ULFPTx

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5D.2.4.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0

6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5D.2.4.2.4.3

1107

6.5D.2.4.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5D.2.4.2.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2
- 2. Send continuously power control "up" commands to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the sum of the mean power of the UE at each antenna connector in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in clause 6.2D.3.5 as appropriate. The period of the measurement shall be at least the continuous duration of 1ms over consecutive active uplink slots and uplink symbols. For TDD, only slots consisting of only UL symbols are under test.
- 4. Measure the sum of the rectangular filtered mean power for the assigned NR channel at each antenna connector of UE.
- 5. Measure the sum of the RRC filtered mean power of the first and the second UTRA adjacent channel at each antenna connector of UE on both lower and upper side of the assigned NR channel, respectively.
- 6. Calculate the ratio of the power between the values measured in step 4 over step 5 for UTRA_{ACLR1}, UTRA_{ACLR2} for both lower an upper side of the assigned NR channel, respectively.
- If UE supports ULFPTx, repeat test steps 1~6 with UL RMC according to Table 6.2D.4.4.1-2. The PDCCH DCI format 0_1 is specified with the condition ULFPTx_Mode1, ULFPTx_Mode2 or ULFPTx_ModeFull in 38.508-1 [5] subclause 4.3.6.1.1.2 depending on UE reported capability.

6.5D.2.4.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO and with the exception specified in Table 6.5D.2.4.2.4.3 - 1

Information Element	Value/remark	Comment	Condition
AdditionalSpectrumEmission	1(NS_100)	NS_100 for band	
		n1, n2, n3, n5, n8,	
		n20, n25, n66,	
		n80, n81, n82,	
		n84 NOTE1	
	3(NS_03U)	NS_03U for n2,	
		n25, n66, n86	
		NS_05U for n1,	
		n84	
		NS_43U for n8,	
		n81	

6.5D.2.4.2.5 Test requirement

UTRA ACLR requirement is applicable when signalled by the network with network signalling value indicated by the field *additionalSpectrumEmission*.

The measured UE mean total power in the channel bandwidth at all the antenna connectors, derived in step 3, shall fulfil requirements in [Clause 6.2D.3.5] as appropriate, and if the measured adjacent channel power is greater than -50 dBm

then the measured UTRA ACLR, derived in step 6 for each antenna connector, shall be higher than the limits in Table 6.5D.2.4.2.5-1.

Table 6.5D.2.4.2.5-1: UTRA ACLR requirement

	Power class 3
UTRA _{ACLR1}	33 dB - TT
UTRA _{ACLR2}	36 dB - TT
NOTE 1: TT = 0.8 d	В

6.5D.2_1 Void

6.5D.3 Spurious emissions for UL MIMO

For UE supporting UL MIMO, the requirements for Spurious emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products are specified at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements specified in subclause 6.5.3 apply to each transmit antenna connector. The requirements shall be met with the UL MIMO configurations described in sub-clause 6.2D.1.3.

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.5.3 apply.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5D.3

6.5D.3.1 General spurious emissions for UL MIMO

6.5D.3.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5D.3.1.2 Test applicability

This test case applies to all types of NR UE release 15 that support UL MIMO.

6.5D.3.1.3 Minimum conformance requirements

The general spurious emission requirement specified in clause 6.5.3.1.3 applies to each antenna connector of the UE.

The normative reference for this requirement is TS 38.101-1 [2] subclauses 6.5D.3 and 6.5.3.1.

6.5D.3.1.4 Test description

6.5D.3.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5D.3.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

		Initial Conditions				
Test Enviro	nment as specified in TS	Normal				
38.508-1 [5]] subclause 4.1.					
Test Freque	encies as specified in TS	Low range, Mid range, High range				
38.508-1 [5]] subclause 4.3.1.					
Test Chann	el Bandwidths as specified in	Lowest, Mid, Highest				
TS 38.508-	1 [5] subclause 4.3.1.					
Test SCS a	s specified in Table 5.3.5-1	Lowest				
		Test Parameters				
Test ID	Downlink Configuration	Uplink Configuration				
		Modulation	RB allocation (NOTE 1)			
1	N/A for Spurious Emissions	CP-OFDM QPSK	OuterFull			
2	2 testing CP-OFDM QPSK Edge_1RB_Left					
3 CP-OFDM QPSK Edge_1RB_Right						
NOTE 1: T	he specific configuration of each	RB allocation is defined in Table 6.1-1 (Common UL configuration			

Table 6.5D.3.1.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex [A, Figure A.3.1.2.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.2, and uplink signals according to Annex G.0, G.1, G.2, and G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5D.3.1.4.3.

6.5D.3.1.4.2 Test procedure

- SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5D.3.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the power of the transmitted signal at each antenna connector with a measurement filter of bandwidths according to table 6.5D.3.1.5-1. The centre frequency of the filter shall be stepped in contiguous steps according to table 6.5D.3.1.5-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5D.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO.

6.5D.3.1.5 Test requirement

The measured average power of spurious emission at each antenna connector, derived in step 3, shall not exceed the described value in Table 6.5D.3.1.5-1.

The spurious emission limits apply for the frequency ranges that are more than Δ fOOB (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency Range	Maximum Level	Measurement bandwidth	NOTE			
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz				
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz				
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz				
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz				
12.75 GHz ≤ f < 5th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	1			
12.75 GHz < f < 26 GHz	-30 dBm	1 MHz	2			
 NOTE 1: Applies for Band that the upper frequency edge of the UL Band more than 2.69 GHz NOTE 2: Applies for Band that the upper frequency edge of the UL Band more than 5.2 GHz 						

Table 6.5D.3.1.5-1: General spurious emissions test requirements

6.5D.3.2 Spurious emissions for UE co-existence for UL MIMO

6.5D.3.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to co-existing systems for the specified bands which has specific requirements in terms of transmitter spurious emissions.

6.5D.3.2.2 Test applicability

This test case applies to all types of NR UE release 15 that support UL MIMO.

6.5D.3.2.3 Minimum conformance requirements

The requirements for NR bands for coexistence with protected bands specified in subclause 6.5.3.2.3 apply to each UE transmit antenna connector

The normative reference for this requirement is TS 38.101-1 [2] subclauses 6.5.3.2 and 6.5D.3.

6.5D.3.2.4	Test description

6.5D.3.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5D.3.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

		Initial Conditions				
Test Enviro	nment as specified in TS	Normal				
38.508-1 [5] subclause 4.1.					
Test Freque	encies as specified in TS	Low range, Mid range, High range				
38.508-1 [5] subclause 4.3.1.					
Test Chann	el Bandwidths as specified in	Lowest, Mid, Highest				
TS 38.508-1 [5] subclause 4.3.1.						
Test SCS as specified in Table 5.3.5-1 Lowest						
		Test Parameters				
Test ID	Downlink Configuration	Uplink Conf	iguration			
		Modulation	RB allocation (NOTE 1)			
1	N/A for Spurious Emissions	CP-OFDM QPSK	Outer_Full			
2	2 testing CP-OFDM QPSK Edge_1RB_Left					
3 CP-OFDM QPSK Edge_1RB_Right						
NOTE 1: 1	The specific configuration of each	RB allocation is defined in Table 6.1-	1 Common UL configuration.			

Table 6.5D.3.2.4.1-1: Test Configuration Table

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.2.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [6] subclause 4.4.3..
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5D.3.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5D.3.2.4.3.

6.5D.3.2.4.2 Test procedure

- 1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5D.3.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the power of the transmitted signal at each UE antenna connector with a measurement filter of bandwidths according to table 6.5.3.2.3-1. The centre frequency of the filter shall be stepped in contiguous steps according to table 6.5.3.2.3-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5D.3.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO.

6.5D.3.2.5 Test requirement

The measured average power of spurious emission, derived in step 3 at each UE antenna connector, shall not exceed the described value in Table 6.5.3.2.3-1.

6.5D.3.3 Additional spurious emissions for UL MIMO

Editor's note: This clause is incomplete. The following aspects are either missing or not yet determined:

- There are NS-XXs other than NS_04, NS_21 and NS_47 that are FFS:

6.5D.3.3.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions under the deployment scenarios where additional requirements are specified.

6.5D.3.3.2 Test applicability

This test case applies to all types of NR UE release 15 that support UL MIMO.

6.5D.3.3.3 Minimum conformance requirements

The additional spurious emission requirements specified in 6.5.3.3.3 apply to each UE antenna connector.

The normative reference for this requirement is TS 38.101-1 [2] clauses 6.5D.3 and 6.5.3.3

6.5D.3.3.4 Test description

6.5D.3.3.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in Table 6.5D.3.3.4.1-1 through Table 6.5D.3.3.4.1-4. The details of the uplink reference measurement channels (RMCs) are specified in Annex A.2.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

		Initial Condition	S				
Test E	Invironment as specified in TS 38.50	8-1 [5] subclause 4.1	Normal				
Test F	requencies as specified in TS 38.50	8-1 [5] subclause 4.3.1	(See Freq column)				
	Channel Bandwidths as specified in T		e Lowest, Highest				
Test SCS as specified in Table 5.3.5-1 Lowest							
	onal spurious emissions test parame	ters for NS_04					
		Downlink	Uplink Config	guration			
		Configuration					
Test	Freq	N/A for A-MPR	Modulation	RB allocation			
ID		testing	(NOTE 2)	(NOTE 1)			
1	Low		CP-OFDM QPSK	Edge_1RB_Left			
2	2496 + 3/2 × BW _{Channel} – 6 MHz		CP-OFDM QPSK	Edge_1RB_Left			
4	2496 + BW _{Channel} /2 +		CP-OFDM QPSK	Inner Full			
4	MAX(10 MHz, 0.25 × BW _{Channel})		CP-OFDM QPSK	Outer Full			
5	High		CP-OFDM QPSK	Edge_1RB_Right			
6	High		CP-OFDM QPSK	Inner Full			
7	High	CP-OFDM QPSK	Outer Full				
8	Low		CP-OFDM 16 QAM	Edge_1RB_Left			
9	2496 + 3/2 × BW _{Channel} – 6 MHz		CP-OFDM 16 QAM	Edge_1RB_Left			
10	2496 + BW _{Channel} /2 +		CP-OFDM 16 QAM	Inner Full			
11	MAX(10 MHz, 0.25 × BW _{Channel})		CP-OFDM 16 QAM	Outer Full			
12	High		CP-OFDM 16 QAM	Edge_1RB_Right			
13	High		CP-OFDM 16 QAM	Inner Full			
14	High		CP-OFDM 16 QAM	Outer Full			
15	Low		CP-OFDM 64 QAM	Edge_1RB_Left			
16	2496 + 3/2 × BW _{Channel} – 6 MHz		CP-OFDM 64 QAM	Edge_1RB_Left			
17	2496 + BW _{Channel} /2 + MAX(10 MHz, 0.25 × BW _{Channel})		CP-OFDM 64 QAM	Outer Full			
18	High		CP-OFDM 64 QAM	Edge_1RB_Right			
19	High		CP-OFDM 64 QAM	Outer Full			
20	Low		CP-OFDM 256 QAM	Edge_1RB_Left			
21	2496 + 3/2 × BW _{Channel} – 6 MHz		CP-OFDM 256 QAM	Edge_1RB_Left			
22	2496 + BW _{Channel} /2 +		CP-OFDM 256 QAM	Outer Full			
	MAX(10 MHz, 0.25 × BW _{Channel})						
23	High		CP-OFDM 256 QAM	Edge_1RB_Right			
24	High		CP-OFDM 256 QAM	Outer Full			
NOTE	1: The specific configuration of eac	ch RB allocation is define					

Table 6.5D.3.3.4.1-1: Test Configuration Table (network signalling value "NS_04")

Table 6.5D.3.3.4.1-2: Test Configuration table for NS_47 power class 3 (contiguous allocation)

				Ini	tial C	onditions					
Test Enviro	nment as s	pecified in	TS 38.50)8-1 [5] subclau				Normal			
Toot Eroque	nninn							As specifie	ed in Table 6.2.3.4	.1-19 and	
Fest Freque	encies							6.2.3.4.1-2	20		
Fest Chann	el Bandwid	lths as spe	cified in 7	TS 38.508-1 [5]	subcl	ause 4.3.1		30 MHz			
Fest SCS a	s specified	in Table 5	.3.5-1					Lowest			
				A-MPR tes	st para	ameters for NS	6_47				
	Fc	Ch BW	SCS	Uplink Configuration							
Test ID	Гс (MHz)	(MHz)	(kHz)		N	lodulation			allocation (Note		
	(11112)					(Note 2)	SC	S 15 kHz	SCS 30 kHz	SCS 60 kHz	
43	Default	30	Default			QPSK			dge_1RB_Left (A1		
44	Default	30	Default			QPSK	1@	29 (A2)	1@15 (A2)	1@8 (A2)	
45	Default	30	Default			QPSK		Ed	ge_1RB_Right (A:	3)	
46	Default	30	Default			QPSK			Outer_Full (A2)		
47	Default	30	Default			QPSK		3@0 (A4)	54@0 (A4)	27@0 (A4)	
48	Default	30	Default			QPSK		@0 (A4)	40@0 (A4)	20@0 (A4)	
49	Default	30	Default			QPSK	54	@0 (A2)	27@0 (A2)	12@0 (A2)	
50	Default	30	Default			16 QAM			dge_1RB_Left (A1		
51	Default	30	Default			16 QAM	1@	29 (A2)	1@15 (A2)	1@8 (A2)	
52	Default	30	Default			16 QAM		Edge_1RB_Right (A3)			
53	Default	30	Default				16 QAM			Outer_Full (A2)	
54	Default	30	Default	Downlink		16 QAM		3@0 (A4)	54@0 (A4)	27@0 (A4)	
55	Default	30	Default	Configuration	N	16 QAM		@0 (A4)	40@0 (A4)	20@0 (A4)	
56	Default	30	Default	Comgaration	CP-OFDM	16 QAM	54	@0 (A2)	27@0 (A2)	12@0 (A2)	
57	Default	30	Default			L L	64 QAM			dge_1RB_Left (A1	
58	Default	30	Default		ū	64 QAM	1@	29 (A2)	1@15 (A2)	1@8 (A2)	
59	Default	30	Default			64 QAM		Ed	ge_1RB_Right (A	3)	
60	Default	30	Default			64 QAM			Outer_Full (A2)		
61	Default	30	Default			64 QAM		3@0 (A4)	54@0 (A4)	27@0 (A4)	
62	Default	30	Default			64 QAM		@0 (A4)	40@0 (A4)	20@0 (A4)	
63	Default	30	Default			64 QAM	54	@0 (A2)	27@0 (A2)	12@0 (A2)	
64	Default	30	Default			256 QAM			dge_1RB_Left (A1		
65	Default	30	Default			256 QAM	1@	29 (A2)	1@15 (A2)	1@8 (A2)	
66	Default	30	Default				256 QAM		Ed	ge_1RB_Right (A	3)
67	Default	30	Default			256 QAM			Outer_Full (A2)		
68	Default	30	Default			256 QAM		3@0 (A4)	54@0 (A4)	27@0 (A4)	
69	Default	30	Default			256 QAM		@0 (A4)	40@0 (A4)	20@0 (A4)	
70	Default	30	Default			256 QAM		@0 (A2)	27@0 (A2)	12@0 (A2)	
IOTE 2: D	DFT-s-OFD	M PI/2 BP	SK test a	pplies only for L	JEs w	hich supports	half Pi	i BPSK in Fl	erwise stated in thi R1. UE capability <i>pow</i>		
IOTE 4: L		g in FDD r	node, or i	s <i>tPi2BPSK</i> is se in TDD mode in				in TDD mod	de the IE <i>powerBo</i>	ostPi2BPSK is	
OTE 5: \	/oid										

Table 6.5D.3.3.4.1-3: Test Configuration table for NS_47 power class 3 (almost contiguous allocation)

				Ir	nitial C	onditions		
Test Envi	ronment as	specified	d in TS 38.	508-1 [5] subcla	use 4.1		Normal	
Test Freq	uencies						As specified in Table 6.2.3.4.1-19 and 6.2.3.4.1-20	
Test Char	nnel Bandw	vidths as	specified ir	n TS 38.508-1 [5] subcla	ause 4.3.1	30 MHz	
Test SCS	as specifie	ed in Tabl	e 5.3.5-1				Lowest	
				A-MPR te	est para	meters for NS_4	7	
	F _c		Ch BW SCS				Uplink Configuration	
Test ID	(MHz)	(MHz)	(kHz)	Downlink	Modulation		RB allocation (Note 1)	
1	Default	30	Default	Configuratio	Σ	QPSK	Outer_Full (A2)	
2	Default	30	Default	n	-OFDM	16 QAM	Outer_Full (A2)	
3	Default	30	Default		Ŷ	64 QAM	Outer_Full (A2)	
4	Default	30	Default		СР	256 QAM	Outer_Full (A2)	
	-	fic config	uration of e	each RB allocatio	on is de	fined in Table 6.	2.2.4.1-4.	
NOTE 2:	Void.							

Table 6.5D.3.3.4.1-4: Test Configuration table for NS_47 power class 2 (contiguous allocation)

				Ir	nitial	Conditions				
est Enviro	nment as	specified	d in TS 38.	508-1 [5] subcla	use 4	.1		Normal		
Fest Freque	encies							As specifie 6.2.3.4.1-2	ed in Table 6.2.3.4 20	.1-19 and
Fest Chann	el Bandw	vidths as s	specified in	n TS 38.508-1 [5] sub	clause 4.3.1		30 MHz		
Test SCS as specified in Table 5.3.5-1								Lowest		
	-			A-MPR te	est pa	arameters for N	VS_47			
	F Ch BW SCS				· · ·				figuration	
Test ID	Гс (MHz)	(MHz)	(kHz)		N	lodulation			B allocation (Note	
	(101112)	(11112)	(KI 12)			(Note 2)	SC	S 15 kHz	SCS 30 kHz	SCS 60 kHz
36	Default	30	Default			QPSK		E	dge_1RB_Left (A	1)
37	Default	30	Default			QPSK	1@	029 (A2)	1@15 (A2)	1@8 (A2)
38	Default	30	Default			QPSK		Ed	dge_1RB_Right (A	.3)
39	Default	30	Default	J		QPSK			Outer_Full (A2)	
40	Default	30	Default			QPSK		3@0 (A4)	54@0 (A4)	27@0 (A4)
41	Default	30	Default			QPSK		@0 (A4)	40@0 (A4)	20@0 (A4)
42	Default	30	Default			QPSK	54	@0 (A2)	27@0 (A2)	12@0 (A2)
43	Default	30	Default			16 QAM		E	dge_1RB_Left (A	1)
44	Default	30	Default			16 QAM	1@	029 (A2)	1@15 (A2)	1@8 (A2)
45	Default	30	Default			16 QAM		Ed	dge_1RB_Right (A	.3)
46	Default	30	Default			16 QAM			Outer_Full (A2)	
47	Default	30	Default	Downlink		16 QAM	108	3@0 (A4)	54@0 (A4)	27@0 (A4)
48	Default	30	Default	Configuration	Σ	16 QAM	80	@0 (A4)	40@0 (A4)	20@0 (A4)
49	Default	30	Default	Configuration	Configuration Configuration	16 QAM	54	@0 (A2)	27@0 (A2)	12@0 (A2)
50	Default	30	Default			64 QAM		E	dge_1RB_Left (A	1)
51	Default	30	Default		ц С	64 QAM	1@	029 (A2)	1@15 (A2)	1@8 (A2)
52	Default	30	Default			64 QAM		Ed	ge_1RB_Right (A	.3)
53	Default	30	Default			64 QAM			Outer_Full (A2)	
54	Default	30	Default]		64 QAM	108	3@0 (A4)	54@0 (A4)	27@0 (A4)
55	Default	30	Default]		64 QAM	80	@0 (A4)	40@0 (A4)	20@0 (A4)
56	Default	30	Default			64 QAM	54	@0 (A2)	27@0 (A2)	12@0 (A2)
57	Default	30	Default]		256 QAM			dge_1RB_Left (A	1)
58	Default	30	Default]		256 QAM	1@	29 (A2)	1@15 (A2)	1@8 (A2)
59	Default	30	Default			256 QAM		E	ge_1RB_Right (A	.3)
60	Default	30	Default]		256 QAM			Outer_Full (A2)	
61	Default	30	Default			256 QAM	108	3@0 (A4)	54@0 (A4)	27@0 (A4)
62	Default	30	Default]		256 QAM	80	@0 (A4)	40@0 (A4)	20@0 (A4)
63	Default	30	Default			256 QAM	54	@0 (A2)	27@0 (A2)	12@0 (A2)
	DFT-s-OF			each RB allocation applies only for					herwise stated in t FR1.	his table.

				0				
				Initial Condition	ns			
Test Envir	onment as s	pecified in TS	38.508-1 [5] subclause 4.1			Normal	
Test Freq	uencies as sp	pecified in TS	38.508-1 [5]	subclause 4.3.1			Low range, Hig	h range
Test Char	nel Bandwid	ths as specifie	d in TS 38.	508-1 [5] subclaus	se 4.3	.1	Lowest, Highes	t
Test SCS	as specified	in Table 5.3.5	-1				Lowest	
	· ·		A-MPR	test parameters	for N	IS_21		
						Upli	nk Configuratio	า
Test ID	From	ChBw	scs	Downlink			RB allocation (Note 1)	
Test ID	Freq	CUDM	363	Configuration	ation Modulation (Note 2)		SCS	SCS
						()	15 kHz	30 kHz
	Law	Defeuilt	Defeuilt	-		ODOK	Edge 4	
26	Low	Default	Default	-		QPSK QPSK	Edge_1RB_Left	
27	High	Default	Default	-			Edge_1RB_Right Outer_Full	
28 29	Default Default	Default 10 MHz	Default Default			QPSK QPSK	4@0	_Full 2@0
<u>29</u> 30	Default	10 MHz	Default			QPSK	4@0	2@0
30	Low	Default	Default			16 QAM		
32	High	Default	Default			16 QAM 16 QAM	Edge_1RB_Left Edge_1RB_Right	
33	Default	Default	Default			16 QAM 16 QAM	Outer	
34	Default	10 MHz	Default	-	CP-s OFDM	16 QAM 16 QAM	4@0	_1 un 2@0
35	Default	10 MHz	Default	N/A for A-MPR		16 QAM 16 QAM	4@48	2@22
36	Low	Default	Default	test cases		64 QAM		RB_Left
37	High	Default	Default	-		64 QAM	Ų	RB_Right
38	Default	Default	Default		0	64 QAM	Outer	
39	Default	10 MHz	Default			64 QAM	4@0	2@0
40	Default	10 MHz	Default	_		64 QAM	4@48	2@22
41	Low	Default	Default	-		256 QAM		RB_Left
42	High	Default	Default			256 QAM	-	RB_Right
43	Default	Default	Default	1		256 QAM	Oute	
44	Default	10 MHz	Default	1		256 QAM	4@0	2@0
45	Default	10 MHz	Default			256 QAM	4@48	2@22
NOTE 1:	table.			allocation is defin				ated in this
NOTE 2:	DF1-S-OFD	NI PI/2 BPSK	test applies	only for UEs whic	n sup	ports half Pi BF	SK IN FR1.	

Table 6.5D.3.3.4.1-5: Test Configuration table for NS_21

1117

- 1. Connect the SS to the UE to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A Figure A.3.1.2.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5D.3.3.4.1-1 for NS_04 and to Table 6.5D.3.3.4.1-2 to 6.5D.3.3.4.1-4 for NS_47.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5D.3.3.4.3.

6.5D.3.3.4.2 Test procedure

1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5D.3.3.4.1-1 as appropriate for NS_04. Since the UE has no payload

data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.

- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the sum of the mean power at each UE antenna connector in the channel bandwidth of the radio access mode, which shall meet the requirements described in Clauses from 6.2D.2.5, or 6.2D.3.5 as appropriate for NS_04 and NS_47. The period of measurement shall be at least the continuous duration of 1ms over consecutive active uplink slots and uplink symbols. For TDD, only slots consisting of only UL symbols are under test.
- 4. Measure the power of the transmitted signal at each UE antenna connector with a measurement filter of bandwidths according to Tables 6.5.3.3.5.1-1 as appropriate for NS_04, Table 6.5.3.3.3.151 as appropriate for NS_47, and Table 6.5.3.3.3.12-1 as appropriate for NS_21. The centre frequency of the filter shall be stepped in contiguous steps according to the same table the measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5D.3.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO and same exceptions listed in clause 6.5.3.3.4.3

6.5D.3.3.5 Test requirement

The measured power at each UE antenna connector derived in step 4 shall meet the requirements for the specified NR band for an additional spurious emission requirement with protected bands as indicated in clause 6.5.3.3.5 for different NS values.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5D.3_1 Spurious emissions for UL MIMO (Rel-16 onward)

6.5D.3_1.1 General spurious emissions for UL MIMO (Rel-16 onward)

6.5D.3_1.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5D.3_1.1.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support UL MIMO.

6.5D.3_1.1.3 Minimum conformance requirements

For UE supporting UL MIMO, the requirements for spurious emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products is defined as the sum of the emissions from both UE transmit antenna connectors.

The general spurious emission requirements specified in clause 6.5.3.1.3 apply. For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements shall be met with the UL MIMO configurations described in clause 6.2D.1. For UEs supporting ULFPTx for UL MIMO, the requirements shall be met with the PUSCH configurations specified in Table 6.2D.1.3-3, based upon UE's support of uplink full power transmission mode.

If UE is scheduled for single antenna-port PUSCH transmission by DCI format 0_0 or by DCI format 0_1 for single antenna port codebook based transmission, the requirements in clause 6.5.3 apply.

The normative reference for this requirement is TS 38.101-1 [2] subclauses 6.5D.3 and 6.5.3.1.

6.5D.3_1.1.4 Test description

6.5D.3_1.1.4.1 Initial conditions

Same initial conditions as in clause 6.5D.3.1.4.1.

6.5D.3_1.1.4.2 Test procedure

- SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5D.3.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the sum of transmitted power at each antenna connector with a measurement filter of bandwidths according to table 6.5D.3_1.1.5-1. The centre frequency of the filter shall be stepped in contiguous steps according to table 6.5D.3_1.1.5-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.
- 4. If UE supports ULFPTx Mode-2 or Mode-full power, repeat test steps 1~3 with the exception that the PDCCH DCI format 0_1 is specified with the condition ULFPTx_Mode2 or ULFPTx_ModeFull in 38.508-1 [5] subclause 4.3.6.1.1.2 depending on UE reported capability.

6.5D.3_1.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4 ensuring Table 4.6.3-182 with the condition 2TX_UL_MIMO.

6.5D.3_1.1.5 Test requirement

The measured average power of spurious emission, derived in step 3 or step 4, shall not exceed the described value in Table 6.5D.3_1.1.5-1.

The spurious emission limits apply for the frequency ranges that are more than Δ fOOB (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth.

Frequency Range	Maximum Level	Measurement bandwidth	NOTE
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz	
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz	
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz	
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz	
12.75 GHz ≤ f < 5th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	1
12.75 GHz < f < 26 GHz	-30 dBm	1 MHz	2
than 2.69 GHz		equency edge of the UL Band equency edge of the UL Band	

 Table 6.5D.3_1.1.5-1: General spurious emissions test requirements

6.5D.3_1.2 Spurious emission for UE co-existence for UL MIMO (Rel-16 onward)

6.5D.3_1.2.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to co-existing systems for the specified bands which has specific requirements in terms of transmitter spurious emissions.

6.5D.3_1.2.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support UL MIMO.

6.5D.3_1.2.3 Minimum conformance requirements

For UE supporting UL MIMO, the requirements for Spurious emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products is defined as the sum of the emissions from both UE transmit antenna connectors.

The spurious emission for UE co-existence requirements specified in clause 6.5.3.2.3 apply. For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements shall be met with the UL MIMO configurations described in clause 6.2D.1. For UEs supporting ULFPTx for UL MIMO, the requirements shall be met with the PUSCH configurations specified in Table 6.2D.1.3-3, based upon UE's support of uplink full power transmission mode.

The normative reference for this requirement is TS 38.101-1 [2] subclauses 6.5.3.2 and 6.5D.3.

6.5D.3_1.2.4 Test description

6.5D.3_1.2.4.1 Initial conditions

Same initial conditions as in clause 6.5D.3.2.4.1.

6.5D.3_1.2.4.2 Test procedure

- 1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5D.3.2.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the sum of transmitted power at each UE antenna connector with a measurement filter of bandwidths according to table 6.5.3.2.3-1. The centre frequency of the filter shall be stepped in contiguous steps according to table 6.5.3.2.3-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.
- 4. If UE supports ULFPTx Mode-2 or Mode-full power, repeat test steps 1~3 with the exception that the PDCCH DCI format 0_1 is specified with the condition ULFPTx_Mode2 or ULFPTx_ModeFull in 38.508-1 [5] subclause 4.3.6.1.1.2 depending on UE reported capability.

6.5D.3_1.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4 ensuring Table 4.6.3-182 with the condition 2TX_UL_MIMO.

6.5D.3_1.2.5 Test requirement

The measured average power of spurious emission, derived in step 3 or step 4 from both UE antenna connectors, shall not exceed the described value in Table 6.5.3.2.3-1.

6.5D.3_1.3 Additional spurious emissions for UL MIMO (Rel-16 onward)

6.5D.3_1.3.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions under the deployment scenarios where additional requirements are specified.

6.5D.3_1.3.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support UL MIMO.

6.5D.3_1.3.3 Minimum conformance requirements

For UE supporting UL MIMO, the requirements for Spurious emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products is defined as the sum of the emissions from both UE transmit antenna connectors.

The additional spurious emission requirements specified in clause 6.5.3.3.3 apply. For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements shall be met with the UL MIMO configurations described in clause 6.2D.1. For UEs supporting ULFPTx for UL MIMO, the requirements shall be met with the PUSCH configurations specified in Table 6.2D.1.3-3, based upon UE's support of uplink full power transmission mode.

The normative reference for this requirement is TS 38.101-1 [2] clauses 6.5D.3 and 6.5.3.3

6.5D.3_1.3.4.1 Initial conditions

Same initial conditions as in clause 6.5D.3.3.4.1 together with tables 6.5D.3_1.3.4-1 to 6.5D.3_1.3.4-3.

Table 6.5D.3_1.3.4.1-1: Test Configuration table for NS_05

Same test configuration as listed in Table 6.2.3.4.1-4 shall be used with the following exceptions:

- Test SCS shall be: [Lowest].
- Only Test IDs 66 to 115 shall be tested.

Table 6.5D.3_1.3.4.1-2: Test Configuration table for NS_48

Same test configuration as listed in Table 6.2.3.4.1-19 shall be used with the following exceptions:

- Test Channel Bandwidths shall be: 25, 30, 40, and 50 MHz
 - Test SCS shall be: Lowest.
 - Only Test IDs 31 to 60 shall be tested.

Table 6.5D.3_1.3.4.1-3: Test Configuration table for NS_49

Same test configuration as listed in Table 6.2.3.4.1-29 shall be used with the following exceptions:

- Test Channel Bandwidths shall be: 25, 30, 40, and 50 MHz
- Test SCS shall be: Lowest.
- Only Test IDs 43 to 84 shall be tested.

Table 6.5D.3_1.3.4.1-4: Test Configuration table for NS_46

Same test configuration as listed in Table 6.2.3.4.1-25 shall be used with the following exceptions:

- Test SCS shall be: Lowest.
- Only Test IDs 11 to 22 shall be tested.

Table 6.5D.3_1.3.4.1-5: Test Configuration table for NS_21

Same test configuration as listed in Table 6.2.3.4.1-27 shall be used with the following exceptions:

- Test SCS shall be: Lowest.
- Only Test IDs 26 to 45 shall be tested.

Table 6.5D.3_1.3.4.1-6: Test Configuration table for NS_44

Same test configuration as listed in Table 6.2.3.4.1-26 shall be used with the following exceptions:

- Test SCS shall be: Lowest.
- Only Test IDs 23 to 44 shall be tested.

Table 6.5D.3_1.3.4.1-7: Test Configuration table for NS_27

Same test configuration as listed in Table 6.2.3.4.1-13 shall be used with the following exceptions:

- Test SCS shall be: Lowest.
- Only Test IDs 141 to 252 shall be tested.

6.5D.3_1.3.4.2 Test procedure

- 1 SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to tables in clause 6.5D.3_1.3.4.1 as appropriate. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- 3. Measure the sum of the mean power at each UE antenna connector in the channel bandwidth of the radio access mode according to the test configurations in clause 6.5D.3_1.3.4.1, which shall meet the requirements described in clauses 6.2D.3.5 as appropriate for each network signalling. The period of measurement shall be at least the continuous duration of 1ms over consecutive active uplink slots and uplink symbols. For TDD, only slots consisting of only UL symbols are under test.
- 4. Measure the sum of transmitted power at each UE antenna connector with a measurement filter of bandwidths according to clauses 6.5.3.3.3.1 to 6.5.3.3.3.25 as appropriate. The centre frequency of the filter shall be stepped in contiguous steps according to the same table the measured power shall be verified for each step. The measurement period shall capture the active time slots.
- 5. If UE supports ULFPTx Mode-2 or Mode-full power, repeat test steps 1~4 with the exception that the PDCCH DCI format 0_1 is specified with the condition ULFPTx_Mode2 or ULFPTx_ModeFull in 38.508-1 [5] subclause 4.3.6.1.1.2 depending on UE reported capability.

6.5D.3_1.3.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO and same exceptions listed in clause 6.5.3.3.4.3.

6.5D.3_1.3.5 Test requirement

The measured power from both UE antenna connector derived in step 4 or step 5 shall meet the requirements for the specified NR band for an additional spectrum emission requirement with protected bands as indicated in clause 6.5.3.3.5.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5D.4 Transmit intermodulation for UL MIMO

6.5D.4.1 Test purpose

To verify that the UE transmit intermodulation does not exceed the described value in the test requirement.

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non-linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

6.5D.4.2 Test applicability

This test case applies to all types of NR UE release 15 and forward that support UL MIMO.

6.5D.4.3 Minimum conformance requirements

For UE supporting UL MIMO, the transmit intermodulation requirements are specified at each transmit antenna connector and the wanted signal is defined as the sum of output power at each transmit antenna connector.

For UEs with two transmit antenna connectors in closed-loop spatial multiplexing scheme, the requirements specified in subclause 6.5.4 apply to each transmit antenna connector. The requirements shall be met with the UL MIMO configurations described in sub-clause 6.2D.1.

If UE is configured for transmission on single-antenna port, the requirements in subclause 6.5.4 apply.

The normative reference for this requirement is TS 38.101-1 [2] clauses 6.5D.4 and 6.5.4.

6.5D.4.4	Test description
----------	------------------

6.5D.4.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, and are shown in table 6.5D.4.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

		Initial Conditions		
Test Environm	ent as specified in TS 38.508-1	Normal		
[5] subclause 4	l.1			
Test Frequenc	ies as specified in TS 38.508-1	Mid range		
[5] subclause 4	l.3.1			
Test Channel	Bandwidths as specified in TS	Mid, Highest		
38.508-1 [5] su	Ibclause 4.3.1			
Test SCS as s	pecified in Table 5.3.5-1	Lowest, Highest		
		Test Parameters		
Test ID	Downlink Configuration	Uplink Confi	guration	
	N/A for transmit	Modulation	RB allocation (NOTE 1)	
1	intermodulation test case	CP-OFDM QPSK	Inner Full	
NOTE 1: The	specific configuration of each RB	allocation is defined in Table 6.1-1.		

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, in Figure A.3.1.3.2 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5D.4.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in State RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5D.4.4.3.

6.5D.4.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5D.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC. The PDCCH DCI format 0_1 is specified with condition 2TX_UL_MIMO in 38.508-1 [5] subclause 4.3.6.1.1.2
- 2. Send continuously uplink power control "up" commands to the UE until the UE transmits at its P_{UMAX} level.
- 3. Measure the rectangular filtered mean power at each antenna connector of the UE. For TDD, only slots consisting of only UL symbols are under test.
- 4. Set the interference signal frequency below the UL carrier frequency using the first offset in table 6.5D.4.5-1.
- 5. Set the interference CW signal level according to table 6.5D.4.5-1.
- 6. Search the intermodulation product signals below and above the UL carrier frequency at each UE antenna connector, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios for each UE antenna connector with the power measured in step 3.
- 7. Set the interference signal frequency above the UL carrier frequency using the first offset in table 6.5D.4.5-1.
- 8. Search the intermodulation product signals below and above the UL carrier frequency at each UE antenna connector, then measure the rectangular filtered mean power of transmitting intermodulation for both signals, and calculate the ratios for each UE antenna with the power measured in step 3.
- 9. Repeat the measurement using the second offset in table 6.5D.4.5-1.
- 10. Repeat step 3) until 9) for each of transmit antenna of the UE.

6.5D.4.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 ensuring Table 4.6.3-182 with condition 2TX_UL_MIMO.

6.5D.4.5 Test requirement

The ratio derived in step 6 and 8, shall not exceed the described value in table 6.5D.4.5-1.

Table 6.5D.4.5-1: Transmit Intermodulation

Wanted signal channel bandwidth	BW	IChannel	
Interference signal frequency offset from channel centre	BW _{Channel}	2*BW _{Channel}	
Interference CW signal level	-4	0dBc	
Intermodulation product	< -29dBc	< -35dBc	
Measurement bandwidth	The maximum transmission bandwidth co channel BW as defined in Table 6.5.2.4.1	nfiguration among the different SCSs for the .5-1	
Measurement offset from channel centre	BWChannel and 2*BWChannel	2*BWChannel and 4*BWChannel	

6.5E Output RF spectrum emissions for V2X

6.5E.1 Occupied bandwidth for V2X

6.5E.2 Out of band emission for V2X

6.5E.2.1 General

When UE is configured for NR V2X sidelink transmissions non-concurrent with NR uplink transmissions for NR V2X operating bands specified in Table 5.2E.1-1, the requirements in clause 6.5E.2 apply for NR V2X sidelink transmission.

For NR V2X UE with two transmit antenna connectors, the requirements specified for single carrier shall apply to each transmit antenna connector. The requirements shall be met with SL MIMO configurations described in clause 6.2D.1.

6.5E.2.2 Spectrum emission mask for V2X

6.5E.2.2.1 Spectrum emission mask for V2X / non-concurrent operation

Editor's Note: This clause is incomplete for PSFCH and PSBCH measurement. The following aspects are either missing or not yet determined:

- Measurement period of PSFCH and PSBCH is FFS.

6.5E.2.2.1.1 Test purpose

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth when UE is configured for NR V2X sidelink transmissions non-concurrent with NR uplink transmissions.

6.5E.2.2.1.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR V2X sidelink communication with non-concurrent operation.

6.5E.2.2.1.3 Minimum conformance requirements

For NR V2X UE, the existing NR general spectrum emission mask in clause 6.5.2.2 applied for all supporting NR V2X channel bandwidths. The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the ± edge of the assigned NR channel bandwidth. For frequencies greater than (Δf_{OOB}), the power of any UE emission shall not exceed the levels specified in Table 6.5.2.2.3-1 for the specified channel bandwidth for NR V2X operating bands in Table 5.2E.1-1.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5E.2.2.

6.5E.2.2.1.4 Test description

6.5E.2.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.2E.1-1 and Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.5E.2.2.1.4.1-1. The details of the V2X reference measurement channels (RMCs) are specified in Annexe A.7.5 and the GNSS configuration in TS 38.508-1 [5] subclause 4.11.

Table 6.5E.2.2.1.4.1-1: Test Configuration Table for contiguous PSCCH and PSSCH allocation

		In	itial Conditi	ons	
Test Environ	ment as specified in T	S	Normal		
38.508-1 [5] s	subclause 4.1				
Test Frequencies as specified in TS			Low range,	High range	
38.508-1 [5] s	38.508-1 [5] subclause 4.3.1.8				
Test Channe	Bandwidths as spec	ified	Lowest, Hig	phest	
TS 38.508-1	[5] subclause 4.3.1				
Test SCS as	Test SCS as specified in Table 5.3.5-1			phest	
	Test P	aramete	ers for Chan	nel Bandwidths	
Test ID	Freq	V2)		Configuration to Transmit	
		Мос	dulation	PSSCH RB allocation	
				(Note 1)	
1	Default	Ċ	QPSK	Outer_Full	
2	Default	C	QPSK	Inner_Full	
3	Default	10	6QAM	Outer_Full	
4	Default	16	6QAM	Inner_Full	
5	Default	64	4QAM	Outer_Full	
6	Default	25	6QAM	Outer_Full	
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1E-1.					

Initial Conditions				
Test Environr	ment as specified in T	S	Normal	
38.508-1 [5] s	subclause 4.1			
Test Frequencies as specified in TS			Low range, High range	
38.508-1 [5] s	subclause 4.3.1.8			
Test Channel	I Bandwidths as spec	ified	Lowest, Highest	
TS 38.508-1	[5] subclause 4.3.1			
Test SCS as	specified in Table 5.3	3.5-1	Lowest, Highest	
Test Paramete			ers for Channel Bandwidths	
Test ID	Freq		V2X Configuration to Transmit	
			PSFCH RB allocation	
			PSFCH RB allocation (Note 1)	
1	Low range			
1 2	Low range High range		(Note 1)	
1 2 3	v		(Note 1) PSFCH_1RB_Left	
	High range		(Note 1) PSFCH_1RB_Left PSFCH_1RB_Right	
3	High range Low range		(Note 1) PSFCH_1RB_Left PSFCH_1RB_Right PSFCH_2RB_Left	

Initial Conditions							
Test Environ	ment as specified in TS	Normal					
38.508-1 [5]	subclause 4.1						
Test Frequer	ncies as specified in TS	Low range, High range					
38.508-1 [5]	subclause 4.3.1.8						
Test Channe	I Bandwidths as specified	Lowest, Highest					
TS 38.508-1	[5] subclause 4.3.1						
Test SCS as	specified in Table 5.3.5-1	Lowest, Highest					
Test Parameters for Channel Bandwidths							
Test ID	Freq	V2X Configuration to Transmit					
		S-SSB RB allocation					
		(Note 1)					
1	Low range	S-SSB_Low					
2	High range	S-SSB_High					
3	Default	S-SSB_Mid					
NOTE 1: The specific configuration of each RB allocation is defined in Table 6.1E-3.							

Table 6.5E.2.2.1.4.1-3: Test Configuration Table for S-SSB

- 1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.9.1 for TE diagram and section A.3.2.7 for UE diagram.
- The parameter settings for the NR sidelink transmission over PC5 are pre-configured according to TS 38.508-1
 [5] subclause 4.10. Message content exceptions are defined in clause 6.5E.2.2.1.4.3.
- 3. The V2X Reference Measurement Channel is set according to Table 6.5E.2.2.1.4.1-1.
- 4. The GNSS simulator is configured for Scenario #1: static in Geographical area #1, as defined in TS 38.508-1 [5] Table 4.11.2-2. Geographical area #1 is also pre-configured in the UE.
- 5. Propagation conditions are set according to Annex B.0.

6.5E.2.2.1.4.2 Test procedure

Subtest 1: PSCCH/PSSCH

- 1. Ensure the UE is in state Out_of_Coverage with generic procedure parameters Sidelink *On*, Test Loop Function *On* with UE test loop mode E closed for *Transmit Mode* according to TS 38.508-1 [5] clause 4.5.
- 2. The UE starts to perform the NR sidelink communication according to *SL-PreconfigurationNR*. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the NR sidelink RMC.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration from Table 6.5E.2.2.1.4.1-1, which shall meet the requirements described in Table 6.2E.2.1.5-1 for Power Class 3 UEs. The period of measurement shall be at least continuous duration of one active sub-frame (1ms) excluding guard symbols.
- 4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to Table 6.5E.2.2.1.5-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.

Subtest 2: PSFCH

- 1. Ensure the UE is in state Out_of_Coverage with generic procedure parameters Sidelink *On*, Cast type *Unicast*, Test Loop Function *On* with UE test loop mode E closed for *Receive Mode* according to TS 38.508-1 [5] clause 4.5.
- 2. The UE starts to perform the NR sidelink reception according to SL-PreconfigurationNR.
- 3. The UE's PSFCH transmission occasion is on slot n according to Table 6.5E.2.2.1.4.1-2. SS transmits PSSCH on combination of slot and subchannel as below:

- a) Test ID 1: slot n-6, Lowest sub-channel
- b) Test ID 2: slot n-3, Highest sub-channel
- c) Test ID 3: slot n-6 and n-5, Lowest sub-channel
- d) Test ID 4: slot n-4 and n-3, Highest sub-channel
- e) Test ID 5: slot n-6, Highest sub-channel and slot n-3, Highest sub-channel
- 4. Measure the mean power of the UE on slot n in the channel bandwidth according to the test configuration from Table 6.5E.2.2.1.4.1-2, which shall meet the requirements described in Table 6.2E.2.1.5-2 for Power Class 3 UEs. The period of measurement is FFS.
- 5. Measure the power of the transmitted signal with a measurement filter of bandwidths according to Table 6.5E.2.2.1.5-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.

Subtest 3: S-SSB

- 1. Ensure the UE is in state Out_of_Coverage with generic procedure parameters Sidelink *On* according to TS 38.508-1 [5] clause 4.5. The UE is synchronized to GNSS,
- 2. The UE transmits PSBCH according SL-PreconfigurationNR.
- 3. Measure the mean power of the S-SSB in the channel bandwidth according to the test configuration from Table 6.5E.2.2.1.4.1-3, which shall meet the requirements described in Table 6.2E.2.1.5-3 for Power Class 3 UEs. The period of measurement is FFS.
- 4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to Table 6.5E.2.2.1.5-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.

6.5E.2.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.10.

6.5E.2.2.1.5 Test requirement

The measured UE mean power in the channel bandwidth, derived in step 4 of Subtest 1, step 5 of Subtest 2 and step 4 of Subtest 3, shall fulfil requirements in Table 6.2E.2.2.1.5-1 as appropriate, and the power of any UE emission shall fulfil requirements in Table 6.5E.2.2.1.5-1.

Г

	Spectrum emission limit (dBm) / Channel bandwidth												
Δf _{ooв} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Measurement bandwidth
± 0-1	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT						1 % channel bandwidth
± 0-1								-24 + TT	-24 + TT	-24 + TT	-24 + TT	-24 + TT	30 kHz
± 1-5	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	
± 5-6	-13 + TT	-13											
± 6-10	-25 + TT	+ TT	-13 + TT	-13 + TT	-13 +	-13 + TT -25 + TT	-13 + TT	-13 + TT		-13 + TT	-13 + TT	-13 + TT	1 MHz
± 10-15		-25 + TT											
± 15-20			-25 + TT										
± 20-25				-25 + TT									
± 25-30					-25 + TT								
± 30-35													
± 35-40							-						
± 40-45							-25 + TT						
± 45-50													
± 50-55								-25 + TT					
± 55-60													
± 60-65									-25 + TT				
± 65-80													
± 80-85										-25 + TT			
± 85-90													
± 90-95											-25 + TT		
± 95-100													
± 100-105												-25 + TT	
Note 2: A ir	t the bound the bound of the bo	undary c +0.5MH	of spectr z and -0	um emis .5MHz, I	ssion lirr respecti	nit, the fi vely.	rst and I	ast mea	suremei	nt positio	on with a	a 1 MHz	l 0.985 MHz. filter is the
С	he meas hannel. T for ead							-				the lowe	er edge of the

Table 6.5E.2.2.1.5-1: General NR spectrum emission mask for V2X / non-concurrent operation

1129

Table 6.5E.2.2.1.5-2: Test Tolerance

FFS

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5E.2.2.1D Spectrum emission mask for V2X / non-concurrent operation / SL-MIMO

Editor's Note:

- Test config table is FFS
- Uplink RMC is TBD in RAN4
- Connection diagram is TBD
- Preconfiguration is TBD in 38.508-1
- Test state and generic procedure are TBD in 38.508-1

6.5E.2.2.1D.1 Test purpose

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth when UE is configured for NR V2X sidelink MIMO transmissions non-concurrent with NR uplink transmissions.

6.5E.2.2.1D.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR V2X sidelink MIMO communication with non-concurrent operation.

6.5E.2.2.1D.3 Minimum conformance requirements

For NR V2X UE with two transmit antenna connectors, the requirements specified for single carrier shall apply to each transmit antenna connector. The requirements shall be met with SL MIMO configurations described in clause 6.2D.1.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5E.2.

6.5E.2.2.1D.4	Test description
---------------	------------------

6.5E.2.2.1D.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.5E.2.2.1D.4.1-1. The details of the V2X reference measurement channels (RMCs) are specified in Annexes TBD.

Table 6.5E.2.2.1D.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure TBD for TE diagram and section TBD for UE diagram.
- The parameter settings for the V2X sidelink transmission over PC5 are pre-configured according to TS 38.508-1
 [5] subclause TBD. Message content exceptions are defined in clause 6.5E.2.2.1D.4.3.
- 3. The V2X Reference Measurement Channel is set according to Table 6.5E.2.2.1D.4.1-1.
- 4. The GNSS simulator is configured for Scenario #1: static in Geographical area #1, as defined in TS36.508 [25] Table 4.11.2-2. Geographical area #1 is also pre-configured in the UE.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state TBD.

6.5E.2.2.1D.4.2 Test procedure

- 1. The V2X UE schedules the V2X RMC with transmission power at P_{UMAX} level according to *SL-V2X*-*Preconfiguration* which is in line with the test configuration in Table 6.5E.2.2.1D.4.1-1.
- 2. Measure the sum of mean power of each antenna connector in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in [TBD] for Power Class 3 UEs. The period of the measurement shall be at least the continuous duration of one sub-frame (1ms). For TDD slots with transient periods are not under test.
- 3. Measure the power of each antenna connector of the transmitted signal with a measurement filter of bandwidths according to Table 6.5E.2.2.1D.5-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.

6.5E.2.2.1D.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4.

6.5E.2.2.1D.5 Test requirement

The measured sum of mean power of each antenna connector in the channel bandwidth, derived in step 2, shall fulfil requirements in [TBD] as appropriate, and the power of any UE emission at each antenna connector shall fulfil requirements in Table 6.5E.2.2.1D.5-1.

				Spect	trum en	nission	limit (dl	3m) / Cł	nannel k	bandwic	lth		
Δf _{оов} (MHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz	Measurement bandwidth
± 0-1	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT	-13 + TT						1 % channel bandwidth
± 0-1								-24 + TT	-24 + TT	-24 + TT	-24 + TT	-24 + TT	30 kHz
± 1-5	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	-10 + TT	
± 5-6	-13 + TT	-13											
± 6-10	-25 + TT	+ TT	-13 + TT	-13									
± 10-15		-25 + TT		+ TT	-13 + TT	-13 +							
± 15-20			-25 + TT			TT	-13 + TT						
± 20-25				-25 + TT				-13 + TT	12.				
± 25-30					-25 + TT				-13 + TT	-13 +			
± 30-35						-25 + TT				TT	-13 +		
± 35-40											TT	-13	1 MHz
± 40-45							-25 + TT					+ TT	
± 45-50													
± 50-55								-25 + TT					
± 55-60													
± 60-65									-25 + TT				
± 65-80													
± 80-85										-25 + TT			
± 85-90													
± 90-95											-25 + TT		
± 95-100													
± 100-105												-25 + TT	
Note 2: A		undary o	of spectr	um emis	ssion lim	nit, the fi							l 0.985 MHz. filter is the
Note 3: 7							e upper	edge of	f the cha	nnel an	d below	the lowe	er edge of the
Note 4: 7	T for ea	ch frequ	ency an	d chann	el band	width is	specifie	d in Tab	le 6.5E.2	2.2.5-2.			

Table 6.5E.2.2.1D.5-1: General NR spectrum emission mask for V2X / non-concurrent operation / SL-MIMO

1132

Table 6.5E.2.2.1D.5-2: Test Tolerance

FFS

6.5E.2.3 Additional Spectrum emission mask for V2X

6.5E.2.3.1 Additional Spectrum emission mask for V2X / non-concurrent operation

Editor's Note:

- Test config table is FFS

6.5E.2.3.1.1 Test purpose

To verify that the power of NR V2X UE emission shall not exceed specified level for the specified channel bandwidth under the deployment scenarios where additional requirements are specified.

6.5E.2.3.1.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR V2X sidelink communication with non-concurrent operation.

6.5E.2.3.1.3	Minimum conformance requirements

6.5E.2.3.1.3.1 Requirements for network signalling value "NS_33"

The additional spectrum mask in Table 6.5E.2.3.1.3.1-1 applies for NR V2X UE within 5 855 MHz to 5 950 MHz according to ETSI EN 302 571. Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_33" is indicated in the cell or pre-configured radio parameters, the power of any V2X UE emission shall not exceed the levels specified in Table 6.5E.2.3.1.3.1-1.

Table 6.5E.2.3.1.3.1-1: Additional spectrum mask requirements for 10MHz channel bandwidth

Spe	Spectrum emission limit (dBm EIRP)/ Channel bandwidth				
Δf _{оов} (MHz)	10 MHz	Measurement bandwidth			
± 0-0.5	$[-13 - 12 \left(\frac{ \Delta \text{fOOB} }{MHz}\right)]$	100 kHz			
± 0.5-5	$[-19 - \frac{16}{9} (\Delta fOOB /_{MHz} - 0.5)]$	100 kHz			
± 5-10	$[-27 - 2(\Delta fOOB /_{MHz} - 5.0)]$	100 kHz			

- NOTE 1: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.
- NOTE 2: Additional SEM for NR V2X overrides any other requirements in frequency range 5855-5950MHz.
- NOTE 3: The EIRP requirement is converted to conducted requirement depend on the supported post antenna connector gain G_{post connector} declared by the UE following the principle described in annex I in [11].

6.5E.2.3.1.3.2 Requirements for network signalling value "NS_52"

The additional spectrum mask in Table 6.5E.2.3.1.3.2-1 applies for NR V2X UE within 5 765 MHz to 6 005 MHz according to FCC regulation. Additional spectrum emission requirements are signalled by the network to indicate that the UE shall meet an additional requirement for a specific deployment scenario as part of the cell handover/broadcast message.

When "NS_52" is indicated in the cell or pre-configured radio parameters, the power of any V2X UE emission shall not exceed the levels specified in Table 6.5E.2.3.1.3.2-1.

Δf _{оов} (MHz)	Emission Limit (dBm)	Measurement Bandwidth
±0-2	-32	100kHz
±2-10	-36	100kHz
±10-20	-38	100kHz
±20-40	-43	100kHz
±40-100	-50	100kHz

Table 6.5E.2.3.1.3.2-1: Additional spectrum mask requirements for 40MHz channel bandwidth (fc = 5885MHz)

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5E.2.3.

6.5E.2.3.1.4 Test description

6.5E.2.3.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.2E.1-1 and Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.5E.2.3.1.4.1-1. The details of the V2X reference measurement channels (RMCs) are specified in Annexe A.7.5 and the GNSS configuration in TS 38.508-1 [5] subclause 4.11.

Table 6.5E.2.3.1.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.9.1 for TE diagram and section A.3.2.7 for UE diagram.
- The parameter settings for the NR sidelink transmission over PC5 are pre-configured according to TS 38.508-1
 [5] subclause 4.10. Message content exceptions are defined in clause 6.5E.2.3.1.4.3.
- 3. The V2X Reference Measurement Channel is set according to Table 6.5E.2.3.1.4.1-1.
- 4. The GNSS simulator is configured for Scenario #1: static in Geographical area #1, as defined in TS 38.508-1 [5] Table 4.11.2-2. Geographical area #1 is also pre-configured in the UE.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state Out_of_Coverage with generic procedure parameters Sidelink *On*, Test Loop Function *On* with UE test loop mode E closed for *Transmit Mode* according to TS 38.508-1 [5] clause 4.5.

6.5E.2.3.1.4.2 Test procedure

- 1. The V2X UE schedules the V2X RMC with transmission power at P_{UMAX} level according to *SL*-*PreconfigurationNR* which is in line with the test configuration in Table 6.5E.2.3.1.4.1-1.
- 2. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.2E.2.1.5-1 for Power Class 3 UEs. The period of the measurement shall be at least the continuous duration of one sub-frame (1ms). For TDD slots with transient periods are not under test.
- 3. Measure the power of the transmitted signal with a measurement filter of bandwidths according to Table 6.5E.2.3.1.5.1-1 or Table 6.5E.2.3.1.5.2-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.

6.5E.2.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.10 with following exceptions.

6.5E.2.3.1.4.3.1 Message contents exceptions (network signalling value "NS_33")

Table 6.5E.2.3.1.4.3.1-1: Network signalling value "NS_33"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4	.6.3-1		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_33)		

6.5E.2.3.1.4.3.2 Message contents exceptions (network signalling value "NS_52")

Table 6.5E.2.3.1.4.3.2-1: Network signalling value "NS_52"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4	.6.3-1		
Information Element	Value/remark	Comment	Condition
additionalSpectrumEmission	1 (NS_52)		

6.5E.2.3.1.5 Test requirement

Table 6.5E.2.3.1.5-1: Test Tolerance (Additional spectrum emission mask)

FFS

6.5E.2.3.1.5.1 Requirements for network signalling value "NS_33"

When "NS_33" is indicated in the cell, the power of any NR V2X UE emission shall fulfil requirements in Table 6.5E.2.3.1.5.1-1.

Table 6.5E.2.3.1.5.1-1: Additional spectrum mask requirements for 10MHz channel bandwidth

Δf _{оов} (MHz)	10 MHz	Measurement bandwidth
\pm 0-0.5	$[-13 - 12 \left(\frac{ \Delta fOOB }{MHz} \right)]$ +TT	100 kHz
\pm 0.5-5	$[-19 - \frac{16}{9} (\Delta fOOB /_{MHz} - 0.5)]$ +TT	100 kHz
± 5-10	$[-27 - 2(\Delta fOOB /_{MHz} - 5.0)]$ +TT	100 kHz

6.5E.2.3.1.5.2 Requirements for network signalling value "NS_52"

When "NS_52" is indicated in the cell, the power of any NR V2X UE emission shall fulfil requirements in Table 6.5E.2.3.1.5.2-1.

Table 6.5E.2.3.1.5.2-1: Additional spectrum mask requirements for 40MHz channel bandwidth (fc = 5885MHz)

Δf _{оов} (MHz)	Emission Limit (dBm)	Measurement Bandwidth			
±0-2	-32+TT	100kHz			
±2-10	-36+TT	100kHz			
±10-20	-38+TT	100kHz			
±20-40	-43+TT	100kHz			
±40-100	-50+TT	100kHz			
	NOTE 1: TT for each frequency and channel bandwidth is specified in				
labl	e 6.5E.2.3.1.5-1.				

6.5E.2.3.1D Additional Spectrum emission mask for V2X / non-concurrent operation / SL-MIMO

Editor's Note:

- Test config table is FFS
- Uplink RMC is TBD in RAN4
- Connection diagram is TBD
- Preconfiguration is TBD in 38.508-1
- Test state and generic procedure are TBD in 38.508-1

6.5E.2.3.1D.1 Test purpose

To verify that the power of NR V2X UE emission shall not exceed specified level for the specified channel bandwidth under the deployment scenarios where additional requirements are specified.

6.5E.2.3.1D.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR V2X sidelink MIMO communication with non-concurrent operation.

6.5E.2.3.1D.3 Minimum conformance requirements

For NR V2X UE with two transmit antenna connectors, the requirements specified for single carrier described in clause 6.5E.2.3.1.3 shall apply to each transmit antenna connector.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5E.2.2.

- 6.5E.2.3.1D.4 Test description
- 6.5E.2.3.1D.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.5E.2.3.1D.4.1-1. The details of the V2X reference measurement channels (RMCs) are specified in Annexes TBD.

Table 6.5E.2.3.1D.4.1-1: Test Configuration Table

FFS

- 1137
- 1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure TBD for TE diagram and section TBD for UE diagram.
- 2. The parameter settings for the V2X sidelink transmission over PC5 are pre-configured according to TS 38.508-1 [5] subclause TBD. Message content exceptions are defined in clause 6.5E.2.3.1D.4.3.
- 3. The V2X Reference Measurement Channel is set according to Table 6.5E.2.3.1D.4.1-1.
- 4. The GNSS simulator is configured for Scenario #1: static in Geographical area #1, as defined in TS36.508 [25] Table 4.11.2-2. Geographical area #1 is also pre-configured in the UE.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state TBD.

6.5E.2.3.1D.4.2 Test procedure

- 1. The V2X UE schedules the V2X RMC with transmission power at P_{UMAX} level according to *SL-V2X*-*Preconfiguration* which is in line with the test configuration in Table 6.5E.2.3.1.4.1-1.
- 2. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in [TBD] for Power Class 3 UEs. The period of the measurement shall be at least the continuous duration of one sub-frame (1ms). For TDD slots with transient periods are not under test.
- 3. Measure the power of the transmitted signal with a measurement filter of bandwidths according to Table 6.5E.2.3.1.5.1-1 or Table 6.5E.2.3.1.5.2-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.

6.5E.2.3.1D.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4.

6.5E.2.3.1D.5 Test requirement

Table 6.5E.2.3.1D.5-1: Test Tolerance

FFS

6.5E.2.3.1D.5.1 Requirements for network signalling value "NS_33"

When "NS_33" is indicated in the cell, the power of any NR V2X UE emission at each antenna connector shall fulfil requirements in Table 6.5E.2.3.1D.5.1-1.

Table 6.5E.2.3.1D.5.1-1: Additional spectrum mask requirements for 10MHz channel bandwidth

Δf _{оов} (MHz)	10 MHz	Measurement bandwidth		
± 0-0.5	$\left[-13-12\left(\left \Delta \text{fOOB} \right \right) \right]$ +TT	100 kHz		
± 0.5 -5	$[-19 - \frac{16}{9} (\Delta fOOB /_{MHz} - 0.5)]$ +TT	100 kHz		
± 5-10	$[-27 - 2(\Delta fOOB /_{MHz} - 5.0)]$ +TT	100 kHz		
NOTE 1: TT for each frequency and channel bandwidth is specified in Table				
6.5E.2.	6.5E.2.3.1D.5-1.			

6.5E.2.3.1D.5.2 Requirements for network signalling value "NS_52"

When "NS_52" is indicated in the cell, the power of any NR V2X UE emission at each antenna connector shall fulfil requirements in Table 6.5E.2.3.1D.5.2-1.

Δf _{оов} (MHz)	Emission Limit (dBm)	Measurement Bandwidth		
±0-2	-32+TT	100kHz		
±2-10	-36+TT	100kHz		
±10-20	-38+TT	100kHz		
±20-40	-43+TT	100kHz		
±40-100	-50+TT	100kHz		
NOTE 1: TT for each frequency and channel bandwidth is specified in				
Table 6.5E.2.3.1D.5-1.				

Table 6.5E.2.3.1D.5.2-1: Additional spectrum mask requirements for 40MHz channel bandwidth (fc = 5885MHz)

6.5E.2.4 Adjacent channel leakage ratio for V2X

6.5E.2.4.1 Adjacent channel leakage ratio for V2X / non-concurrent operation

Editor's Note: This clause is incomplete for PSFCH and PSBCH measurement. The following aspects are either missing or not yet determined:

- Measurement period of PSFCH and PSBCH is FFS.

6.5E.2.4.1.1 Test purpose

To verify that V2X UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage Power Ratio (ACLR) when UE is configured for NR V2X sidelink transmissions non-concurrent with NR uplink transmissions.

6.5E.2.4.1.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR V2X sidelink communication with non-concurrent operation.

6.5E.2.4.1.3 Minimum conformance requirements

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

For NR V2X UE, the existing ACLR requirement for NR uplink transmission in clause 6.5.2.4 are applied for NR V2X UE for NR V2X operating bands in 5.2E.1-1.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5E.2.4.

6.5E.2.4.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.2E.1-1 and Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in the test configuration tables in clause 6.2E.2.1.4. The details of the V2X reference measurement channels (RMCs) are specified in Annexe A.7.5 and the GNSS configuration in TS 38.508-1 [5] subclause 4.11.

Table 6.5E.2.4.1.4.1-1: Void

1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.9.1 for TE diagram and section A.3.2.7 for UE diagram.

- 1139
- The parameter settings for the NR sidelink transmission over PC5 are pre-configured according to TS 38.508-1
 [5] subclause 4.10. Message content exceptions are defined in clause 6.5E.2.4.1.4.3.
- 3. The V2X Reference Measurement Channel is set according to the test configuration tables in clause 6.2E.2.1.4.1.
- 4. The GNSS simulator is configured for Scenario #1: static in Geographical area #1, as defined in TS 38.508-1 [5] Table 4.11.2-2. Geographical area #1 is also pre-configured in the UE.
- 5. Propagation conditions are set according to Annex B.0.

6.5E.2.4.1.4.2 Test procedure

Subtest 1: PSCCH/PSSCH

- 1. Ensure the UE is in state Out_of_Coverage with generic procedure parameters Sidelink *On*, Test Loop Function *On* with UE test loop mode E closed for *Transmit Mode* according to TS 38.508-1 [5] clause 4.5.
- 2. The UE starts to perform the NR sidelink communication according to *SL-PreconfigurationNR*. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the NR sidelink RMC.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration from Table 6.2E.2.1.4.1-1, which shall meet the requirements described in Table 6.2E.2.1.5-1 for Power Class 3 UEs. The period of measurement shall be at least continuous duration of one active sub-frame (1ms) excluding guard symbols.
- 4. Measure the rectangular filtered mean power for assigned NR V2X sidelink.
- 5. Measure the rectangular filtered mean power of the first NR adjacent channel on both lower and upper side of the assigned NR V2X sidelink channel, respectively.
- 6. Calculate the ratios of the power between the values measured in step 4 over step 5 for lower and upper NR_{ACLR}.

Subtest 2: PSFCH

- 1. Ensure the UE is in state Out_of_Coverage with generic procedure parameters Sidelink *On*, Cast type *Unicast*, Test Loop Function *On* with UE test loop mode E closed for *Receive Mode* according to TS 38.508-1 [5] clause 4.5.
- 2. The UE starts to perform the NR sidelink reception according to *SL-PreconfigurationNR*.
- 3. The UE's PSFCH transmission occasion is on slot n according to Table 6.2E.2.1.4.1-2. SS transmits PSSCH on combination of slot and subchannel as below:
 - a) Test ID 1: slot n-6, Lowest sub-channel
 - b) Test ID 2: slot n-3, Highest sub-channel
 - c) Test ID 3: slot n-6 and n-5, Lowest sub-channel
 - d) Test ID 4: slot n-4 and n-3, Highest sub-channel
 - e) Test ID 5: slot n-6, Highest sub-channel and slot n-3, Highest sub-channel
- 4. Measure the mean power of the UE on slot n in the channel bandwidth according to the test configuration from Table 6.2E.2.1.4.1-2, which shall meet the requirements described in Table 6.2E.2.1.5-2 for Power Class 3 UEs. The period of measurement is FFS.
- 5. Measure the rectangular filtered mean power for assigned NR V2X sidelink.
- 6. Measure the rectangular filtered mean power of the first NR adjacent channel on both lower and upper side of the assigned NR V2X sidelink channel, respectively.
- 7. Calculate the ratios of the power between the values measured in step 5 over step 6 for lower and upper NR_{ACLR} .

Subtest 3: S-SSB

- 1. Ensure the UE is in state Out_of_Coverage with generic procedure parameters Sidelink *On* according to TS 38.508-1 [5] clause 4.5. The UE is synchronized to GNSS,
- 2. The UE transmits PSBCH according SL-PreconfigurationNR.
- 3. Measure the mean power of the S-SSB in the channel bandwidth according to the test configuration from Table 6.2E.2.1.4.1-3, which shall meet the requirements described in Table 6.2E.2.1.5-3 for Power Class 3 UEs. The period of measurement is FFS.
- 4. Measure the rectangular filtered mean power for assigned NR V2X sidelink.
- 5. Measure the rectangular filtered mean power of the first NR adjacent channel on both lower and upper side of the assigned NR V2X sidelink channel, respectively.
- 6. Calculate the ratios of the power between the values measured in step 4 over step 5 for lower and upper NR_{ACLR}.

6.5E.2.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.10.

6.5E.2.4.1.5 Test requirement

The measured mean power of V2X UE in the channel bandwidth, derived in step 6 of Subtest 1, step 7 of Subtest 2 and step 6 of Subtest 3, shall fulfil requirements in clause 6.2E.2.1.5, and if the measured adjacent channel power is greater than -50 dBm then the measured NR ACLR, derived in step 5, shall be higher than the limits in Table 6.5E.2.4.1.5-2.

Table 6.5E.2.4.1.5-1: Measurement bandwidth

	NR channel bandwidth / NR ACLR measurement bandwidth											
	5	10	15	20	25	30	40	50	60	80	90	100
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
NR ACLR												
measurement	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	78.15	88.23	98.31
bandwidth												

Table 6.5E.2.4.1.5-2: NR ACLR requirement for V2X / non-concurrent operation

	Power class 1	Power class 2	Power class 3				
NR ACLR			30 - TT dB				
NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5E.2.4.1.5-3.							

Table 6.5E.2.4.1.5-3: Test Tolerance

FFS

6.5E.2.4.1D Adjacent channel leakage ratio for V2X / non-concurrent operation / SL-MIMO

Editor's Note:

- Test config table is FFS
- Uplink RMC is TBD in RAN4
- Connection diagram is TBD
- Preconfiguration is TBD in 38.508-1
- Test state and generic procedure are TBD in 38.508-1

6.5E.2.4.1D.1 Test purpose

To verify that V2X UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage Power Ratio (ACLR) when UE is configured for NR V2X sidelink MIMO transmissions non-concurrent with NR uplink transmissions.

6.5E.2.4.1D.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR V2X sidelink MIMO communication with non-concurrent operation.

6.5E.2.4.1D.3 Minimum conformance requirements

For NR V2X UE with two transmit antenna connectors, the requirements specified for single carrier shall apply to each transmit antenna connector. The requirements shall be met with SL MIMO configurations described in clause 6.2D.1.

If V2X UE transmits on one antenna connector at a time, the requirements specified for single carrier shall apply to the active antenna connector.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5E.2.4.

6.5E.2.4.1D.4 Test description

6.5E.2.4.1D.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in the test configuration tables in clause 6.2E.2.1D.4.1. The details of the V2X reference measurement channels (RMCs) are specified in Annexes TBD.

Table 6.5E.2.4.1D.4.1-1: Void

- 1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure TBD for TE diagram and section TBD for UE diagram.
- The parameter settings for the V2X sidelink transmission over PC5 are pre-configured according to TS 38.508-1
 [5] subclause TBD. Message content exceptions are defined in clause 6.5E.2.4.1.4.3.
- 3. The V2X Reference Measurement Channel is set according to the test configuration tables in clause 6.2E.2.1D.4.1.
- 4. The GNSS simulator is configured for Scenario #1: static in Geographical area #1, as defined in TS36.508 [25] Table 4.11.2-2. Geographical area #1 is also pre-configured in the UE.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state TBD.

6.5E.2.4.1D.4.2 Test procedure

- 1. The V2X UE schedules the V2X RMC with transmission power at P_{UMAX} level according to *SL-V2X*-*Preconfiguration* which is in line with the test configuration in the test configuration tables in clause 6.2E.2.1D.4.1;
- 2. Measure the sum of mean power of the UE at both antenna connector in the channel bandwidth of the radio access mode according to the test configuration, as measured in 6.2E.2.1D.4.2, which shall meet the requirements in clause 6.2E.2.1D.5 as appropriate.
- 3. Measure the rectangular filtered mean power for assigned NR V2X sidelink at each antenna connector.

- 1142
- 4. Measure the rectangular filtered mean power of the first NR adjacent channel on both lower and upper side of the assigned NR V2X sidelink channel at each antenna connector, respectively.
- 5. Calculate the ratios of the power between the values measured in step 3 over step 4 for lower and upper NR_{ACLR} for each antenna connector.
- 6.5E.2.4.1D.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4.

6.5E.2.4.1D.5 Test requirement

The measured sum of mean power of V2X UE at both antenna connector in the channel bandwidth, derived in step 2, shall fulfil requirements in clause 6.2E.2.1D.5, and if the measured adjacent channel power is greater than -50 dBm then the measured NR ACLR for each antenna connector, derived in step 5, shall be higher than the limits in Table 6.5E.2.4.1D.5-2.

	NR channel bandwidth / NR ACLR measurement bandwidth											
	5 10 15 20 25 30 40 50 60 80 90 100											
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
NR ACLR												
measurement	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	78.15	88.23	98.31
bandwidth												

Table 6.5E.2.4.1D.5-2: NR ACLR requirement for V2X / non-concurrent operation / SL-MIMO

	Power class 1	Power class 2	Power class 3					
NR ACLR			30 - TT dB					
NOTE 1: TT for each frequency and channel bandwidth is specified in Table 6.5E.2.4.1D.5-3.								

Table 6.5E.2.4.1D.5-3: Test Tolerance

FFS

- 6.5E.3 Spurious emissions for V2X
- 6.5E.3.1 General spurious emissions for V2X
- 6.5E.3.2 Spurious emissions for UE co-existence for V2X
- 6.5E.3.2.1 Spurious emissions for UE co-existence for V2X / non-concurrent operation

Editor's Note:

- Test config table is FFS

6.5E.3.2.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to co-existing systems for the specified bands which has specific requirements in terms of transmitter spurious emissions.

6.5E.3.2.1.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR V2X sidelink communication with non-concurrent operation.

6.5E.3.2.1.3 Minimum conformance requirements

When UE is configured for NR V2X sidelink transmissions non-concurrent with NR uplink transmissions for NR V2X operating bands specified in Table 5.2E.1-1, the requirements in clause 6.5.3.2 shall apply for NR V2X sidelink transmission.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5E.3.2.

6.5E.3.2.1.4	Test description

6.5E.3.2.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.2E.1-1 and Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.5E.3.2.1.4.1-1. The details of the V2X reference measurement channels (RMCs) are specified in Annexes A.7.5 and the GNSS configuration in TS 38.508-1 [5] subclause 4.11.

Table 6.5E.3.2.1.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.9.1 for TE diagram and section A.3.2.7 for UE diagram.
- The parameter settings for the NR sidelink transmission over PC5 are pre-configured according to TS 38.508-1
 [5] subclause 4.10. Message content exceptions are defined in clause 6.5E.3.2.1.4.3.
- 3. The V2X Reference Measurement Channel is set according to Table 6.5E.3.2.1.4.1-1.
- 4. The GNSS simulator is configured for Scenario #1: static in Geographical area #1, as defined in TS 38.508-1 [5] Table 4.11.2-2. Geographical area #1 is also pre-configured in the UE.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state Out_of_Coverage with generic procedure parameters Sidelink *On*, Test Loop Function *On* with UE test loop mode E closed for *Transmit Mode* according to TS 38.508-1 [5] clause 4.5.

6.5E.3.2.1.4.2 Test procedure

- 1. The V2X UE schedules the V2X RMC with transmission power at P_{UMAX} level according to *SL*-*PreconfigurationNR* which is in line with the test configuration in Table 6.5E.3.2.1.4.1-1.
- 2. Measure the power of the transmitted signal with a measurement filter of bandwidths according to Table 6.5.3.2.3-2. The centre frequency of the filter shall be stepped in contiguous steps according to Table 6.5.3.2.3-2. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5E.3.2.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.10.

6.5E.3.2.1.5 Test requirement

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) in Tables 6.5.3.2.3-2 from the edge of the channel bandwidth. The spurious emission limits in Tables 6.5.3.2.3-2 apply for all transmitter band configurations (NRB) and channel bandwidths.

The measured average power of spurious emission, derived in step 2, shall not exceed the described value in Table 6.5.3.2.3-2.

6.5E.3.2.1D Spurious emissions for UE co-existence for V2X / non-concurrent operation / SL-MIMO

Editor's Note:

- Test config table is FFS
- Uplink RMC is TBD in RAN4
- Connection diagram is TBD
- Preconfiguration is TBD in 38.508-1
- Test state and generic procedure are TBD in 38.508-1

6.5E.3.2.1.1D Test purpose

To verify that UE transmitter does not cause unacceptable interference to co-existing systems for the specified bands which has specific requirements in terms of transmitter spurious emissions.

6.5E.3.2.1.2D Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR V2X sidelink MIMO communication with non-concurrent operation.

6.5E.3.2.1.3D Minimum conformance requirements

For NR V2X UE with two transmit antenna connectors, the requirements specified for single carrier shall apply to each transmit antenna connector. The requirements shall be met with the SL MIMO configurations described in clause 6.2D.1.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5E.3.2.

6.5E.3.2.1D.4 Test description

6.5E.3.2.1D.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.5E.3.2.1D.4.1-1. The details of the V2X reference measurement channels (RMCs) are specified in Annexes TBD.

Table 6.5E.3.2.1D.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure TBD for TE diagram and section TBD for UE diagram.
- The parameter settings for the V2X sidelink transmission over PC5 are pre-configured according to TS 38.508-1
 [5] subclause TBD. Message content exceptions are defined in clause 6.5E.3.2.1D.4.3.
- 3. The V2X Reference Measurement Channel is set according to Table 6.5E.3.2.1D.4.1-1.
- 4. The GNSS simulator is configured for Scenario #1: static in Geographical area #1, as defined in TS36.508 [25] Table 4.11.2-2. Geographical area #1 is also pre-configured in the UE.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state TBD.

6.5E.3.2.1D.4.2 Test procedure

- 1. The V2X UE schedules the V2X RMC with transmission power at P_{UMAX} level according to *SL-V2X*-*Preconfiguration* which is in line with the test configuration in Table 6.5E.3.2.1D.4.1-1.
- 2. Measure the power of the transmitted signal at each antenna connector with a measurement filter of bandwidths according to Table 6.5.3.2.3-2. The centre frequency of the filter shall be stepped in contiguous steps according to Table 6.5.3.2.3-2. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5E.3.2.1D.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4.

6.5E.3.2.1D.5 Test requirement

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than Δf_{OOB} (MHz) in Tables 6.5.3.2.3-2 from the edge of the channel bandwidth. The spurious emission limits in Tables 6.5.3.2.3-2 apply for all transmitter band configurations (NRB) and channel bandwidths.

The measured average power of spurious emission at each antenna connector, derived in step 2, shall not exceed the described value in Table 6.5.3.2.3-2.

6.5E.3.3 Additional spurious emissions requirements for V2X

6.5E.3.3.1 Additional spurious emissions requirements for V2X / non-concurrent operation

Editor's Note:

- Test config table is FFS

6.5E.3.3.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions under the deployment scenarios where additional requirements are specified.

6.5E.3.3.1.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR V2X sidelink communication with non-concurrent operation.

6.5E.3.3.1.3 Minimum conformance requirements

Table 6.5E.3.3.1.3-1: Additional requirements for "NS_33"

Protected band Frequency ra			cy range (MHz)	Maximum Level (EIRP ²)	MBW (MHz)	NOTE			
Frequency range	5925	925 - 5950		-30	1	1			
Frequency range	5815	-	5855	-30	1	3			
 NOTE 1: In the frequency range x-5950MHz, SE requirement of -30dBm/MHz should be applied; where x = max (5925, fc + 15), where fc is the channel centre frequency. NOTE 2: The EIRP requirement is converted to conducted requirement depend on the supported post antenna connector gain G_{post connector} declared by the UE following the principle described in annex I in [11]. NOTE 3: Resolution BW is 10% of the measurement BW and the result should be integrated to achieve the 									
	measurement bandwidth. The sweep time shall be set larger than (symbol length)*(number of points in sweep) to improve the measurement accuracy.								

When "NS_33" is configured from pre-configured radio parameters or the cell, and the indication from upper layers has indicated that the UE is within the protection zone of CEN DSRC devices or HDR DSRC devices, the power of any NR V2X UE emission shall fulfil either one of the two sets of conditions.

Table 6.5E.3.3.1.3-2: Requirements for spurious emissions to protect CEN DSRC for V2X UE

	Maximum Transmission Power (dBm EIRP)	Emission Limit in Frequency Range 5795-5815 (dBm/MHz EIRP)				
Condition 1	10	-65				
Condition 2	10	-45				

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5E.3.4.

6.5E.3.3.1.4 Test description

6.5E.3.3.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.2E.1-1 and Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of test channel bandwidth and sub-carrier spacing, and are shown in table 6.5E.3.3.1.4.1-1. The details of the V2X reference measurement channels (RMCs) are specified in Annexes A.7.5 and the GNSS configuration in TS 38.508-1 [5] subclause 4.11.

Table 6.5E.3.3.1.4.1-1: Test Configuration Table for "NS_33"

FFS

- 1. Connect the SS and GNSS simulator to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.9.1 for TE diagram and section A.3.2.7 for UE diagram.
- The parameter settings for the NR sidelink transmission over PC5 are pre-configured according to TS 38.508-1
 [5] subclause 4.10. Message content exceptions are defined in clause 6.5E.3.3.1.4.3.
- 3. The V2X Reference Measurement Channel is set according to Table 6.5E.3.3.1.4.1-1.
- 4. The GNSS simulator is configured for Scenario #1: static in Geographical area #1, as defined in TS 38.508-1 [5] Table 4.11.2-2. Geographical area #1 is also pre-configured in the UE.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state Out_of_Coverage with generic procedure parameters Sidelink *On*, Test Loop Function *On* with UE test loop mode E closed for *Transmit Mode* according to TS 38.508-1 [5] clause 4.5.

6.5E.3.3.1.4.2 Test procedure

- 1. The V2X UE schedules the V2X RMC with transmission power at P_{UMAX} level according to *SL*-*PreconfigurationNR* which is in line with the test configuration in Table 6.5E.3.3.1.4.1-1.
- 2. Measure the power of the transmitted signal with a measurement filter of bandwidths according to Table 6.5E.3.3.1.3-1. The centre frequency of the filter shall be stepped in contiguous steps according to Table 6.5E.3.3.1.3-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5E.3.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.10 with following exceptions.

Table 6.5E.3.3.1.4.3-1: AdditionalSpectrumEmission: Additional spurious emissions test requirement for "NS_33"

Derivation Path: TS 38.508-1 [5] clause 4.6.3, Table 4.6.3-1							
Information Element	Value/remark	Comment	Condition				
additionalSpectrumEmission	1 (NS_33)						

6.5E.3.3.1.5 Test requirement

6.5E.3.3.1.5.1 Message contents exceptions (network signalling value "NS_33")

The transmitted spurious emission power derived in step 2 should be converted to EIRP value depend on the supported post antenna connector gain $G_{post connector}$ declared by the UE following the principle described in annex I in [11]. The EIPR value should not exceed test requirements in Table 6.5E.3.3.1.5.1-1.

Protected band	Frequency range (MHz)			Maximum Level (EIRP ²)	MBW (MHz)
Frequency range	5925	-	5950	-30	1
Frequency range	5815	-	5855	-30	1

6.5F Output RF spectrum emissions for shared spectrum channel access

6.5F.1 Occupied bandwidth for shared spectrum channel access

FFS

6.5F.2 Out of band emission for shared spectrum channel access

6.5F.2.1 General

The Out of band emissions are unwanted emissions immediately outside the assigned channel bandwidth resulting from the modulation process and non-linearity in the transmitter but excluding spurious emissions. This out of band emission limit is specified in terms of a spectrum emission mask and an adjacent channel leakage power ratio.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5F.2.2 Spectrum emission mask for operation with shared spectrum channel access

Editor's Note:

- Test config table is FFS
- Message content is TBD

The spectrum emission mask of the UE applies to frequencies (Δf_{OOB}) starting from the ± edge of the assigned NR channel bandwidth. For frequencies offset greater than Δf_{OOB} , the spurious requirements in subclause 6.5.3 are applicable.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5F.2.2.1 Test purpose

To verify that the power of any UE emission shall not exceed specified level for the specified channel bandwidth when UE is operating with shared spectrum channel access.

6.5F.2.2.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR standalone shared spectrum channel access.

6.5F.2.2.3 Minimum conformance requirements

Instead of the general spectrum emission mask requirement in clause 6.5.2.2, when operating with shared spectrum channel access the relative power of any UE emission shall not exceed the levels specified in Table 6.5F.2.2.3-1 for the specified channel bandwidth or -30 dBm/MHz whichever is the greatest. The spectrum emission mask for operation with shared spectrum channel access is defined relative to the maximum power density in a 1 MHz measurement bandwidth within the channel bandwidth.

The spectrum emission mask for operation with shared spectrum channel access applies to frequencies (Δf_{OOB}) starting from the ± edge of the assigned channel bandwidth. For frequencies offset greater than Δf_{OOB} , the spurious requirements in clause 6.5.3 are applicable.

		Spectrum emi	ssion limit (dBr)	/ Channel bandw	idth	
Δf _{оов} (MHz)	10 MHz	20 MHz	40 MHz	60 MHz	80 MHz	Measurement bandwidth (MBW)
± 0-1			$-20 \Delta f_{00B} $			[100kHz] ³
± 1-5	NOTE 1	NOTE 1	NOTE 1	NOTE 1	NOTE 1	1 MHz
± 5-10	NOTE 2					
± 10-20	-40	NOTE 2				
± 20-30		-40	NOTE 2			
± 30-40				NOTE 2		
± 40-50			-40		NOTE 2	
± 50-60						
± 60-70				-40		
± 70-80					-	
± 80-100					-40	
NOTE 1:	Given as: -20 - ($\left \Delta f_{OOB} - 1 \right $	where $A = (Char)$	nel Bandwidth _{/2}) - 1	
NOTE 2:	Given as: $-16 - ($	$(12/R) \Delta f_{00B} $ wh	here $B = (Channel B)$	el Bandwidth/2)		
	The measured val				reference bandwi	dth (1 MHz) to
	the measurement					. ,
NOTE 4:	The carrier leakag					
	removed prior to s					
	txDirectCurrentLo		•			•
	contribution. If <i>txD</i>				th value 3300 or 3	301, a carrier
	frequency location	at the centre of t	ne channel shall t	e assumeu.		

For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency

of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2.

6.5F.2.2.3.1 Spectrum emission mask for non-transmitted channels

In the case of non-transmitted 20 MHz channel(s) on the edges of an assigned channel bandwidth the spectrum emission mask for operation with shared spectrum channel access, specified in Table 6.5F.2.2.3-1, is applied by using the total bandwidth of the remaining transmitted channels. The spectrum emission mask for non-transmitted channels is floored at -28dBr.

The relative power of any UE emission shall not exceed the most stringent levels given by the spectrum emission mask for operation with shared spectrum channel access with full channel bandwidth and the spectrum emission mask for non-transmitted channels with the channel bandwidth of the transmitted channels in the case of non-transmitted channels at the edge of an assigned channel bandwidth.

An exception to the spectrum emission mask for non-transmitted channels allows a single [2] MHz bandwidth to extend to [-28] dBc relative to total transmit power, or [-20] dBm, whichever is the greatest.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5F.2.2.

escription
=

6.5F.2.2.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands with shared spectrum channel access specified in table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and subcarrier spacing, are shown in table 6.5F.2.2.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

 Table 6.5F.2.2.4.1-1: Test Configuration Table

	Default Conditions								
Test E	Invironme	nt as spec	ified in TS	Normal					
subcla	ause 4.1								
Test F	requencie	es as spec	ified in TS	38.508-1 [5]	FFS				
subcla	ause 4.3.1								
Test C	Channel Ba	andwidths	as specifi	FFS					
		clause 4.3							
Test S	SCS as sp	ecified in ⁻	Table 5.3.	5-1	FFS				
			Test Para	ameters for Chai	nnel Bandwidths				
Test	Freq	ChBw	SCS	Downlink	Uplink Configuration				
ID				Configuration					
		Default	Default	N/A for	Modulation	RB allocation			
				Spectrum					

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2 and uplink signals according to Annex G.0, G.1, G.2, G.3.0.

- 4. The UL Reference Measurement channels are set according to Table 6.5F.2.2.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5F.2.2.4.3

6.5F.2.2.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5F.2.2.4.1-1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously power control "up" commands to the UE until the UE transmits at PUMAX level. Allow at least 200ms for the UE to reach PUMAX level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, which shall meet the requirements described in Table 6.2F.1.5-1. The period of the measurement shall be at least the continuous duration of 1ms over consecutive active uplink slots.
- 4. Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.5F.2.2.5-1. The centre frequency of the filter shall be stepped in continuous steps according to the same table. The measured power shall be recorded for each step. The measurement period shall capture the active TSs.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration Table 6.5F.2.2.4.1-1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5F.2.2.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 with the following exceptions:

FFS

6.5F.2.2.5 Test requirement

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in Table 6.2F.1.5-1, and the power of any UE emission shall fulfil requirements in Table 6.5F.2.2.5-1.

Table 6.5F.2.2.5-1: General NR spectrum emission mask

FFS

Table 6.5F.2.2.5-2: Test Tolerance (Spectrum Emission Mask)

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz	6.0GHz < f ≤ 7.125GHz
BW ≤ 100MHz	1.5 dB	1.8 dB	1.8 dB	TBD

NOTE: As a general rule, the resolution bandwidth of the measuring equipment should be equal to the measurement bandwidth. However, to improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5F.2.4 Adjacent channel leakage ratio for operation with shared spectrum channel access

Adjacent Channel Leakage power Ratio (ACLR) is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

6.5F.2.4.1 Shared spectrum channel access ACLR

Editor's Note: The following aspects are not yet determined:

- The referred test case MPR(6.2F.2) is TBD
- Test configuration and TP analysis are TBD
- MU and TT for >6GHz (band n96) are TBD.
- RMC in Annex A.
- Test coverage for UL-MIMO
- Message exceptions
- Test state and generic procedure are TBD in 38.508-1

6.5F.2.4.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5F.2.4.1.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR standalone operation with shared spectrum channel access.

6.5F.2.4.1.3 Minimum conformance requirements

The Adjacent Channel Leakage power Ratio is the ratio of the filtered mean power centred on the assigned channel frequency to the filtered mean power centred on an adjacent channel frequency at nominal channel spacing. The assigned channel power and adjacent channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.5.2.4.1.3-1.

Instead of the general ACLR requirement in clause 6.5.2.4, if the measured adjacent channel power is greater than -47 dBm then the ACLR shall be higher than the value specified in Table 6.5F.2.4.1.3-1.

Table 6.5F.2.4.1.3-1: Shared spectrum channel access ACLR requirement

	Power class 5
ACLR	27 dB

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5F.2.4.1.

6.5F.2.4.1.4 Test description

6.5F.2.4.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in the test configuration tables in clause 6.2F.2.4.1[TBD]. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2

Table 6.5F.2.4.1.4.1-1: Void

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1, C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to the test configuration tables in clause 6.2F.2.4.1[TBD].
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5F.2.4.1.4.3.

6.5F.2.4.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to the test configuration tables in clause 6.2F.2.4.1[TBD]. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously power control "up" commands to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the mean power of the UE in the channel bandwidth of the radio access mode according to the test configuration, as measured in step 3 of 6.2F.2.4.2[TBD], which shall meet the requirements in clause 6.2F.2.5[TBD] as appropriate.
- 4. Measure the rectangular filtered mean power for the assigned NR channel.
- 5. Measure the rectangular filtered mean power of the first NR adjacent channel on both lower and upper side of the assigned NR channel, respectively.
- 6. Calculate the ratios of the power between the values measured in step 4 over step 5 for lower and upper NR ACLR, respectively.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration tables in clause 6.2F.2.4.1[TBD], send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5F.2.4.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4 with the following exceptions:

FFS

6.5F.2.4.1.5 Test requirement

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in clause 6.2F.2.5[TBD], and if the measured adjacent channel power is greater than -50 dBm then the measured NR ACLR, derived in step 6, shall be higher than the limits in Table 6.5F.2.4.1.5-2.

NR channel bandwidth / NR ACLR measurement bandwidth													
	5	10	15	20	25	30	40	50	60	70	80	90	100
	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
NR ACLR													
measurement	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	68.07	78.15	88.23	98.31
bandwidth	4.515	9.375	14.200	19.095	23.900	20.015	30.095	40.015	56.55	00.07	70.15	00.23	90.31
(MHz)													

Table 6.5F.2.4.1.5-1: NR ACLR measurement bandwidth

1153

Table 6.5.2.4.1.5-2: NR ACLR requirement

	Power class 5				
NR ACLR	27 - TT dB				
NOTE 1: TT for each frequency and channel bandwidth is					
specified in Table 6.5.2.4.1.5-3.					

Table 6.5.2.4.1.5-3: Test Tolerance (TT) (NR ACLR)

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 5.925GHz	5.925GHz < f ≤ 7.125GHz
BW ≤ 100MHz	0.8 dB	0.8 dB	0.8 dB	TBD

6.5F.3 Spurious emissions for shared spectrum channel access

Spurious emissions are emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products, but exclude out of band emissions unless otherwise stated. The spurious emission limits are specified in terms of general requirements in line with SM.329 [9] and NR operating band requirement to address UE co-existence.

To improve measurement accuracy, sensitivity and efficiency, the resolution bandwidth may be smaller than the measurement bandwidth. When the resolution bandwidth is smaller than the measurement bandwidth, the result should be integrated over the measurement bandwidth in order to obtain the equivalent noise bandwidth of the measurement bandwidth.

NOTE: For measurement conditions at the edge of each frequency range, the lowest frequency of the measurement position in each frequency range should be set at the lowest boundary of the frequency range plus MBW/2. The highest frequency of the measurement position in each frequency range should be set at the highest boundary of the frequency range minus MBW/2. MBW denotes the measurement bandwidth defined for the protected band.

6.5F.3.1 General spurious emissions

Editor's Note: This clause is incomplete. The following aspects are either missing or not yet determined

- Test configuration table is FFS
- TP analysis is TBD

- Test state and generic procedure are TBD in 38.508-1

6.5F.3.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5F.3.1.2 Test applicability

This test case applies to all types of NR UE release 16 and forward that support NR standalone shared spectrum channel access.

6.5F.3.1.3 Minimum conformance requirements

The requirements for general spurious emission requirements in clause 6.5.3.1 apply.

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5F.3.1.

6.5F.3.1.4 Test description

6.5F.3.1.4.1 Initial conditions

Initial conditions are a set of test configurations the UE needs to be tested in and the steps for the SS to take with the UE to reach the correct measurement state.

The initial test configurations consist of environmental conditions, test frequencies, test channel bandwidths and subcarrier spacing based on NR operating bands specified in Table 5.3.5-1. All of these configurations shall be tested with applicable test parameters for each combination of channel bandwidth and sub-carrier spacing, are shown in table 6.5F.3.1.4.1-1. The details of the uplink reference measurement channels (RMCs) are specified in Annexes A.2. Configurations of PDSCH and PDCCH before measurement are specified in Annex C.2.

Table 6.5F.3.1.4.1-1: Test Configuration Table

FFS

- 1. Connect the SS to the UE antenna connectors as shown in TS 38.508-1 [5] Annex A, Figure A.3.1.1.1 for TE diagram and section A.3.2 for UE diagram.
- 2. The parameter settings for the cell are set up according to TS 38.508-1 [5] subclause 4.4.3.
- 3. Downlink signals are initially set up according to Annex C.0, C.1 and C.2, and uplink signals according to Annex G.0, G.1, G.2, G.3.0.
- 4. The UL Reference Measurement channels are set according to Table 6.5F.3.1.4.1-1.
- 5. Propagation conditions are set according to Annex B.0.
- 6. Ensure the UE is in state RRC_CONNECTED with generic procedure parameters Connectivity *NR*, Connected without release *On*, Test Mode *On* and Test Loop Function *On* according to TS 38.508-1 [5] clause 4.5. Message contents are defined in clause 6.5F.3.1.4.3.

6.5F.3.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5F.3.1.4.1-1. Since the UE has no payload data to send, the UE transmits uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands in the uplink scheduling information to the UE until the UE transmits at P_{UMAX} level.
- Measure the power of the transmitted signal with a measurement filter of bandwidths according to table 6.5F.3.1.5-1. The centre frequency of the filter shall be stepped in contiguous steps according to table 6.5F.3.1.5-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5F.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6.

6.5F.3.1.5 Test requirement

This clause specifies the requirements for the specified NR standalone shared spectrum channel access for Transmitter Spurious emissions requirement with frequency range as indicated in table 6.5F.3.1.5-1.

Unless otherwise stated, the spurious emission limits apply for the frequency ranges that are more than F_{OOB} (MHz) in Table 6.5.3.1.3-1 from the edge of the channel bandwidth. The spurious emission limits in Table 6.5F.3.1.5-1 apply for all transmitter band configurations (NRB) and channel bandwidths for shared spectrum channel access.

The measured average power of spurious emission, derived in step 3, shall not exceed the described value in Table 6.5F.3.1.5-1.

Frequency Range	Maximum Level	Measurement bandwidth	NOTE	
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz		
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz		
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz		
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz	4	
	-25 dBm	1 MHz	3	
12.75 GHz ≤ f < 5th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	1	
12.75 GHz < f < 26 GHz	-30 dBm	1 MHz	2	
NOTE 1: Applies for Band that the upper frequency edge of the UL Band more than 2.69 GHzNOTE 2: Applies for Band that the upper frequency edge of the UL Band more than 5.2 GHz				

 Table 6.5F.3.1.5-1: General spurious emissions test requirements

6.5F.3.2 Spurious emissions for UE co-existence

Spurious emissions requirements for UE coexistence are not applicable to bands restricted to stand-alone operation with

shared spectrum channel access as identified in Table 5.2-1

6.5G Output RF spectrum emissions for Tx Diversity

6.5G.1 Occupied bandwidth for Tx Diversity

Editor's Note: The following aspects are either missing or not yet determined:

- Tests for Power Class 3 are FFS.

6.5G.1.1 Test purpose

To verify that the UE occupied bandwidth for Tx Diversity for all transmission bandwidth configurations supported by the UE are less than their specific limits.

6.5G.1.2 Test applicability

This test case applies to all types of NR Power Class 1.5 UE, Power Class 2 UE reporting Tx diversity release 15 and forward.

6.5G.1.3 Minimum conformance requirements

For UE supporting Tx diversity, the requirements for occupied bandwidth apply to the transmitted spectrum as measured as the sum of the power from all UE transmit antenna connectors. The occupied bandwidth is defined as the

bandwidth containing 99 % of the total integrated mean power of the transmitted spectrum on the assigned channel at each transmit antenna connector.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5G.1.

6.5G.1.4 Test description

Same test description as specified in clause 6.5.1.4 with following exceptions:

Step 3 of Test procedure as in 6.5.1.4.2 is replaced by:

3. Measure the power spectrum distribution as the sum of the power from all UE transmit antenna connectors within two times or more range over the requirement for Occupied Bandwidth specification centring on the current carrier frequency. The characteristics of the filter shall be approximately Gaussian (typical spectrum analyser filter). Other methods to measure the power spectrum distribution are allowed. The measuring duration is at least 1ms over consecutive active uplink slots.

6.5G.1.5 Test requirement

The measured Occupied Bandwidth shall not exceed values in Table 6.5.1.5-1.

6.5G.2

6.5G.2.1

6.5G.2.2

6.5G.2.3 Adjacent channel leakage ratio for Tx Diversity

If UE indicates IE [*txDiversity-r16*], Adjacent Channel Leakage power Ratio (ACLR) is defined as the ratio of sum of the filtered mean power at each antenna connector centred on the assigned channel frequency to sum of the filtered mean power at each antenna connector centred on an adjacent channel frequency.

6.5G.2.3.1 NR ACLR for Tx Diversity

Editor's Note: The following aspects are either missing or not yet determined:

- The test points for Power Class 1.5 FWA UEs are TBD.

- Tests for Power Class 3 are FFS.

6.5G.2.3.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to adjacent channels in terms of Adjacent Channel Leakage power Ratio (ACLR).

6.5G.2.3.1.2 Test applicability

This test case applies to all types of NR Power Class 1.5, Power Class 2 reporting TxD UE release 15 and forward.

6.5G.2.3.1.3 Minimum conformance requirements

NR adjacent channel leakage power ratio (NR_{ACLR}) is the ratio of sum of the filtered mean power at each antenna connector centred on the assigned NR channel frequency to sum of the filtered mean power at each antenna connector centred on an adjacent NR channel frequency at nominal channel spacing.

The assigned NR channel power and adjacent NR channel power are measured with rectangular filters with measurement bandwidths specified in Table 6.5G.2.3.1.3-1.

If the measured adjacent channel power is greater than -50dBm then the NR_{ACLR} shall be higher than the value specified in Table 6.5G.2.3.1.3-2.

Channel bandwidth	(MHz)	5,10,15,20,25,30,35,40,45,50	60,70,80,90,100	
REF_SCS	(kHz)	15	30	
NR ACLR measurement bandwidth	(MHz)	MBW=REF_SCS*(12*N _{RB} +1)/1000		

Table 6.5G.2.3.1.3-1: NR ACLR measurement bandwidth

	Power class 1.5	Power class 2
NR ACLR	31 dB	31 dB

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5G.2.3.1.

6.5G.2.3.1.4 Test description

6.5G.2.3.1.4.1 Initial conditions

Same initial conditions as 6.2G.2.4.1.

6.5G.2.3.1.4.2 Test procedure

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to the test configuration tables in clause 6.2.2.4.1. Since the UL has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously power control "up" commands to the UE until the UE transmits at P_{UMAX} level. Allow at least 200ms for the UE to reach P_{UMAX} level.
- 3. Measure the sum of the mean power of the UE at each antenna connector in the channel bandwidth of the radio access mode according to the test configuration, as measured in step 3 of 6.2G.2.4.2, which shall meet the requirements described in clause 6.2G.2.5 as appropriate.
- 4. Measure the sum of the rectangular filtered mean power at each antenna connector for the assigned NR channel.
- 5. Measure the sum of the rectangular filtered mean power at each antenna connector of the first NR adjacent channel on both lower and upper side of the assigned NR channel, respectively.
- 6. Calculate the ratios of the power between the values measured in step 4 over step 5 for lower and upper NR ACLR, respectively.
- NOTE 1: When switching to DFT-s-OFDM waveform, as specified in the test configuration tables in clause 6.2.2.4.1, send an NR RRCReconfiguration message according to TS 38.508-1 [5] clause 4.6.3 Table 4.6.3-118 PUSCH-Config with TRANSFORM_PRECODER_ENABLED condition.

6.5G.2.3.1.4.3 Message contents

Message contents are according to TS 38.508-1 [5] subclause 4.6 and 5.4 with the following exceptions:

Information Element	Value/remark	Comment	Condition
PUSCH-Config ::= SEQUENCE {			
resourceAllocation	resourceAllocationType0		Almost contiguous allocation
	resourceAllocationType1		Contiguous allocation

6.5G.2.3.1.5 Test requirement

The measured UE mean power in the channel bandwidth, derived in step 3, shall fulfil requirements in clause 6.2G.2.5 as appropriate, and if the measured adjacent channel power is greater than -50 dBm then the measured NR ACLR, derived in step 6, shall be higher than the limits in Table 6.5G.2.3.1.5-2 with TT applying for the sum of power at each of UE antenna connector.

Table 6.5G.2.3.1.5-1: NR ACLR measurement bandwidth

NR channel bandwidth / NR ACLR measurement bandwidth													
	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
NR ACLR measurement bandwidth (MHz)	4.515	9.375	14.235	19.095	23.955	28.815	38.895	48.615	58.35	68.07	78.15	88.23	98.31

Table 6.5G.2.3.1.5-2: NR ACLR requirement for Tx Diversity

	Power class 1.5	Power class 2				
NR ACLR	31 - TT dB	31 - TT dB				
NOTE 1: TT for each frequency and channel bandwidth is specified in						
Table 6.5G.2.3.1.5-3.						
NOTE 2: TT for	the sum of power at ea	ach of UE antenna connector.				

Table 6.5G.2.3.1.5-3: Test Tolerance (NR ACLR)

	f ≤ 3.0GHz	3.0GHz < f ≤ 4.2GHz	4.2GHz < f ≤ 6.0GHz
BW ≤ 100MHz	0.8 dB	0.8 dB	0.8 dB

6.5G.3 Spurious emission for Tx Diversity

6.5G.3.1 General spurious emissions for Tx Diversity

Editor's Note: The following aspects are either missing or not yet determined:

- Tests for Power Class 3 are FFS.

6.5G.3.1.1 Test purpose

To verify that UE transmitter does not cause unacceptable interference to other channels or other systems in terms of transmitter spurious emissions.

6.5G.3.1.2 Test applicability

This test case applies to all types of NR Power Class 1.5 UE, Power Class 2 UE reporting Tx diversity release 15 and forward.

6.5G.3.1.3 Minimum conformance requirements

For UE supporting Tx diversity, the requirements for Spurious emissions which are caused by unwanted transmitter effects such as harmonics emission, parasitic emissions, intermodulation products and frequency conversion products apply to the sum of the emissions from all UE transmit antenna connectors.

The normative reference for this requirement is TS 38.101-1 [2] subclause 6.5G.3.

6.5G.3.1.4 Test description

Same test description as specified in clause 6.5.3.1.4 with following exceptions:

Step 3 of Test procedure as in 6.5.3.1.4.2 is replaced by:

3. Measure the sum power of the transmitted signal at all antenna connectors with a measurement filter of bandwidths according to Table 6.5G.3.1.5-1. The centre frequency of the filter shall be stepped in contiguous steps according to Table 6.5G.3.1.5-1. The measured power shall be verified for each step. The measurement period shall capture the active time slots.

6.5G.3.1.5 Test requirement

The measured average power of spurious emission, derived in step 3, shall not exceed the described value in Table 6.5G.3.1.5-1.

Table 6.5G.3.1.5-1: General spurious emissions for Tx Diversity test requirements

Frequency Range	Maximum Level	Measurement bandwidth	NOTE			
9 kHz ≤ f < 150 kHz	-36 dBm	1 kHz				
150 kHz ≤ f < 30 MHz	-36 dBm	10 kHz				
30 MHz ≤ f < 1000 MHz	-36 dBm	100 kHz				
1 GHz ≤ f < 12.75 GHz	-30 dBm	1 MHz	4			
	-25 dBm	1 MHz	3			
12.75 GHz \leq f \leq 5th harmonic of the upper frequency edge of the UL operating band in GHz	-30 dBm	1 MHz	1			
12.75 GHz < f < 26 GHz	••••					
 NOTE 1: Applies for Band for which the upper frequency edge of the UL Band is greater than 2.55 GHz and less than or equal to 5.2 GHz NOTE 2: Applies for Band that the upper frequency edge of the UL Band more than 5.2 GHz 						
DC configurat 38.101-3 [4] v	IOTE 3: Applies for Band n41, CA configurations including Band n41, and EN- DC configurations that include n41 specified in sub-clause 5.2B of 38.101-3 [4] when NS_04 is signalled.					
and EN-DC c	 Does not apply for Band n41, CA configurations including Band n41, and EN-DC configurations that include n41 specified in subclause 5.2B of TS 38.101-3 [4] when NS_04 is signalled. 					

6.5G.4 Transmit intermodulation for Tx Diversity

Editor's Note: The following aspects are either missing or not yet determined:

- Tests for Power Class 3 are FFS.

6.5G.4.1 Test purpose

To verify that the UE transmit intermodulation for Tx Diversity does not exceed the described value in the test requirement.

The transmit intermodulation performance is a measure of the capability of the transmitter to inhibit the generation of signals in its non-linear elements caused by presence of the wanted signal and an interfering signal reaching the transmitter via the antenna.

6.5G.4.2 Test applicability

This test case applies to all types of NR Power Class 1.5 UE, Power Class 2 UE reporting Tx diversity release 15 and forward.

6.5G.4.3 Minimum conformance requirements

For UE supporting Tx diversity, the transmit intermodulation requirements are specified at each transmit antenna connector and the wanted signal is defined as the sum of output power from all UE transmit antenna connectors.

The normative reference for this requirement is TS 38.101-1 [2] clause 6.5G.4.

6.5G.4.4 Test description

Same test description as specified in clause 6.5.4.4 with following exceptions:

Test procedure as in 6.5.4.4.2 is replaced by:

- 1. SS sends uplink scheduling information for each UL HARQ process via PDCCH DCI format 0_1 for C_RNTI to schedule the UL RMC according to Table 6.5.4.4.1-1. Since the UE has no payload and no loopback data to send the UE sends uplink MAC padding bits on the UL RMC.
- 2. Send continuously uplink power control "up" commands to the UE until the UE transmits at its P_{UMAX} level.
- 3. Measure the rectangular filtered mean power at each antenna connector of the UE. For TDD, only slots consisting of only UL symbols are under test for the wanted signal and for the intermodulation product.
- 4. Set the interference signal frequency below the UL carrier frequency using the first offset in table 6.5.4.5-1.
- 5. Set the interference CW signal level according to table 6.5.4.5-1.
- 6. Search the intermodulation product signals below and above the UL carrier frequency at each UE antenna connector, then measure the rectangular filtered mean power at each antenna connector of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 3.
- 7. Set the interference signal frequency above the UL carrier frequency using the first offset in table 6.5.4.5-1.
- 8. Search the intermodulation product signals below and above the UL carrier frequency at each UE antenna connector, then measure the rectangular filtered mean power at each antenna connector of transmitting intermodulation for both signals, and calculate the ratios with the power measured in step 3.
- 9. Repeat the measurement using the second offset in table 6.5.4.5-1.

10. Repeat step 3) until 9) for each of transmit antenna of the UE.

6.5G.4.5 Test requirement

The ratio derived in step 6 and 8, shall not exceed the described value in table 6.5.4.5-1.