Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

- x the first digit:
 - 1 presented to TSG for information;
 - 2 presented to TSG for approval;
 - 3 or greater indicates TSG approved document under change control.
- y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
- z the third digit is incremented when editorial only changes have been incorporated in the document.

The present document is one part of a multi-part Technical Specification (TS) covering the New Radio (NR) User Equipment (UE) conformance specification, which is divided in the following parts:

- 3GPP TS 38.521-1: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 1: Range 1 Standalone" (the present document).
- 3GPP TS 38.521-2 [13]: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 2: Range 2 Standalone".
- 3GPP TS 38.521-3 [14]: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios"
- 3GPP TS 38.521-4 [15]: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 4: Performance".
- 3GPP TS 38.522 [16]: NR; User Equipment (UE) conformance specification; Applicability of RF and RRM test cases;
- 3GPP TS 38.533 [17]: NR; User Equipment (UE) conformance specification; Radio resource management;

1 Scope

The present document specifies the measurement procedures for the conformance test of the user equipment (UE) that contain RF characteristics for frequency Range 1 as part of the 5G-NR.

The requirements are listed in different clauses only if the corresponding parameters deviate. More generally, tests are only applicable to those mobiles that are intended to support the appropriate functionality. To indicate the circumstances in which tests apply, this is noted in the "*definition and applicability*" part of the test.

For example only Release 15 and later UE declared to support 5G-NR shall be tested for this functionality. In the event that for some tests different conditions apply for different releases, this is indicated within the text of the test itself.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.

For a specific reference, subsequent revisions do not apply.

For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
- [2] 3GPP TS 38.101-1: "NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone".
- [3] 3GPP TS 38.101-2: " NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone".
- [4] 3GPP TS 38.101-3: "NR; User Equipment (UE) radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios".
- [5] 3GPP TS 38.508-1: "5GS; User Equipment (UE) conformance specification; Part 1: Common test environment ".
- [6] 3GPP TS 38.331: "NR; Radio Resource Control (RRC); Protocol specification".
- [7] Recommendation ITU-R M.1545: "Measurement uncertainty as it applies to test limits for the terrestrial component of International Mobile Telecommunications-2000".
- [8] 3GPP TS 38.211: "NR; Physical channels and modulation".
- [9] 3GPP TS 38.213: "NR; Physical layer procedures for control".
- [10] 3GPP TR 38.903: "NR; Derivation of test tolerances and measurement uncertainty for User Equipment (UE) conformance tests".
- [11] 3GPP TR 38.905: "NR; Derivation of test points for radio transmission and reception conformance test cases".
- [12] 3GPP TS 38.214: "NR; Physical layer procedures for data".
- [13] 3GPP TS 38.521-2: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 2: Range 2 Standalone".
- [14] 3GPP TS 38.521-3: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios".

- [15] 3GPP TS 38.521-4: "NR; User Equipment (UE) conformance specification; Radio transmission and reception; Part 4: Performance".
- [16] 3GPP TS 38.522: "NR; User Equipment (UE) conformance specification; Applicability of RF and RRM test cases".
- [17] 3GPP TS 38.533: "NR; User Equipment (UE) conformance specification; Applicability of RF and RRM test cases".
- [18] 3GPP TS 38.321: "NR; Medium Access Control (MAC) protocol specification".
- [19] 3GPP TS 38.133: "NR; Requirements for support of radio resource management ".
- [20] 3GPP TS 38.215: "NR; Physical layer measurements".
- [21] 3GPP TS 36.521-1: "Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment UE) conformance specification; Radio transmission and reception; Part 1: Conformance Testing".
- [22] ITU-R Recommendation SM.329-10, "Unwanted emissions in the spurious domain".
- [23] 3GPP TS 38.307: "NR; Requirements on User Equipments (UEs) supporting a release-independent frequency band".
- [24] 3GPP TS 37.213: "Physical layer procedures for shared spectrum channel access".
- [25] 3GPP TS 36.508: "Common test environments for User Equipment (UE)"
- [26] 3GPP TS 38.306: "NR; User Equipment (UE) radio access capabilities".

3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].

Aggregated Channel Bandwidth: The RF bandwidth in which a UE transmits and receives multiple contiguously aggregated carriers.

Carrier aggregation: Aggregation of two or more component carriers in order to support wider transmission bandwidths.

Carrier aggregation band: A set of one or more operating bands across which multiple carriers are aggregated with a specific set of technical requirements.

Carrier aggregation bandwidth class: A class defined by the aggregated transmission bandwidth configuration and maximum number of component carriers supported by a UE.

Carrier aggregation configuration: A combination of CA operating band(s) and CA bandwidth class(es) supported by a UE.

Con-current operation: The simultaneous transmission and reception of sidelink and Uu interfaces while operation is agnostic of the service used on each interface.

Contiguous carriers: A set of two or more carriers configured in a spectrum block where there are no RF requirements based on co-existence for un-coordinated operation within the spectrum block.

Contiguous resource allocation: A resource allocation of consecutive resource blocks within one carrier or across contiguously aggregated carriers. The gap between contiguously aggregated carriers due to the nominal channel spacing is allowed.

Contiguous spectrum: Spectrum consisting of a contiguous block of spectrum with no sub-block gaps.

Inter-band carrier aggregation: Carrier aggregation of component carriers in different operating bands.

NOTE: Carriers aggregated in each band can be contiguous or non-contiguous.

Intra-band contiguous carrier aggregation: Contiguous carriers aggregated in the same operating band.

Intra-band non-contiguous carrier aggregation: Non-contiguous carriers aggregated in the same operating band.

RedCap UE: A UE capable of supporting RedCap [IE].

Sub-band: For a UE that supports shared spectrum channel access in wideband operation, a sub-band is the set of RBs within an approximately 20 MHz segment of the channel where the wideband channel is uniformly divided into an integer number of 20 MHz sub-bands. Sub-bands may be separately allocated in uplink and downlink.

Sub-block: This is one contiguous allocated block of spectrum for transmission and reception by the same UE. There may be multiple instances of sub-blocks within an RF bandwidth.

Sub-block bandwidth: The bandwidth of one sub-block.

Sub-block gap: A frequency gap between two consecutive sub-blocks within an RF bandwidth, where the RF requirements in the gap are based on co-existence for un-coordinated operation.

UE transmission bandwidth configuration: Set of resource blocks located within the UE channel bandwidth which may be used for transmitting or receiving by the UE.

Vehicular UE: A UE embedded in a vehicle, permanently connected to an embedded antenna system that radiates externally for NR operating bands.

NOTE: Vehicular UE does not refer to other UE form factors placed inside the vehicle.

Wideband operation: For a UE that supports shared spectrum channel access, wideband operation refers to operation within a channel larger than 20 MHz in which intra-cell guard bands may be configured to distinguish individual RB-sets

3.2 Symbols

For the purposes of the present document, the following symbols apply:

ΔF_{Global}	Granularity of the global frequency raster
ΔF_{Raster}	Band dependent channel raster granularity
Δf_{OOB}	Δ Frequency of Out Of Band emission
ΔF_{TX-RX}	Δ Frequency of default TX-RX separation of the FDD operating band
ΔMPR_c	Allowed Maximum Power Reduction relaxation for serving cell c
$\Delta P_{PowerClass}$	Adjustment to maximum output power for a given power class
ΔR_{1R}	Reference sensitivity adjustment due to support for 1 antenna ports
$\Delta_{\rm RB}$	The starting frequency offset between the allocated RB and the measured non-allocated RB
$\Delta R_{IB,c}$	Allowed reference sensitivity relaxation due to support for inter-band CA operation, for serving
	cell c
$\Delta R_{IB,4R}$	Reference sensitivity adjustment due to support for 4 antenna ports
$\Delta_{ m Shift}$	Channel raster offset
ΔT_{C}	Allowed operating band edge transmission power relaxation
$\Delta T_{C,c}$	Allowed operating band edge transmission power relaxation for serving cell c
$\Delta T_{IB,c}$	Allowed maximum configured output power relaxation due to support for inter-band CA
	operation, inter-band NR-DC operation and due to support for SUL operations, for serving cell c
BW _{Channel}	Channel bandwidth
$BW_{Channel,block}$	Sub-block bandwidth, expressed in MHz. $BW_{Channel,block} = F_{edge,block,high} - F_{edge,block,low}$
$BW_{Channel_CA}$	Aggregated channel bandwidth, expressed in MHz
BW _{Channel,max}	Maximum channel bandwidth supported among all bands in a release
BW_{GB}	$max(BW_{GB,Channel(k))}$
BW _{GB,Channel(k)}	Minimum guard band defined in clause 5.3A.1 of carrier k
BW_{DL}	Channel bandwidth for DL
BW_{UL}	Channel bandwidth for UL
BW _{interferer}	Bandwidth of the interferer

Ceil(x)	Rounding upwards; $ceil(x)$ is the smallest integer such that $ceil(x) \ge x$
Floor(x)	Rounding downwards; floor(x) is the greatest integer such that $floor(x) \le x$
F _C	RF reference frequency on the channel raster, given in table 5.4.2.2-1
$F_{C,block, high}$	Fc of the highest transmitted/received carrier in a sub-block
$F_{C,block, low}$	Fc of the lowest transmitted/received carrier in a sub-block
$F_{C, low}$	The Fc of the lowest carrier, expressed in MHz
F _{C, high}	The Fc of the highest carrier, expressed in MHz
$F_{DL_{low}}$	The lowest frequency of the downlink operating band
F_{DL_high}	The highest frequency of the downlink operating band
$F_{UL_{low}}$	The lowest frequency of the uplink operating band
F_{UL_high}	The highest frequency of the uplink operating band
$F_{edge,block,low}$	The lower sub-block edge, where $F_{edge,block,low} = F_{C,block,low} - F_{offset., low}$
$F_{edge,block,high}$	The upper sub-block edge, where $F_{edge,block,high} = F_{C,block,high} + F_{offset., high}$
Fedge, low	The <i>lower edge</i> of aggregated channel bandwidth, expressed in MHz. $F_{edge,low} = F_{C,low} - F_{offset,low}$
Fedge, high	The higher edge of aggregated channel bandwidth, expressed in MHz. $F_{edge,high} = F_{C,high} + F_{offset,high}$
F _{Interferer} (offset)	Frequency offset of the interferer (between the center frequency of the interferer and the carrier
-	frequency of the carrier measured)
F _{Interferer}	Frequency of the interferer
F _{Ioffset}	Frequency offset of the interferer (between the center frequency of the
	interferer and the closest edge of the carrier measured)
Foffset	Frequency offset from $F_{C, high}$ to the <i>higher edge</i> or $F_{C, low}$ to the <i>lower edge</i>
$F_{offset,high}$	Frequency offset from $F_{C,high}$ to the upper <i>UE RF Bandwidth edge</i> , or from $F_{C,block, high}$ to the upper
Г	sub-block edge
$F_{\text{offset,low}}$	Frequency offset from $F_{C,low}$ to the lower <i>UE RF Bandwidth edge</i> , or from $F_{C,block, low}$ to the lower
F	sub-block edge
F _{OOB}	The boundary between the NR out of band emission and spurious emission domains
F _{REF}	RF reference frequency Offset used for calculating F_{REF}
F _{REF-Offs}	RF reference frequency for Supplementary Uplink (SUL) bands and for the uplink for all FDD
$F_{REF,Shift}$	bands
F _{uw} (offset)	The frequency separation of the center frequency of the carrier closest to the interferer and the
	center frequency of the interferer
GB _{Channel}	Minimum guard band defined in clause 5.3.3
L _{CRB}	Transmission bandwidth which represents the length of a contiguous resource block allocation
	its of resources blocks
Max()	The largest of given numbers
Min()	The smallest of given numbers
n _{PRB}	Physical resource block number
	•
NR _{ACLR}	NR ACLR Transmission bandwidth configuration, expressed in units of resource blocks
N _{RB} N	
$N_{RB_{agg}}$	The number of the aggregated RBs within the fully allocated aggregated channel bandwidth
	$_{RB_j} * 2^{\mu_j}$ for carrier 1 to j, where μ is defined in TS 38.211 [8]
$N_{RB,c}$	The transmission bandwidth configuration of component carrier c, expressed in units of resource
	blocks
$N_{RB,cj} = N_{RB_j} *$	2^{μ_j} for carrier j, where μ is defined in TS 38.211 [8]
N _{RB,largest BW}	The largest transmission bandwidth configuration of the component carriers in the bandwidth
	combination, expressed in units of resource blocks
$N_{RB,low}$	The transmission bandwidth configurations according to Table 5.3.2-1 for the lowest assigned
	component carrier in clause 5.3A.1
$N_{RB,high}$	The transmission bandwidth configurations according to Table 5.3.2-1 for the highest assigned
	component carrier in clause 5.3A.1
N _{REF}	NR Absolute Radio Frequency Channel Number (NR-ARFCN)
$N_{REF-Offs}$	Offset used for calculating N _{REF}
P _{CMAX}	The configured maximum UE output power
P_{CMAX}, c	The configured maximum UE output power for serving cell c
$\mathbf{P}_{\mathbf{CMAX}, f, c}$	The configured maximum UE output power for carrier f of serving cell c in each slot
P _{EMAX}	Maximum allowed UE output power signalled by higher layers
$P_{EMAX, c}$	Maximum allowed UE output power signalled by higher layers for serving cell c
PInterferer	Modulated mean power of the interferer

$P_{\text{largest BW}}$	Power of the largest transmission bandwidth configuration of the component carriers in the
	bandwidth combination
PPowerClass	The nominal UE power (i.e., no tolerance)
$P-MPR_c$	Power Management Maximum Power Reduction for serving cell c
P _{RB}	The transmitted power per allocated RB, measured in dBm
PUMAX	The measured configured maximum UE output power
Puw	Power of an unwanted DL signal
Pw	Power of a wanted DL signal
RB _{Start}	Indicates the lowest RB index of transmitted resource blocks
RB_{start_CA}	Indicates the lowest RB index of transmitted resource blocks for intra-band contiguous CA
SCS _c	SCS for the component carrier c
SCS _{largest BW}	SCS for the largest transmission bandwidth configuration of the component carriers in the
	bandwidth combination
SCS_{low}	SCS for the lowest assigned component carrier in section 5.3A.1
SCS _{high}	SCS for the highest assigned component carrier in section 5.3A.1
tp	Transient Period value signalled by the UE
tp _{start}	Start position of transient period relative to the symbol boundary
$T(P_{CMAX}, f, c)$	Tolerance for applicable values of P _{CMAX} , f, c for configured maximum UE output power for carrier
·	f of serving cell c
$T_{L,c}$	Absolute value of the lower tolerance for the applicable <i>operating band</i> as specified in section
	6.2.1
SSREF	SS block reference frequency position
UTRA _{ACLR}	UTRA ACLR

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

ACLR	Adjacent Channel Leakage Ratio
ACS	Adjacent Channel Selectivity
A-MPR	Additional Maximum Power Reduction
BS	Base Station
BW	Bandwidth
BWP	Bandwidth Part
CA	Carrier Aggregation
CA_nX-nY	Inter-band CA of component carrier(s) in one sub-block within Band nX and component carrier(s)
	in one sub-block within Band nY where nX and nY are the applicable NR <i>operating bands</i>
CC	Component Carriers
CG	Carrier Groups
CM	Cubic Metric
CORESET	Control Resource Set
CP-OFDM	Cyclic Prefix-OFDM
CW	Continuous Wave
DC	Dual Connectivity
DCI	Downlink Control Information
DFT-s-OFDM	Discrete Fourier Transform-spread-OFDM
DL	Downlink
DM-RS	Demodulation Reference Signal
DTX	Discontinuous Transmission
EIRP	Equivalent Isotropically Radiated Power
E-UTRA	Evolved UTRA
EVM	Error Vector Magnitude
FFT	Fast Fourier Transformation
FR	Frequency Range
FRC	Fixed Reference Channel
GNSS	Global Navigation Satellite System
GSCN	Global Synchronization Channel Number
HARQ	Hybrid Automatic Repeat Request

IBB	In-band Blocking
IDFT	Inverse Discrete Fourier Transformation
IE	Information Element
ITS	Intelligent Transportation System
ITU-R	Radio communication Sector of the International Telecommunication Union
MBW	Measurement bandwidth defined for the protected band
MCG	Master Cell Group
MOP	Maximum Output Power
MPR MSD	Allowed maximum power reduction Maximum Sensitivity Degradation
MU	Maximum Sensitivity Degradation Measurement Uncertainty
NR	New Radio
NR/5GC	NR connected to 5GC
NR-ARFCN	NR Absolute Radio Frequency Channel Number
NS	Network Signalling
NSA	Non-Standalone
OCNG	OFDMA Channel Noise Generator
OOB	Out-of-band
PBCH	Physical Broadcast Channel
PDCCH	Physical Downlink Control Channel
PDSCH	Physical Downlink Shared Channel
P-MPR	Power Management Maximum Power Reduction
PRACH	Physical Random Access Channel
PRB PSCCH	Physical Resource Block Physical Sidelink Control CHannel
PSSCH	Physical Sidelink Shared CHannel
QAM	Quadrature Amplitude Modulation
RB	Resource Block
RE	Resource Element
RedCap	Reduced Capability
REFSENS	Reference Sensitivity
RF	Radio Frequency
RMC	Reference Measurement Channel
RMS	Root Mean Square (value)
RNTI	Radio Network Tempory Identity
RoT	Rise Over Thermal
RSRP	Reference Signal Receiving Power
Rx SA	Receiver Standalone
SC	Single Carrier
SCG	Secondary Cell Group
SCS	Subcarrier spacing
SDL	Supplementary Downlink
SEM	Spectrum Emission Mask
SL	Sidelink
SL-MIMO	Sidelink-Multiple Antenna transmission
SNR	Signal-to-Noise Ratio
SRS	Sounding Reference Symbol
SUL	Supplementary uplink
SS	Synchronization Symbol
SS TAE	System Simulator Time Alignment Error
TAG	Timing Advance Group
TPC	Transmit Power Control
TT	Test Tolerances
Tx	Transmitter
UE	User Equipment
UL	Uplink
UL MIMO	Uplink Multiple Antenna transmission
ULFPTx	Uplink Full Power Transmission

Vehicle to Everything

V2X

4 General

4.1 Relationship between minimum requirements and test requirements

The TS 38.101-1 [2] is a Single-RAT specification for NR UE, covering RF characteristics and minimum performance requirements. Conformance to the TS 38.101-1 [2] is demonstrated by fulfilling the test requirements specified in the present document.

24

The Minimum Requirements given in TS 38.101-1 [2] make no allowance for measurement uncertainty (MU). The present document defines test tolerances (TT) and measurement uncertainty. These test tolerances are individually defined for each test. The test tolerances are used to relax the minimum requirements in TS 38.101-1 [2] to create test requirements. For some requirements, including regulatory requirements, the test tolerance is set to zero.

The measurement results returned by the test system are compared - without any modification - against the test requirements as defined by various levels of "Shared Risk" principle as described below.

- a) Core specification value is not relaxed by any relaxation value (TT=0). For each single measurement, the probability of a borderline good UE being judged as FAIL equals the probability of a borderline bad UE being judged as PASS.
- Test tolerances equal to 0 (TT=0) are considered in this specification.
- b) Core specification value is relaxed by a relaxation value (TT>0). For each single measurement, the probability of a borderline bad UE being judged as PASS is greater than the probability of a borderline good UE being judged as FAIL.
- Test tolerances lower than measurement uncertainty and greater than 0 (0 < TT < MU) are considered in this specification.
- Test tolerances high up to measurement uncertainty (TT = MU) are considered in this specification which is also known as "Never fail a good DUT" principle.
- c) Core specification value is tightened by a stringent value (TT<0). For each single measurement, the probability of a borderline good UE being judged as FAIL is greater than the probability of a borderline bad UE being judged as PASS.

Test tolerances lower than 0 (TT<0) are not considered in this specification. The "Never fail a good DUT" and the "Shared Risk" principles are defined in Recommendation ITU-R M.1545 [7].

4.2 Applicability of minimum requirements

- a) In TS 38.101-1 [2] the Minimum Requirements are specified as general requirements and additional requirements. Where the Requirement is specified as a general requirement, the requirement is mandated to be met in all scenarios
- b) For specific scenarios for which an additional requirement is specified, in addition to meeting the general requirement, the UE is mandated to meet the additional requirements.
- c) The spurious emissions power requirements are for the long-term average of the power. For the purpose of reducing measurement uncertainty it is acceptable to average the measured power over a period of time sufficient to reduce the uncertainty due to the statistical nature of the signal.
- d) All the requirements for intra-band contiguous and non-contiguous CA apply under the assumption of the same slot format indicated by UL-DL-configuration-common in the PCell and SCells for NR/5GC.

4.3 Specification suffix information

Unless stated otherwise the following suffixes are used for indicating at 2nd level subclause, shown in Table 4.3-1.

Clause suffix	Variant
None	Single Carrier
А	Carrier Aggregation (CA)
В	Dual-Connectivity (DC)
С	Supplement Uplink (SUL)
D	UL MIMO
E	V2X
F	Shared spectrum channel
	access
	RedCap

Table 4.3-1: Definition of suffixes

A terminal which supports the above features needs to meet both the general requirements and the additional requirement applicable to the additional subclause (suffixes A to F) in clauses 5, 6 and 7. Where there is a difference in requirement between the general requirements and the additional subclause requirements (suffixes A to F) in clauses 5, 6 and 7, the tighter requirements are applicable unless stated otherwise in the additional subclause.

A terminal which supports more than one feature in clauses 5, 6 and 7 shall meet all of the separate corresponding requirements.

For a terminal that supports SUL for the band combination specified in Table 5.2C-1, the current version of the specification assumes the terminal is configured with active transmission either on UL carrier or SUL carrier at any time in one serving cell and the UE requirements for single carrier shall apply for the active UL or SUL carrier accordingly. For a terminal that supports SUL, the current version of the specification assumes the terminal is not configured with UL MIMO on SUL carrier.

For a terminal that supports operation in shared spectrum, the current version of this specification assumes in the uplink sub-bands within a wideband channel shall be contiguously allocated to the UE. The uplink requirements for one or more non-transmitted sub-bands between two transmitted sub-bands does not form a part of the current version of this specification.

4.4 Test points analysis

The information on test point analysis and test point selection including number of test points for each test case is shown in TR 38.905 [11] clause 4.1.

4.5 Applicability and test coverage rules

The applicability and test coverage rules for NR/5GC and EN-DC capable devices shall include the following:

If a test case for a FR1 NR band in a device is tested in EN-DC mode inter-band operation for non-exceptional requirement as per TS 38.521-3 [14], it shall fulfil the coverage requirement for that test case for NR/5GC FR1 test requirements for that NR band and need not be retested.

Unless there are exception requirements defined within the NR-DC test cases in clause 6 and 7 of this spec: if a DUT is tested on an FR1 NR-CA configuration, the DUT need not be re-tested for the FR1 NR-DC configuration involving the same bands within the component carriers/carrier groups (CGs).

Editor's Note: The Clause number 4.5 already exists in the specification. so the clause number was changed to 4.6:

4.6 Pass fail decision rule of test case

Unless explicitly specified, a test case is passed only when all the measurements in the test case are passed. A measurement is one execution of the test procedures using a specific combination of various conditions, including test configuration, testing UL/DL power level, frequency location of interference and sweeping frequency location of

emission measurement etc. If multiple component carriers are involved in one measurement, the measurement is passed only when all the component carriers are passed.

5 Operating bands and Channel arrangement

5.1 General

The channel arrangements presented in this clause are based on the operating bands and channel bandwidths defined in the present release of specifications.

NOTE: Other operating bands and channel bandwidths may be considered in future releases.

Requirements throughout the RF specifications are in many cases defined separately for different frequency ranges (FR). The frequency ranges in which NR can operate according to this version of the specification are identified as described in Table 5.1-1.

Frequency range designation	Corresponding frequency range
FR1	410 MHz – 7125 MHz
FR2	24250 MHz – 52600 MHz

The present specification covers FR1 operating bands.

5.2 Operating bands

NR is designed to operate in the FR1 operating bands defined in Table 5.2-1.

Table 5.2-1: NR operating bands in FR1

NR operating band	Uplink (UL) operating band BS receive / UE transmit FUL_low - FUL_high	Downlink (DL) <i>operating band</i> BS transmit / UE receive FDL_low – FDL_high	Duplex Mode
n1	1920 MHz – 1980 MHz	2110 MHz – 2170 MHz	FDD
n2	1850 MHz – 1910 MHz	1930 MHz – 1990 MHz	FDD
n3	1710 MHz – 1785 MHz	1805 MHz – 1880 MHz	FDD
n5	824 MHz – 849 MHz	869 MHz – 894 MHz	FDD
n7	2500 MHz – 2570 MHz	2620 MHz – 2690 MHz	FDD
n8	880 MHz – 915 MHz	925 MHz – 960 MHz	FDD
n12	699 MHz – 716 MHz	729 MHz – 746 MHz	FDD
n14	788 MHz – 798 MHz	758 MHz – 768 MHz	FDD
n20	832 MHz – 862 MHz	791 MHz – 821 MHz	FDD
n24 ¹⁶	1626.5 MHz – 1660.5 MHz	1525 MHz – 1559 MHz	FDD
n25	1850 MHz – 1915 MHz	1930 MHz – 1995 MHz	FDD
n26	814 MHz – 849 MHz	859 MHz – 894 MHz	FDD
n28	703 MHz – 748 MHz	758 MHz – 803 MHz	FDD
n29	N/A	717 MHz – 728 MHz	SDL
n30 ³	2305 Mhz – 2315 MHz	2350 MHz – 2360 MHz	FDD
n34	2010 MHz – 2025 MHz	2010 MHz – 2025 MHz	TDD
n38 ¹⁰	2570 MHz – 2620 MHz	2570 MHz – 2620 MHz	TDD
n39	1880 MHz – 1920 MHz	1880 MHz – 1920 MHz	TDD
n40	2300 MHz – 2400 MHz	2300 MHz – 2400 MHz	TDD
n41	2496 MHz – 2690 MHz	2496 MHz – 2690 MHz	TDD
n46	5150 MHz – 5925 MHz	5150 MHz – 5925 MHz	TDD ¹³
n47 ¹¹	5855 MHz – 5925 MHz	5855 MHz – 5925 MHz	TDD
n48	3550 MHz – 3700 MHz	3550 MHz – 3700 MHz	TDD
n50	1432 MHz – 1517 MHz	1432 MHz – 1517 MHz	TDD ¹
n51	1427 MHz – 1432 MHz	1427 MHz – 1432 MHz	TDD
n53	2483.5 MHz – 2495 MHz	2483.5 MHz – 2495 MHz	TDD
n65	1920 MHz – 2010 MHz	2110 MHz – 2200 MHz	FDD ⁴
n66	1710 MHz – 1780 MHz	2110 MHz – 2200 MHz	FDD
n70	1695 MHz – 1710 MHz	1995 MHz – 2020 MHz	FDD
n71	663 MHz – 698 MHz	617 MHz – 652 MHz	FDD
n74	1427 MHz – 1470 MHz	1475 MHz – 1518 MHz	FDD
n75	N/A	1432 MHz – 1517 MHz	SDL
n76	N/A	1427 MHz – 1432 MHz	SDL
n77 ¹²	3300 MHz – 4200 MHz	3300 MHz – 4200 MHz	TDD
n78	3300 MHz – 3800 MHz	3300 MHz – 3800 MHz	TDD
n79	4400 MHz – 5000 MHz	4400 MHz – 5000 MHz	TDD
n80	1710 MHz – 1785 MHz	N/A	SUL
n81	880 MHz – 915 MHz	N/A	SUL
n82	832 MHz – 862 MHz	N/A	SUL
n83	703 MHz – 748 MHz	N/A	SUL
n84	1920 MHz – 1980 MHz	N/A	SUL
n86	1710 MHz – 1780 MHz	N/A	SUL
n95 ⁸	2010 MHz – 2025 MHz	N/A	SUL
n96 ¹⁴	5925 MHz – 7125 MHz	5925 MHz – 7125 MHz	TDD ¹³
n97 ¹⁵	2300 MHz – 2400 MHz	N/A	SUL
n99 ¹⁶	1626.5 MHz – 1660.5 MHz	N/A	SUL

 NOTE 1: UE that complies with the NR Band n50 minimum requirements in this specification. Shall also comply with the NR Band n75 minimum requirements. NOTE 2: UE that complies with the NR Band n76 minimum requirements. NOTE 3: Uplink transmission is not allowed at this band for UE with external vehicle- mounted antennas. NOTE 4: A UE that complies with the NR Band n65 minimum requirements in this specification shall also comply with the NR Band n1 minimum requirements. NOTE 5: FFS. NOTE 6: A UE that supports NR Band n66 shall receive in the entire DL operating band. NOTE 7: A UE that supports NR Band n66 and CA operation in any CA band shall also comply with the minimum requirement specified for the DL CA configurations CA_n66B and CA_n66(2A) in the current version of the specification. NOTE 8: This band is used for V2X SL service, the band is exclusively used for NR V2X in particular regions. NOTE 10: When this band is used for V2X service. There is no expected network deployment in this band. NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3650 MHz and 3650 – 3980 MHz. NOTE 13: This band is applicable in the USA only subject to FCC Report and Order FCC 20- 51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographic		
 NOTE 2: UE that complies with the NR Band n75 minimum requirements in this specification. Shall also comply with the NR Band n76 minimum requirements. NOTE 3: Uplink transmission is not allowed at this band for UE with external vehicle-mounted antennas. NOTE 4: A UE that complies with the NR Band n65 minimum requirements in this specification shall also comply with the NR Band n1 minimum requirements. NOTE 5: FFS. NOTE 6: A UE that supports NR Band n66 shall receive in the entire DL operating band. NOTE 7: A UE that supports NR Band n66 shall receive in the entire DL operating band. NOTE 8: This band is applicable in China only. NOTE 9: FFS. NOTE 10: When this band is used for V2X SL service, the band is exclusively used for NR V2X in particular regions. NOTE 11: This band is unlicensed band used for V2X service. There is no expected network deployment in this band. NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3550 MHz and 3650 – 3980 MHz. NOTE 13: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequen	NOTE 1:	
 Shall also comply with the NR Band n76 minimum requirements. NOTE 3: Uplink transmission is not allowed at this band for UE with external vehicle-mounted antennas. NOTE 4: A UE that complies with the NR Band n65 minimum requirements in this specification shall also comply with the NR Band n1 minimum requirements. NOTE 5: FFS. NOTE 6: A UE that supports NR Band n66 shall receive in the entire DL operating band. NOTE 7: A UE that supports NR Band n66 and CA operation in any CA band shall also comply with the minimum requirements specified for the DL CA configurations CA_n66B and CA_n66(2A) in the current version of the specification. NOTE 8: This band is applicable in China only. NOTE 9: FFS. NOTE 10: When this band is used for V2X SL service, the band is exclusively used for NR V2X in particular regions. NOTE 11: This band is unlicensed band used for V2X service. There is no expected network deployment in this band. NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3550 MHz and 3650 – 3980 MHz. NOTE 13: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA		
 NOTE 3: Uplink transmission is not allowed at this band for UE with external vehicle-mounted antennas. NOTE 4: A UE that complies with the NR Band n65 minimum requirements in this specification shall also comply with the NR Band n1 minimum requirements. NOTE 5: FFS. NOTE 6: A UE that supports NR Band n66 shall receive in the entire DL operating band. NOTE 7: A UE that supports NR Band n66 and CA operation in any CA band shall also comply with the minimum requirements specified for the DL CA configurations CA_n66B and CA_n66(2A) in the current version of the specification. NOTE 8: This band is applicable in China only. NOTE 10: When this band is used for V2X SL service, the band is exclusively used for NR V2X in particular regions. NOTE 11: This band is unlicensed band used for V2X service. There is no expected network deployment in this band. NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3650 MHz and 3650 – 3980 MHz. NOTE 13: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geograph	NOTE 2:	
 mounted antennas. NOTE 4: A UE that complies with the NR Band n65 minimum requirements in this specification shall also comply with the NR Band n1 minimum requirements. NOTE 5: FFS. NOTE 6: A UE that supports NR Band n66 shall receive in the entire DL operating band. NOTE 7: A UE that supports NR Band n66 and CA operation in any CA band shall also comply with the minimum requirements specified for the DL CA configurations CA_n66B and CA_n66(2A) in the current version of the specification. NOTE 8: This band is applicable in China only. NOTE 9: FFS. NOTE 10: When this band is used for V2X SL service, the band is exclusively used for NR V2X in particular regions. NOTE 11: This band is unlicensed band used for V2X service. There is no expected network deployment in this band. NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3650 MHz and 3650 – 3980 MHz. NOTE 13: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating		
 NOTE 4: A UE that complies with the NR Band n65 minimum requirements in this specification shall also comply with the NR Band n1 minimum requirements. NOTE 5: FFS. NOTE 6: A UE that supports NR Band n66 shall receive in the entire DL operating band. NOTE 7: A UE that supports NR Band n66 and CA operation in any CA band shall also comply with the minimum requirements specified for the DL CA configurations CA_n66B and CA_n66(2A) in the current version of the specification. NOTE 8: This band is applicable in China only. NOTE 9: FFS. NOTE 10: When this band is used for V2X SL service, the band is exclusively used for NR V2X in particular regions. NOTE 11: This band is unlicensed band used for V2X service. There is no expected network deployment in this band. NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3650 MHz and 3650 – 3980 MHz. NOTE 13: This band is restricted to operation with shared spectrum channel access as defined in 37.213 [24]. NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is 	NOTE 3:	Uplink transmission is not allowed at this band for UE with external vehicle-
 specification shall also comply with the NR Band n1 minimum requirements. NOTE 5: FFS. NOTE 6: A UE that supports NR Band n66 shall receive in the entire DL operating band. NOTE 7: A UE that supports NR Band n66 and CA operation in any CA band shall also comply with the minimum requirements specified for the DL CA configurations CA_n66B and CA_n66(2A) in the current version of the specification. NOTE 8: This band is applicable in China only. NOTE 9: FFS. NOTE 10: When this band is used for V2X SL service, the band is exclusively used for NR V2X in particular regions. NOTE 11: This band is unlicensed band used for V2X service. There is no expected network deployment in this band. NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3650 MHz and 3650 – 3980 MHz. NOTE 13: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is 		
 NOTE 5: FFS. NOTE 6: A UE that supports NR Band n66 shall receive in the entire DL operating band. NOTE 7: A UE that supports NR Band n66 and CA operation in any CA band shall also comply with the minimum requirements specified for the DL CA configurations CA_n66B and CA_n66(2A) in the current version of the specification. NOTE 8: This band is applicable in China only. NOTE 9: FFS. NOTE 10: When this band is used for V2X SL service, the band is exclusively used for NR V2X in particular regions. NOTE 11: This band is unlicensed band used for V2X service. There is no expected network deployment in this band. NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3650 MHz and 3650 – 3980 MHz. NOTE 13: This band is restricted to operation with shared spectrum channel access as defined in 37.213 [24]. NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. 	NOTE 4:	
 NOTE 6: A UE that supports NR Band n66 shall receive in the entire DL operating band. NOTE 7: A UE that supports NR Band n66 and CA operation in any CA band shall also comply with the minimum requirements specified for the DL CA configurations CA_n66B and CA_n66(2A) in the current version of the specification. NOTE 8: This band is applicable in China only. NOTE 10: When this band is used for V2X SL service, the band is exclusively used for NR V2X in particular regions. NOTE 11: This band is unlicensed band used for V2X service. There is no expected network deployment in this band. NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3650 MHz and 3650 – 3980 MHz. NOTE 13: This band is restricted to operation with shared spectrum channel access as defined in 37.213 [24]. NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is 		specification shall also comply with the NR Band n1 minimum requirements.
 NOTE 7: A UE that supports NR Band n66 and CA operation in any CA band shall also comply with the minimum requirements specified for the DL CA configurations CA_n66B and CA_n66(2A) in the current version of the specification. NOTE 8: This band is applicable in China only. NOTE 9: FFS. NOTE 10: When this band is used for V2X SL service, the band is exclusively used for NR V2X in particular regions. NOTE 11: This band is unlicensed band used for V2X service. There is no expected network deployment in this band. NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3650 MHz and 3650 – 3980 MHz. NOTE 13: This band is restricted to operation with shared spectrum channel access as defined in 37.213 [24]. NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is 	NOTE 5:	FFS.
 comply with the minimum requirements specified for the DL CA configurations CA_n66B and CA_n66(2A) in the current version of the specification. NOTE 8: This band is applicable in China only. NOTE 9: FFS. NOTE 10: When this band is used for V2X SL service, the band is exclusively used for NR V2X in particular regions. NOTE 11: This band is unlicensed band used for V2X service. There is no expected network deployment in this band. NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3650 MHz and 3650 – 3980 MHz. NOTE 13: This band is restricted to operation with shared spectrum channel access as defined in 37.213 [24]. NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20- 51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is 	NOTE 6:	A UE that supports NR Band n66 shall receive in the entire DL operating band.
 CA_n66B and CA_n66(2A) in the current version of the specification. NOTE 8: This band is applicable in China only. NOTE 9: FFS. NOTE 10: When this band is used for V2X SL service, the band is exclusively used for NR V2X in particular regions. NOTE 11: This band is unlicensed band used for V2X service. There is no expected network deployment in this band. NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3650 MHz and 3650 – 3980 MHz. NOTE 13: This band is restricted to operation with shared spectrum channel access as defined in 37.213 [24]. NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is 	NOTE 7:	A UE that supports NR Band n66 and CA operation in any CA band shall also
 NOTE 8: This band is applicable in China only. NOTE 9: FFS. NOTE 10: When this band is used for V2X SL service, the band is exclusively used for NR V2X in particular regions. NOTE 11: This band is unlicensed band used for V2X service. There is no expected network deployment in this band. NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3650 MHz and 3650 – 3980 MHz. NOTE 13: This band is restricted to operation with shared spectrum channel access as defined in 37.213 [24]. NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is 		comply with the minimum requirements specified for the DL CA configurations
 NOTE 9: FFS. NOTE 10: When this band is used for V2X SL service, the band is exclusively used for NR V2X in particular regions. NOTE 11: This band is unlicensed band used for V2X service. There is no expected network deployment in this band. NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3650 MHz and 3650 – 3980 MHz. NOTE 13: This band is restricted to operation with shared spectrum channel access as defined in 37.213 [24]. NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. Special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is 		CA_n66B and CA_n66(2A) in the current version of the specification.
 NOTE 10: When this band is used for V2X SL service, the band is exclusively used for NR V2X in particular regions. NOTE 11: This band is unlicensed band used for V2X service. There is no expected network deployment in this band. NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3650 MHz and 3650 – 3980 MHz. NOTE 13: This band is restricted to operation with shared spectrum channel access as defined in 37.213 [24]. NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is 	NOTE 8:	This band is applicable in China only.
 V2X in particular regions. NOTE 11: This band is unlicensed band used for V2X service. There is no expected network deployment in this band. NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3650 MHz and 3650 – 3980 MHz. NOTE 13: This band is restricted to operation with shared spectrum channel access as defined in 37.213 [24]. NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is 	NOTE 9:	FFS.
 NOTE 11: This band is unlicensed band used for V2X service. There is no expected network deployment in this band. NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3650 MHz and 3650 – 3980 MHz. NOTE 13: This band is restricted to operation with shared spectrum channel access as defined in 37.213 [24]. NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is 	NOTE 10): When this band is used for V2X SL service, the band is exclusively used for NR
 deployment in this band. NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3650 MHz and 3650 – 3980 MHz. NOTE 13: This band is restricted to operation with shared spectrum channel access as defined in 37.213 [24]. NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is 		V2X in particular regions.
 NOTE 12: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In Canada this band is restricted to 3450 – 3650 MHz and 3650 – 3980 MHz. NOTE 13: This band is restricted to operation with shared spectrum channel access as defined in 37.213 [24]. NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is 	NOTE 11	
Canada this band is restricted to 3450 – 3650 MHz and 3650 – 3980 MHz. NOTE 13: This band is restricted to operation with shared spectrum channel access as defined in 37.213 [24]. NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20- 51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications.		
 NOTE 13: This band is restricted to operation with shared spectrum channel access as defined in 37.213 [24]. NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20-51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is 	NOTE 12	: In the USA this band is restricted to 3450 – 3550 MHz and 3700 – 3980 MHz. In
 defined in 37.213 [24]. NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20- 51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is 		
 NOTE 14: This band is applicable in the USA only subject to FCC Report and Order FCC 20- 51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is 	NOTE 13	
 51 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is 		
 NOTE 15: The requirements for this band are applicable only where no other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is 	NOTE 14	E: This band is applicable in the USA only subject to FCC Report and Order FCC 20-
TDD operating band(s) are used within the frequency range of this band in the same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is		
same geographical area. For scenarios where other NR or E-UTRA TDD operating band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is	NOTE 15	
band(s) are used within the frequency range of this band in the same geographical area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is		
area, special co-existence requirements may apply that are not covered by the 3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is		
3GPP specifications. NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is		
NOTE 16: DL operation in this band is restricted to 1526 – 1536 MHz and UL operation is		
		I
restricted to 1627.5 – 1637.5 MHz and 1646.5 – 1656.5 MHz.	NOTE 16	
		restricted to 1627.5 – 1637.5 MHz and 1646.5 – 1656.5 MHz.

5.2A Operating bands for CA

5.2A.1 Intra-band CA

NR intra-band contiguous carrier aggregation is designed to operate in the operating bands defined in Table 5.2A.1-1 and Table 5.2A.1-2, where all operating bands are within FR1.

NR CA Band	NR Band (Table 5.2-1)	
CA_n40	n40	
CA_n41 ¹	n41	
CA_n46 ¹	n46	
CA_n48	n48	
CA_n66	n66	
CA_n77 ¹	n77	
CA_n78 ¹	n78	
CA_n79 ¹	n79	
NOTE 1: The minimum requirements only apply for R15 non-simultaneous Tx/Rx between all carriers for TDD combinations. In R16,R17,this note is not applicable.		

30	

NR CA Band (Table 5.2-1)					
CA_n48(*)	n48				
CA_n66(*)	n66				
CA_n71(*) n71					
CA_n77(*)	n77				
CA_n78(*)	n78				
NOTE 1: The minimum requirements only apply for non simultaneous Tx/Rx between all carriers. for TDD combinations.					
NOTE 2: The notation CA_nX(*) in this table indicates intra-band non-contiguous CA for band nX. The configurations for each band are in 5.5A.2.					

Table 5.2A.1-2: Intra-band non-contiguous CA operating bands in FR1

5.2A.2 Inter-band CA

NR inter-band carrier aggregation is designed to operate in the operating bands defined in Table 5.2A.2.1-1, 5.2A.2.2-1 and Table 5.2A.2.3-1, where all operating bands are within FR1.

If the mandatory simultaneous Rx/Tx capability applies for a band combination, the mandatory simultaneous Rx/Tx capability also applies for the band combination when the applicable band combination is a subset of a higher order band combination.

Table 5.2A.2-1: Void Table 5.2A.2-2: Void

Table 5.2A.2-3: Void

5.2A.2.1 Inter-band CA (two bands)

Table 5.2A.2.1-1: Inter-band CA operating bands involving FR1 (two bands)

NR CA Band	NR Band (Table 5.2-1)	DL interruption allowed (Note 8)		
CA_n1-n3	n1, n3			
CA_n1-n8	n1, n8			
CA_n1-n77	n1, n77	No		
CA_n1-n78	n1, n78	No		
CA_n1-n79	n1, n79	No		
CA_n2-n5	n2, n5			
CA_n2-n48	n2, n48			
CA_n2-n66	n2, n66			
CA_n2-n77	n2, n77			
CA_n3-n5	n3, n5			
CA_n3-n41 ¹	n3, n41	No		
 CA_n3-n77 ¹	n3, n77	No		
CA_n3-n78 ¹	n3, n78	No		
CA_n3-n79 ¹	n3, n79	No		
CA_n5-n7	n5, n7			
CA_n5-n66	n5, n66			
CA n5-n77	n5, n77			
CA n5n78 ¹	n5, n78	No		
CA_n7-n78 ¹	n7, n78			
CA_n8-n75 ¹	n8, n75			
CA n8-n78 ¹	n8, n78	No		
CA n8-n79 ¹	n8, n79	No		
CA_n24-n41	n24, n41	INO		
CA_n24-n41 CA_n24-n48				
	n24, n48			
CA_n24-n77	n24, n77			
CA_n25-n46 ⁶	n25, n46			
CA_n26-n66	n26, n66			
CA_n26-n70	n26, n70			
CA_n28-n41	n28, n41			
CA_n28-n75 ²	n28, n75	N		
CA_n28_n781	n28, n78	No		
CA_n28-n79	n28, n79			
CA_n29-n66	n29, n66			
CA_n29-n70	n29, n70			
CA_n29-n71	n29, n71			
CA_n41-n78 ¹	n41, n78			
CA_n41-n79 ³	n41, n79	No		
CA_n46-n48 ⁶	n46, n48			
CA_n46-n66 ⁶	n46, n66			
CA_n48-n66	n48, n66			
CA_n48-n70	n48, n70			
CA_n48-n71	n48, n71			
CA_n66-n70	n66, n70			
CA_n66-n71	n66, n71			
CA_n66-n77	n66, n77			
CA_n70-n71	n70, n71			
CA_n75-n78 ¹	n75, n78			
CA_n76-n78 ¹	n76, n78			
CA_n77-n79	n77, n79			
CA_n78-n79⁵	n78, n79			

NOTE 1:	Applicable for UE supporting inter-band carrier aggregation with mandatory simultaneous Rx/Tx capability.
NOTE 2:	The frequency range in band n28 is restricted for this band combination to 703- 733 MHz for the UL and 758-788 MHz for the DL.
NOTE 3:	The frequency range below 2506MHz for Band n41 is not used in this combination.
NOTE 4:	Applicable for frequency range above 4800 MHz for Band n79 in this combination.
NOTE 5:	For UEs supporting band n77, the minimum requirements apply only when there is non-simultaneous Rx/Tx operation between n78-n79 NR carriers. This restriction applies also for these carriers when applicable NR CA configuration is part of a higher order configuration.
NOTE 6:	The PCell is allocated in the licensed band in this combination.
NOTE 7:	The minimum requirements apply only when there is non-simultaneous Rx/Tx operation between n77-n79 NR carriers. This restriction applies also for these carriers when applicable NR CA configuration is part of a higher order configuration.
NOTE 8:	Applicable when dynamic Tx switching is conducted. The DL interruption requirement is specified in clause 8.2.2.2.10 of 38.133 [13].

5.2A.2.2 Inter-band CA (three bands)

Table 5.2A.2.2-1: Inter-band CA operating bands involving FR1 (three bands)

NR CA Band	NR Band (Table 5.2-1)
CA_n26-n66-n70	n26, n66, n70
CA_n29-n66-n70	n29, n66, n70
CA_n48-n66-n70	n48, n66, n70
CA_n48-n66-n71	n48, n66, n71
CA_n48-n70-n71	n48, n70, n71
CA_n66-n70-n71	n66, n70, n71
CA_n1-n78-n79	n1, n78, n79

5.2A.2.3 Inter-band CA (four bands)

Table 5.2A.2.3-1: Inter-band CA operating bands involving FR1 (four bands)

5.2B Operating bands for DC

The operating bands are specified in clause 5.5B for operation with NR dual connectivity configured, where all operating bands are within FR1.

If the mandatory simultaneous Rx/Tx capability applies for a band combination, the mandatory simultaneous Rx/Tx capability also applies for the band combination when the applicable band combination is a subset of a higher order band combination.

5.2C Operating band combination for SUL

NR operation is designed to operate in the operating band combination defined in Table 5.2C-1, Table 5.2C-2, Table 5.2C-3 and Table 5.2C-4, where all operating bands are within FR1.

If the mandatory simultaneous Rx/Tx capability applies for a band combination, the mandatory simultaneous Rx/Tx capability also applies for the band combination when the applicable band combination is a subset of a higher order band combination.

for SUL (Table 5.2-1) SUL_n41-n83 ² n41, n83 SUL_n78-n80 ² n78, n80 SUL_n78-n81 ² n78, n81 SUL_n78-n82 ² n78, n82 SUL_n78-n82 ² n78, n83 SUL_n78-n84 ² n78, n83 SUL_n78-n84 ² n78, n84 SUL_n78-n86 ² n78, n86 SUL_n79-n80 ² n79, n80 SUL_n79-n81 ² n79, n81 SUL_n79-n83 ² n79, n83 NOTE 1: If a UE is configured with both NR UL and NR SUL carriers in a cell, the switching time				
SUL_n78-n802 n78, n80 SUL_n78-n812 n78, n81 SUL_n78-n822 n78, n82 SUL_n78-n822 n78, n82 SUL_n78-n832 n78, n83 SUL_n78-n842 n78, n84 SUL_n78-n862 n78, n86 SUL_n79-n802 n79, n80 SUL_n79-n812 n79, n81 SUL_n79-n832 n79, n83 NOTE 1: If a UE is configured with both NR UL and NR				
SUL_n78-n81 ² n78, n81 SUL_n78-n82 ² n78, n82 SUL_n78-n83 ² n78, n83 SUL_n78-n84 ² n78, n84 SUL_n78-n86 ² n78, n86 SUL_n79-n80 ² n79, n80 SUL_n79-n81 ² n79, n81 SUL_n79-n83 ² n79, n83 NOTE 1: If a UE is configured with both NR UL and NR				
SUL_n78-n82 ² n78, n82 SUL_n78-n83 ² n78, n83 SUL_n78-n84 ² n78, n84 SUL_n78-n86 ² n78, n86 SUL_n79-n80 ² n79, n80 SUL_n79-n81 ² n79, n81 SUL_n79-n83 ² n79, n83 NOTE 1: If a UE is configured with both NR UL and NR				
SUL_n78-n832 n78, n83 SUL_n78-n842 n78, n84 SUL_n78-n862 n78, n86 SUL_n79-n802 n79, n80 SUL_n79-n812 n79, n81 SUL_n79-n832 n79, n83 NOTE 1: If a UE is configured with both NR UL and NR				
SUL_n78-n842 n78, n84 SUL_n78-n862 n78, n86 SUL_n79-n802 n79, n80 SUL_n79-n812 n79, n81 SUL_n79-n832 n79, n83 NOTE 1: If a UE is configured with both NR UL and NR				
SUL_n78-n862 n78, n86 SUL_n79-n802 n79, n80 SUL_n79-n812 n79, n81 SUL_n79-n832 n79, n83 NOTE 1: If a UE is configured with both NR UL and NR				
SUL_n79-n80 ² n79, n80 SUL_n79-n81 ² n79, n81 SUL_n79-n83 ² n79, n83 NOTE 1: If a UE is configured with both NR UL and NR				
SUL_n79-n81 ² n79, n81 SUL_n79-n83 ² n79, n83 NOTE 1: If a UE is configured with both NR UL and NR				
SUL_n79-n83 ² n79, n83 NOTE 1: If a UE is configured with both NR UL and NR				
NOTE 1: If a UE is configured with both NR UL and NR				
5				
SUL carriers in a cell, the switching time				
SUL carriers in a cell, the switching time				
between NR UL carrier and NR SUL carrier is				
Ous.				
NOTE 2: For UE supporting SUL band combination				
simultaneous Rx/Tx capability is mandatory.				
NOTE 3: For release 15 and release 16 UE supporting				
SUL band combination, UL MIMO is not				
configured on SUL carrier.				

Table 5.2C-1: Operating band combination for SUL in FR1

Table 5.2C-2: Operating SUL band combination with intra-band non-contiguous CA in FR1

FFS

Table 5.2C-3: Operating SUL band combination with intra-band contiguous CA in FR1

NR Band combination	NR Band				
for SUL					
SUL_n41-n83	SUL_n41-n83 n41, n83				
SUL_n78-n80 n78, n80					
SUL_n78-n84	SUL_n78-n84 n78, n84				
SUL_n79-n83	= ,				
NOTE 1: If a UE is configured with both NR UL and NR SUL carriers in a cell, the switching time between NR UL carrier and NR SUL carrier is 0 us.					
	For UE supporting SUL band combination simultaneous Rx/Tx capability is mandatory.				

Table 5.2C-4: Operating SUL band combination with inter-band CA in FR1

NR Band combination for SUL	NR Band (Table 5.2-1)			
CA_n1_SUL_n78-n80	n1, n78, n80			
CA_n1_SUL_n78-n84	n1, n78, n84			
CA_n3_SUL_n78-n80	n3, n78, n80			
CA_n28_SUL_n41-n83 n28, n41, n83				
CA_n28_SUL_n79-n83 n28, n79, n83				
NOTE 1: If a UE is configured with both NR UL and NR SUL carriers in a cell, the switching time between NR UL carrier and NR SUL carrier is 0 us.				
	For UE supporting SUL band combination simultaneous Rx/Tx capability is mandatory.			

5.2D Operating bands for UL MIMO

NR is designed to support UL MIMO where all of the operating bands are in FR1 defined in Table 5.2D-1.

Table 5.2D-1: NR operating bands for UL MIMO in FR1

NR operating band
n1
n2
n3
n7
n25
n30 ¹
n34
n38
n39
n40
n41
n46
n71 ²
n77
n95
n97
NOTE 1: Uplink transmission is not allowed at this band for UE with external vehicle-mounted antennas.
NOTE 2: UL MIMO is targeted for FWA form factor.

5.2E Operating band for V2X

5.2E.1 V2X operating bands

NR V2X is designed to operate in the operating bands in FR1 defined in Table 5.2E.1-1.

V2X Operating Band Sidelink (SL) Transmission operating band Sidelink (SL) Reception operating band Duplex Mode Int					Interface		
Band Ful_low - Ful_high FDL_low - FDL_high Widde							
n381	2570 MHz -	2620 MHz	2570 MHz	-	2620 MHz	HD	PC5
n47	5855 MHz -	5925 MHz	5855 MHz	-	5925 MHz	HD	PC5
NOTE 1: When this band is used for V2X SL service, the band is exclusively used for NR V2X in particular regions.							

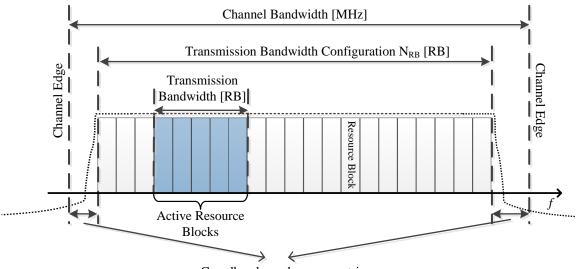
5.2E.2 V2X operating bands for concurrent operation

NR V2X operation is designed to operate concurrent with NR uplink/downlink on the operating bands combinations listed in Table 5.2E.2-1.

Table 5.2E.2-1: Inter-band con-current V2X operating bands

V2X con-current operating Band	NR or V2X Operating Band	Interface
V2X n71-n47	n71	Uu
VZA_117 1-1147	n47	PC5

5.3 UE channel bandwidth


5.3.1 General

The UE channel bandwidth supports a single NR RF carrier in the uplink or downlink at the UE. From a BS perspective, different UE channel bandwidths may be supported within the same spectrum for transmitting to and receiving from UEs connected to the BS. Transmission of multiple carriers to the same UE (CA) or multiple carriers to different UEs within the BS channel bandwidth can be supported.

From a UE perspective, the UE is configured with one or more BWP / carriers, each with its own UE channel bandwidth. The UE does not need to be aware of the BS channel bandwidth or how the BS allocates bandwidth to different UEs.

The placement of the UE channel bandwidth for each UE carrier is flexible but can only be completely within the BS channel bandwidth.

The relationship between the channel bandwidth, the guardband and the maximum transmission bandwidth configuration is shown in Figure 5.3.1-1.

Guardband, can be asymmetric

Figure 5.3.1-1: Definition of the channel bandwidth and the maximum transmission bandwidth configuration for one NR channel

5.3.2 Maximum transmission bandwidth configuration

The maximum transmission bandwidth configuration N_{RB} for each UE channel bandwidth and subcarrier spacing is specified in Table 5.3.2-1.

SCS (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	35 MHz	40 MHz	45 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
(KEZ)	NRB	NRB	NRB	NRB	NRB	NRB	NRB	Nrb	NRB	NRB	NRB	NRB	NRB	NRB	Nrb
15	25	52	79	106	133	160	188	216	242	270	N/A	N/A	N/A	N/A	N/A
30	11	24	38	51	65	78	92	106	119	133	162	189	217	245	273
60	N/A	11	18	24	31	38	44	51	58	65	79	93	107	121	135

Table 5.3.2-1: Maximum transmission bandwidth configuration N_{RB}

5.3.3 Minimum guard band and transmission bandwidth configuration

The minimum guard band for each UE channel bandwidth and SCS is specified in Table 5.3.3-1.

SCS (kHz)	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	35 MHz	40 MHz	45 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz
15	242.5	312.5	382.5	452.5	522.5	592.5	572.5	552.5	712.5	692. 5	N/A	N/A	N/A	N/A	N/A
30	505	665	645	805	785	945	925	905	1065	1045	825	965	925	885	845
60	N/A	1010	990	1330	1310	1290	1630	1610	1590	1570	1530	1490	1450	1410	1370

Table 5.3.3-1: Minimum guard band for each UE channel bandwidth and SCS (kHz)

NOTE: The minimum guard bands have been calculated using the following equation: (BW_{channel} x 1000 (kHz) - $N_{RB} \times SCS \times 12$ / 2 - SCS/2, where N_{RB} are from Table 5.3.2-1.

Figure 5.3.3-1: Void

The number of RBs configured in any channel bandwidth shall ensure that the minimum guard band specified in this clause is met.

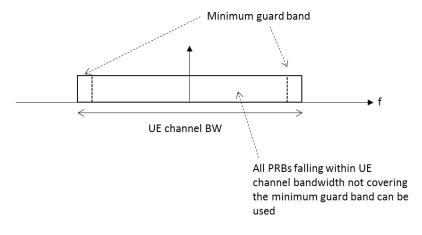
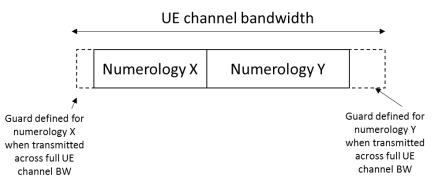
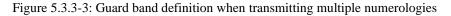




Figure 5.3.3-2: UE PRB utilization

In the case that multiple numerologies are multiplexed in the same symbol due to BS transmission of SSB, the minimum guard band on each side of the carrier is the guard band applied at the configured channel bandwidth for the numerology that is received immediately adjacent to the guard.

If multiple numerologies are multiplexed in the same symbol and the UE channel bandwidth is >50 MHz, the minimum guardband applied adjacent to 15 kHz SCS shall be the same as the minimum guardband defined for 30 kHz SCS for the same UE channel bandwidth.

NOTE: Figure 5.3.3-3 is not intended to imply the size of any guard between the two numerologies. Internumerology guard band within the carrier is implementation dependent.

37

[For a UE supporting wideband operation], the nominal intra-cell guard bands and the corresponding sizes of the RB sets separated by the said guard bands are as specified in Table 5.3.3-2 for each UE channel bandwidth and sub-carrier spacing for the downlink and uplink. The nominal intra-cell guard bands in Table 5.3.3-2 are applicable when the respective IE *intraCellGuardBandsUL-List* and *intraCellGuardBandsDL-List* [6] for the uplink and downlink are not provided, as specified in [12] clause 7.

38

SCS (kHz)	40 MHz	60 MHz	80 MHz							
15	105-6-105 (216)	N/A	N/A							
30	50-6-50 50-6-50-6-50 50-6-50-6-50 (106) (162) (217)									
60	(51) (79) (107)									
NOTE 1: The intra-cell guard band is denoted TBW ₀ -GB ₀ GB _{N_RBset-2} -TBW _{N_RBset-1} for N_RBset > 1 number of RB-sets with TBW _r the maximum transmission bandwidth (PRB) of RB-set <i>r</i> and GB _r the guard band (PRB) above the upper edge of RB-set <i>r</i> . The RB-set 0 is starting at the first common resource block (CRB) of the carrier as indicated by <i>offsetToCarrier</i> . The total transmission bandwidth configuration (size of resource grid) including guard bands is given in between parentheses.										

Table 5.3.3-2: Nominal intra-cell guard bands for wideband operation

For a UE that supports shared spectrum channel access, there are no uplink or downlink intra-cell guard bands for operation with 10 MHz and 20 MHz channel bandwidths; the maximum transmission bandwidth configurations for these channel bandwidths are in accordance with clause 5.3.2.

For each UE channel bandwidth and sub-carrier spacing given by Table 5.3.3-2, the maximum transmission bandwidth configuration of the carrier including intra-cell guard bands, if configured for the uplink and downlink by the respective IE *intraCellGuardBandsUL-List* and *intraCellGuardBandsDL-List* [6], and corresponding RB-set(s) shall be in accordance with clause 5.3.2 with a minimum inter-cell guard band of the UE channel bandwidth as specified in Table 5.3.3-1 for the uplink and downlink. Minimum requirements specified for wideband operation in Clause 6 and Clause 7 also apply for intra-cell guard bands larger than the nominal sizes in Table 5.3.3-2 as listed in Table 5.3.3-3 for each sub-carrier spacing; each guard band in order of CRB index must be larger than or equal to the corresponding nominal guard band specified in Table 5.3.3-2 for each channel bandwidth.

Parameter	Unit	SCS					
		15 kHz	30 kHz				
Intra-cell guard band (size)	PRB	6,7	5,6,7				
Transmission bandwidth (size) of RB-set	PRB	104,105	49,50,51				

If the UE is configured with zero width intra-cell guard bands for the uplink and downlink by the IE *intraCellGuardBandsUL-List* and *intraCellGuardBandsDL-List* [6] on a carrier greater than 20 MHz, the maximum transmission bandwidth configuration for the uplink and downlink shall be in accordance with clause 5.3.2 with a minimum inter-cell guard band of the UE channel bandwidth as specified in Table 5.3.3-1.

5.3.4 RB alignment

For each numerology, its common resource blocks are specified in Clause 4.4.4.3 in TS 38.211 [8], and the starting point of its transmission bandwidth configuration on the common resource block grid for a given channel bandwidth is indicated by an offset to "Reference point A" in the unit of the numerology. The *UE transmission bandwidth configuration* is indicated by the higher layer parameter *carrierBandwidth* [6] and will fulfil the minimum UE guard band requirement specified in Clause 5.3.3.

5.3.5 UE channel bandwidth per operating band

The requirements in this specification apply to the combination of channel bandwidths, SCS and operating bands shown in Table 5.3.5-1. The transmission bandwidth configuration in Table 5.3.2-1 shall be supported for each of the specified channel bandwidths. The channel bandwidths are specified for both the TX and RX path.

Table 5.3.5-1: Channel Bandwidths for each NR band

4	1

NR	SCS							UE Ch	annel	bandw	idth (N	/Hz)				
Band	(kHz)	5	10	15	20	25	30	35	40	45	50	60	70 ⁶	80	90 ⁶	100
Bulla	15	5	10	15	20	25 ⁶	30 ⁶	- 55	40 ⁶	45 ¹²	50 ⁶	00	10	00	30	100
n1		5				25 ⁶	30 ⁶		40 ⁶	45 ¹²	50 ⁶					
n1	30		10	15	20					45 ¹²						<u> </u>
	60	-	10	15	20	25 ⁶	30 ⁶	-	40 ⁶	45'*	50 ⁶	-				
	15	5	10	15	20	25	30		40							<u> </u>
n2	30		10	15	20	25	30		40							
	60		10	15	20	25	30		40							
	15	5	10	15	20	25	30	35	40	45	50					
n3	30		10	15	20	25	30	35	40	45	50					
	60		10	15	20	25	30	35	40	45	50					
	15	5	10	15	20	25 ³										
n5	30	_	10	15	20	25 ³										
110	60															+
	15	5	10	15	20	25	20		40		50					
		5			20	25	30									
n7	30		10	15	20	25	30		40		50					<u> </u>
	60		10	15	20	25	30		40		50					<u> </u>
	15	5	10	15	20			35 ³								
n8	30		10	15	20			35 ³								
	60															
	15	5	10	15												
n12	30		10	15												
	60															-
	15	5	10										1			1
n14 ¹¹		5	10													
n14	30		10							1						
	60	_						-								<u> </u>
	15	5	10	15	20											
n20	30		10	15	20											
	60															
	15	5	10													
n24	30		10													
	60		10													
	15	5	10	15	20	25 ⁶	30 ⁶		40 ⁶							
n25	30	-	10	15	20	25 ⁶	30 ⁶		406							-
	60		10	15	20	25 ⁶	30 ⁶		406							+
	15	5	10	15	20	25	50		0							
n26		5														
	30	_	10	15	20		0.06.0									<u> </u>
	15	5	10	15	20 ⁹		30 ^{6,9}									<u> </u>
n28	30		10	15	20 ⁹		30 ^{6,9}									
	60															
	15	5	10													
n29	30		10													
	60			L _						L			L			
	15	5	10													
n30	30		10	1				1	1	İ	1	1	İ			1
-	60						1	1	<u> </u>	t	<u> </u>	<u> </u>	t		1	1
	15	5	10	15				1								1
n34	30		10	15												+
1134								+	<u> </u>	<u> </u>		<u> </u>	}			╂────
	60	-	10	15		05	00		40							───
0-11	15	5	10	15	20	25	30	<u> </u>	40							───
n38 ¹¹	30		10	15	20	25	30		40		<u> </u>	L				───
	60		10	15	20	25	30		40							<u> </u>
	15	5	10	15	20	25	30		40							
n39	30		10	15	20	25	30		40							
	60		10	15	20	25	30		40							
	15	5 ⁷	10	15	20	25	30	1	40	t	50	<u> </u>	t		1	1
n40	30	-	10	15	20	25	30	1	40		50	60		80		1
	60		10	15	20	25	30	1	40	<u> </u>	50	60		80		1
n/1	15		10	15	20	20	30		40		50	00		00		┼───
n41	10		10	61	20	I	30	<u> </u>	40	L	50	I	L			<u> </u>

л	c
4	4

Release II	Release	17
------------	---------	----

n46

10⁷

10⁷

10⁷

	10		10		20		30	40					1	
n47 ¹¹	30		10		20		30	40						
	60		10		20		30	40						
	15	57	10	15	20		30	40	50 ⁸					
n48	30		10	15	20		30	40	50 ⁸	60 ⁸	70 ⁸	80 ⁸	90 ^{8,10}	100 ⁸
·	60		10	15	20		30	40	50 ⁸	60 ⁸	70 ⁸	80 ⁸	90 ^{8,10}	100 ⁸
	15	5 ⁷	10	15	20			40	50					
n50	30		10	15	20			40	50	60		80 ³		
·	60		10	15	20			40	50	60		80 ³		
	15	5												
n51	30													
-	60													
	15	5	10											
n53	30		10											
-	60		10											
	15	5	10	15	20									
n65	30	-	10	15	20									
	60		10	15	20									
	15	5	10	15	20	25 ⁶	30 ⁶	40						
n66	30		10	15	20	25 ⁶	30 ⁶	40						
	60		10	15	20	25 ⁶	30 ⁶	40						
	15	5	10	15	20 ³	25 ³								
n70	30	_	10	15	20 ³	25 ³								
-	60		10	15	20 ³	25 ³								
	15	5	10	15	20	_								
n71	30	-	10	15	20									
-	60													
	15	5	10	15	20									
n74	30	-	10	15	20									
	60		10	15	20									
	15	5	10	15	20									
n75	30		10	15	20									
	60		10	15	20									
	15	5												
n76	30	-												
	60													
	15		10	15	20	25	30	40	 50					
n77	30		10	15	20	25	30	40	 50	60	70 ¹⁰	80	90 ¹⁰	100
	60		10	15	20	25	30	40	50	60	70 ¹⁰	80	90 ¹⁰	100
	15		10	15	20	25	30	40	50					
n78	30		10	15	20	25	30	40	 50	60	70 ¹⁰	80	90	100
	60		10	15	20	25	30	40	50	60	70 ¹⁰	80	90	100
	15							40	 50					
n79 ¹¹	30		-					40	50	60		80		100
	60							40	50	60		80		100
	15	5	10	15	20	25	30		 					
n80	30		10	15	20	25	30							
	60		10	15	20	25	30							
	15	5	10	15	20									
n81	30		10	15	20									
	60		10		20				-					
	15	5	10	15	20									
n82	30		10	15	20				-					
102	60	+	10	10	20			 	 					

Release	17
---------	----

n83	15	5	10	15	20		30 ⁹									
105	30		10	15	20		30 ⁹									
	60															
-	15	5	10	15	20	25	30		40		50					
n84	30		10	15	20	25	30		40		50					
	60		10	15	20	25	30		40		50					
_	15	5	10	15	20				40							
n86	30		10	15	20				40							
	60		10	15	20				40							
_	15	5	10	15												
n95	30		10	15												
	60		10	15												
	15				20				40							
n96	30				20				40			60		80		
	60				20				40			60		80		
	15	5	10	15	20	25	30		40		50					
n97	30		10	15	20	25	30		40		50	60	70	80	90	100
ľ	60		10	15	20	25	30		40		50	60	70	80	90	100
	15	5	10													
n99	30		10													
H																
NOTE 2:	: Void.		10													
NOTE 1: NOTE 2: NOTE 3: NOTE 4: NOTE 5: NOTE 5: NOTE 6: NOTE 7: NOTE 8: NOTE 9:	 Void. Void. This L For test for test to high For test and list DL, set This L For this Cell For the downlist For the downlist 	st cor tt SCS nest s st cor st and elect t JE cha is bar part c is bar ink SC e 20 I	annel to anfigurat S, the L upport I list the he close annel to annel to annel to dwidth of DC co ndwidth Cell pa	tion ta owes ed SC tion ta e test sest S bandw n, the n, the n, the n, the n, the n, the n cA o	bles fro t SCS S per bles fro SCS a CS sup idth is minimu configu minimu A confid th, the	om the refers chann om the s Mid o option um req uration um req figurati e minin	transm to lowes el bandy transm or any o d by the al in R1 uiremen uiremen on.	itter and st suppo width. itter and ther val UE in t 5. its are r uts are r uireme	d rece orted \$ d rece lue; if f poth U restrict restrict	iver tes SCS pe iver tes that value L and E ed to o ed to o es specif	r chanr ts in Se ue is no DL. peratio peratio ied for	nel ban ection (ot supp n wher n wher NR UL	dwidth, 5 and 7 ported b n carrie n carrie . carrier	Highes that re by the L r is con r is con	st SCS r fer to thi JE in UL figured a figured a	efers s table and/o as an as a
NOTE 2: NOTE 3: NOTE 4: NOTE 5: NOTE 6: NOTE 7: NOTE 8:	 Void. Void. This L For testor /li>	st cor at SCS nest s st cor at and elect t JE cha is bar part c is bar ink SC e 20 I er 71 ied fo JE cha is bar	annel b afigurat S, the L upport figurat list the he clos annel b adwidth Cell pa MHz ba 3-723 r NR L annel b ad, UE	tion ta Lowes red SC tion ta te test s sest S bandw or CA o n, the n or CA o n, the n rt of C andwid MHz o JL tran bandw chanr	bles fro t SCS S per bles fro SCS a CS sup idth is minimu configu configu	om the refers channe om the s Mid o opported option um req figurati e minin 738 M ion bar option adwidth	transm to lowes el bandy transm or any o d by the al in R1: uiremen on. num req Hz. For ndwidth al in R10 as which	itter and st suppo width. itter and ther val UE in t 5. its are r uireme the 30N configu 6. are ap	d rece orted \$ d rece lue; if f poth U restrict restrict nts are MHz ba iration	iver tes SCS pe that vali L and E ed to o ed to o e specif andwidt confine	r chanr ts in Se ue is no DL. peratio peratio ried for th, the n ed to ei	nel ban ection (ot supp n wher n wher NR UL minimu ther 70	dwidth, 5 and 7 borted b n carrie n carrie . carriei Im requ 13-733 o	Highes that re by the L r is con r is con freque iremen or 718-	st SCS r fer to thi JE in UL figured a figured a encies co nts are 748 MH	efers s table and/o as an as a onfinec z.

5.3.6 Asymmetric channel bandwidths

The UE channel bandwidth can be asymmetric in downlink and uplink. In asymmetric channel bandwidth operation, the narrower carrier shall be confined within the frequency range of the wider channel bandwidth.

In FDD, the confinement is defined as a maximum deviation to the default Tx-Rx carrier centre frequency separation (defined in Table 5.4.4-1) as following:

 $\Delta F_{TX\text{-}RX} = \mid (BW_{DL} - BW_{UL})/2 \mid$

The operating bands and supported asymmetric channel bandwidth combinations are defined in Table 5.3.6-1.

NR Band	Channel bandwidths for UL (MHz)	Channel bandwidths for DL (MHz)	Asymmetric channel bandwidth combination set			
n24	10	5	0			
	5, 10	20, 40	0			
	20	40				
n66	5, 10	20, 25, 30, 40	1			
	20, 25, 30	40				
r 70	5,10	15	0			
n70	5, 10, 15	20, 25				
	5	10	0			
n71	10	15				
	15	20				
NOTE 1: The assignment of the paired UL and DL channels are subject to a TX- RX separation as specified in clause 5.4.4.						

In TDD, the operating bands and supported asymmetric channel bandwidth combinations are defined in Table 5.3.6-2.

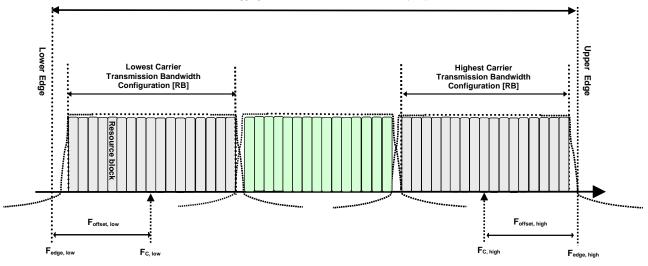
NR Band		Channel bandwidths for UL (MHz)	Channel bandwidths for DL (MHz)			
n50		60	80			
	Both centre frequency and BWP-ID shall ma between DL and UL carriers as defined in T 38.331 [6] cl. 6.3.2 and TS 38.213 [9] clause In a case a UE is configured with a full width BWP within both UL/ DL channels, the centr					
NOTE 3:	A po	uency of UL/ DL channel osition of Point A is comn carriers as defined in TS	non between UL and			

5.3A UE channel bandwidth for CA

5.3A.1 General

Figure 5.3A.1-1: Void

Figure 5.3A.1-2: Void


5.3A.2 Maximum transmission bandwidth configuration for CA

For carrier aggregation, the maximum transmission bandwidth configuration is defined per component carrier and the requirement is specified in subclause 5.3.2.

5.3A.3 Minimum guard band and transmission bandwidth configuration for CA

For intra-band contiguous carrier aggregation, *Aggregated Channel Bandwidth* and *Guard Bands* are defined as follows, see Figure 5.3A.3-1.

Aggregated Channel Bandwidth, BW_{channel_CA} (MHz)

Figure 5.3A.3-1: Definition of Aggregated Channel Bandwidth for intra-band carrier aggregation

The aggregated channel bandwidth, BW_{Channel_CA}, is defined as

 $BW_{Channel_CA} = F_{edge,high} - F_{edge,low}$ (MHz).

The lower bandwidth edge $F_{edge, low}$ and the upper bandwidth edge $F_{edge, high}$ of the aggregated channel bandwidth are used as frequency reference points for transmitter and receiver requirements and are defined by

 $F_{edge,low} = F_{C,low} - F_{offset,low}$

 $F_{edge,high} = F_{C,high} + F_{offset,high}$

The lower and upper frequency offsets depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carrier and are defined as

 $F_{offset,low} = (N_{RB,low}*12 + 1)*SCS_{low}/2 + BW_{GB} (MHz)$

 $F_{offset,high} = (N_{RB,high}*12 - 1)*SCS_{high}/2 + BW_{GB} (MHz)$

 $BW_{GB} = max(BW_{GB,Channel(k)})$

 $N_{RB,low}$ and $N_{RB,high}$ are the transmission bandwidth configurations according to Table 5.3.2-1 for the lowest and highest assigned component carrier, SCS_{low} and SCS_{high} are the sub-carrier spacing for the lowest and highest assigned component carrier respectively. SCS_{low} , SCS_{high} , $N_{RB,low}$, $N_{RB,high}$, and $BW_{GB,Channel(k)}$ use the largest μ value among the subcarrier spacing configurations supported in the operating band for both of the channel bandwidths according to Table 5.3.5-1 and $BW_{GB,Channel(k)}$ is the minimum guard band for carrier k according to Table 5.3.3-1 for the said μ value. In case there is no common μ value for both of the channel bandwidths, $\mu=1$ is used for SCS_{low} , SCS_{high} , $N_{RB,low}$, $N_{RB,high}$, and $BW_{GB,Channel(k)}$.

For intra-band non-contiguous carrier aggregation *Sub-block Bandwidth* and *Sub-block edges* are defined as follows, see Figure 5.3A.3-2.

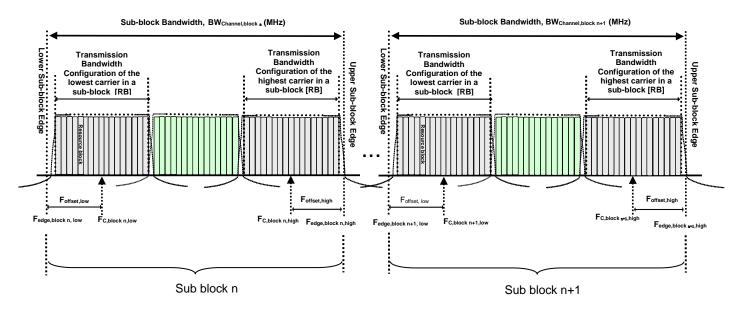


Figure 5.3A.3-2: Definition of sub-block bandwidth for intra-band non-contiguous spectrum

The lower sub-block edge of the Sub-block Bandwidth (BW_{Channel,block}) is defined as

 $F_{edge,block, low} = F_{C,block,low} - F_{offset, low}$

The upper sub-block edge of the Sub-block Bandwidth is defined as

 $F_{edge,block,high} = F_{C,block,high} + F_{offset,high}.$

The Sub-block Bandwidth, BW_{Channel,block}, is defined as follows:

 $BW_{Channel,block} = F_{edge,block,high} - F_{edge,block,low} (MHz)$

The lower and upper frequency offsets $F_{offset,block,low}$ and $F_{offset,block,high}$ depend on the transmission bandwidth configurations of the lowest and highest assigned edge component carriers within a sub-block and are defined as

 $F_{offset,block,low} = (N_{RB,low}*12 + 1)*SCS_{low}/2 + BW_{GB} (MHz)$

 $F_{offset,block,high} = (N_{RB,high}*12 - 1)*SCS_{high}/2 + BW_{GB}(MHz)$

 $BW_{GB} = max(BW_{GB,Channel(k)})$

where $N_{RB,low}$ and $N_{RB,high}$ are the transmission bandwidth configurations according to Table 5.3.2-1 for the lowest and highest assigned component carrier within a sub-block, respectively. SCS_{low} and SCS_{high} are the sub-carrier spacing for the lowest and highest assigned component carrier within a sub-block, respectively. SCS_{low} , SCS_{high} , $N_{RB,low}$, $N_{RB,high}$, and $BW_{GB,Channel(k)}$ use the largest μ value among the subcarrier spacing configurations supported in the operating band for both of the channel bandwidths according to Table 5.3.5-1 and $BW_{GB,Channel(k)}$ is the minimum guard band for carrier k according to Table 5.3.3-1 for the said μ value. In case there is no common μ value for both of the channel bandwidths, μ =1 is used for SCS_{low} , SCS_{high} , $N_{RB,low}$, $N_{RB,high}$, and $BW_{GB,Channel(k)}$.

The sub-block gap size between two consecutive sub-blocks Wgap is defined as

 $W_{gap} = F_{edge,block n+1,low} - F_{edge,block n,high} (MHz)$

5.3A.4 Void

5.3A.5 UE channel bandwidth per operating band for CA

The requirements for carrier aggregation in this specification are defined for carrier aggregation configurations.

For intra-band contiguous carrier aggregation, a carrier aggregation configuration is a single operating band supporting a carrier aggregation bandwidth class with associated bandwidth combination sets specified in clause 5.5A.1. For each carrier aggregation configuration, requirements are specified for all aggregated channel bandwidths contained in a bandwidth combination set, a UE can indicate support of several bandwidth combination sets per carrier aggregation configuration. For intra-band non-contiguous carrier aggregation, a carrier aggregation configuration is a single operating band supporting two or more sub-blocks, each supporting a carrier aggregation bandwidth class.

For intra-band non-contiguous uplink carrier aggregation, frequency separation class (Fs) specified in Table 5.3A.5-2 indicates the maximum frequency span between lower edge of lowest component carrier and upper edge of highest component carrier that UE can support per band combination in uplink in non-contiguous intra-band operation when the signalling is absent for dualPA-Architecture IE.

For inter-band carrier aggregation, a carrier aggregation configuration is a combination of operating bands, each supporting a carrier aggregation bandwidth class.

NR CA bandwidth class	Aggregated channel bandwidth	Number of contiguous CC	Fallback group
А	BW _{Channel} ≤ BW _{Channel,max}	1	1, 2, 3 ⁴
В	20 MHz ≤ BW _{Channel_CA} ≤ 100 MHz	2	2, 3 ⁴
С	100 MHz < BW _{Channel_CA} ≤ 2 x BW _{Channel,max}	2	1, 3 ⁴
D	200 MHz < BW _{Channel_CA} ≤ 3 x BW _{Channel,max}	3	
E	300 MHz < BW _{Channel_CA} ≤ 4 x BW _{Channel,max}	4	
G	100 MHz < BW _{Channel_CA} ≤ 150 MHz	3	2
Н	150 MHz < BW _{Channel_CA} ≤ 200 MHz	4	
I	200 MHz < BW _{Channel_CA} ≤ 250 MHz	5	
J	250 MHz < BW _{Channel_CA} ≤ 300 MHz	6	
K	300 MHz < BW _{Channel_CA} ≤ 350 MHz	7	
L	350 MHz < BW _{Channel CA} ≤ 400 MHz	8	
M ³	50 MHz ≤ BW _{Channel_CA} ≤ 200 MHz	3	34
N ³	80 MHz ≤ BW _{Channel_CA} ≤ 300 MHz	4	
O ³	100 MHz ≤ BW _{Channel_CA} ≤ 400 MHz	5	
NOTE 2: It is mandatory for fallback group. It	haximum channel bandwidth supported am or a UE to be able to fallback to lower order is not mandatory for a UE to be able to fal t belong to a different fallback group.	r NR CA bandwidth class con	
	class is only applicable to bands identified f	or use with shared spectrum	channel access in
NOTE 4: Fallback group 3 5.2-1.	is only applicable to bands identified for us	se with shared spectrum char	nnel access in Table

Table 5.3A.5-1: NR CA bandwidth classes

Table 5.3A.5-2: NR intra-band non-contiguous UL CA frequency separation classes

NR NC CA frequency separation class	Maximum allowed frequency separation			
1	100 MHz			
II	200 MHz			
III	[600MHz]			

5.3E Channel bandwidth for V2X

5.3E.1 General

NR V2X operation channel bandwidths for each operating band is specified in Table 5.3.5-1 in subclause 5.3.5. The same (symmetrical) channel bandwidth is specified for both the transmission and reception path.

5.3E.2 Channel bandwidth for V2X concurrent operation

For NR V2X inter-band con-current operation in FR1, the NR V2X channel bandwidths for each operating band is specified in Table 5.3E.2-1.

V2X con-current operating band Configuration	NR Bands	SCS kHz	5 MHz	10 MHz	15 MHz	20 MHz	30 MHz	40 MHz	50 MHz	Maximum bandwidth [MHz]	Bandwidth combination set
	n71	15	Yes	Yes	Yes	Yes					
		30		Yes	Yes	Yes					
		60									
V2X_n71A-n47A		15		Yes		Yes	Yes	Yes		60	0
	n47	30		Yes		Yes	Yes	Yes		-	
		60		Yes		Yes	Yes	Yes			

Table 5.3E.2-1: Inter-band con-current V2X configurations

5.3I Channel bandwidth for RedCap

The requirements in this specification apply to the combination of channel bandwidths, SCS and operating bands shown in Table 5.3.5-1 with maximum channel bandwidth of 20MHz. The transmission bandwidth configuration in Table 5.3.2-1 shall be supported for each of the specified channel bandwidths up to 20 MHz. The channel bandwidths are specified for both the TX and RX path.

5.4 Channel arrangement

5.4.1 Channel spacing

5.4.1.1 Channel spacing for adjacent NR carriers

The spacing between carriers will depend on the deployment scenario, the size of the frequency block available and the channel bandwidths. The nominal channel spacing between two adjacent NR carriers is defined as following:

- For NR operating bands with 100 kHz channel raster,

Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2$

- For NR operating bands with 15 kHz channel raster,

Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2 + \{-5kHz, 0kHz, 5kHz\}\}$ for ΔF_{Raster} equals 15 kHz

Nominal Channel spacing = $(BW_{Channel(1)} + BW_{Channel(2)})/2 + \{-10 \text{ kHz}, 0 \text{ kHz}, 10 \text{ kHz}\}$ for ΔF_{Raster} equals 30 kHz

where $BW_{Channel(1)}$ and $BW_{Channel(2)}$ are the channel bandwidths of the two respective NR carriers. The channel spacing can be adjusted depending on the channel raster to optimize performance in a particular deployment scenario.

5.4.2 Channel raster

5.4.2.1 NR-ARFCN and channel raster

The global frequency channel raster defines a set of RF reference frequencies F_{REF} . The RF reference frequency is used in signalling to identify the position of RF channels, SS blocks and other elements.

The global frequency raster is defined for all frequencies from 0 to 100 GHz. The granularity of the global frequency raster is ΔF_{Global} .

RF reference frequencies are designated by an NR Absolute Radio Frequency Channel Number (NR-ARFCN) in the range (0...2016666) on the global frequency raster. The relation between the NR-ARFCN and the RF reference frequency F_{REF} in MHz is given by the following equation, where $F_{REF-Offs}$ and $N_{Ref-Offs}$ are given in Table 5.4.2.1-1 and N_{REF} is the NR-ARFCN.

 $F_{REF} = F_{REF-Offs} + \Delta F_{Global} (N_{REF} - N_{REF-Offs})$

Table 5.4.2.1-1: NR-ARFCN parameters for the global frequency raster

Frequency range (MHz)	ΔF_{Global} (kHz)	FREF-Offs (MHz)	NREF-Offs	Range of NREF
0 - 3000	5	0	0	0 – 599999
3000 - 24250	15	3000	600000	600000 - 2016666

The channel raster defines a subset of RF reference frequencies that can be used to identify the RF channel position in the uplink and downlink. The RF reference frequency for an RF channel maps to a resource element on the carrier. For each operating band, a subset of frequencies from the global frequency raster are applicable for that band and forms a channel raster with a granularity ΔF_{Raster} , which may be equal to or larger than ΔF_{Global} .

For SUL expect n95, n97 bands and for the uplink of all FDD bands defined in Table 5.2-1, and for TDD bands n34, n39, n48, n90 and n38,.

 $F_{\text{REF, shift}} = F_{\text{REF}} + \Delta_{\text{shift}}, \Delta_{\text{shift}} = 0 \text{ kHz or } 7.5 \text{ kHz}.$

where Δ_{shift} is signalled by the network in higher layer parameter frequencyShift7p5khz [6]. For Band n34, n38, n39, n48, $F_{\text{REF, shift}}$ is only applicable to uplink transmissions using a 15 kHz SCS.

The mapping between the channel raster and corresponding resource element is given in Section 5.4.2.2. The applicable entries for each operating band are defined in Section 5.4.2.3

5.4.2.2 Channel raster to resource element mapping

The mapping between the RF reference frequency on the channel raster and the corresponding resource element is given in Table 5.4.2.2-1 and can be used to identify the RF channel position. The mapping depends on the total number of RBs that are allocated in the channel and applies to both UL and DL. The mapping must apply to at least one numerology supported by the UE.

	N _{RB} mod2 = 0	N _{RB} mod2 = 1
Resource element index k	0	6
Physical resource block number $n_{\rm PRB}$	$n_{\rm PRB} = \left\lfloor \frac{N_{\rm RB}}{2} \right\rfloor$	$n_{\rm PRB} = \left\lfloor \frac{N_{\rm RB}}{2} \right\rfloor$

k, n_{PRB} , N_{RB} are as defined in TS 38.211[8].

5.4.2.3 Channel raster entries for each operating band

The RF channel positions on the channel raster in each NR operating band are given through the applicable NR-ARFCN in Table 5.4.2.3-1, using the channel raster to resource element mapping in subclause 5.4.2.2.

For NR operating bands with 100 kHz channel raster, $\Delta F_{Raster} = 20 \times \Delta F_{Global}$. In this case every 20th NR-ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in Table 5.4.2.3-1 is given as <20>.

For NR operating bands with 15 kHz channel raster below 3GHz, $\Delta F_{\text{Raster}} = I \times \Delta F_{\text{Global}}$, where $I \in \{3, 6\}$. Every I^{th} NR-ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in Table 5.4.2.3-1 is given as $\langle I \rangle$.

For NR operating bands with 15 kHz channel raster above 3GHz, $\Delta F_{Raster} = I \times \Delta F_{Global}$, where $I \in \{1,2\}$. Every I^{th} NR-ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in table 5.4.2.3-1 is given as $\langle I \rangle$.

In frequency bands with two or more ΔF_{Raster} : For 15 kHz and 30 kHz channel raster, the higher ΔF_{Raster} applies to channels using only the SCS that is equals to or larger than the higher ΔF_{Raster} and SSB SCS is equal to the higher ΔF_{Raster} .

	Table 5.4.2.	.3-1. Applicable NR-ARFCN per	operating band
NR	ΔF _{Raster}	Uplink	Downlink
operating	(kHz)	Range of NREF	Range of NREF
band		(First – <step size=""> – Last)</step>	(First – <step size=""> – Last)</step>
n1	100	384000 - <20> - 396000	422000 - <20> - 434000
n2	100	370000 - <20> - 382000	386000 - <20> - 398000
n3	100	342000 - <20> - 357000	361000 - <20> - 376000
n5	100	164800 - <20> - 169800	173800 - <20> - 178800
n7	100	500000 - <20> - 514000	524000 - <20> - 538000
n8	100	176000 - <20> - 183000	185000 - <20> - 192000
n12	100	139800 - <20> - 143200	145800 - <20> - 149200
n14	100	157600 - <20> - 159600	151600 - <20> - 153600
n20	100	166400 - <20> - 172400	158200 - <20> - 164200
n24	100	325300 - <20> - 332100	305000 - <20> - 311800
n25	100	370000 - <20> - 383000	386000 - <20> - 399000
n26	100	162800 - <20> - 169800	171800 - <20> - 178800
n28	100	140600 - <20> - 149600	151600 - <20> - 160600
n29	100	N/A	143400 - <20> - 145600
n30	100	461000 - <20> - 463000	470000 - <20> - 472000
n34	100	402000 - <20> - 405000	402000 - <20> - 405000
n38	100	514000 - <20> - 524000	514000 - <20> - 524000
n39	100	376000 - <20> - 384000	376000 - <20> - 384000
n40	100	460000 - <20> - 480000	460000 - <20> - 480000
n41	15	499200 - <3> - 537999	499200 - <3> - 537999
	30	499200 - <6> - 537996	499200 - <6> - 537996
n46²	15	743334 - <1> - 795000	743334 - <1> - 795000
n47	15	790334 - <1> - 795000	790334 - <1> - 795000
n48	15	636667 - <1> - 646666	636667 - <1> - 646666
-	30	636668 - <2> - 646666	636668 - <2> - 646666
n50	100	286400 - <20> - 303400	286400 - <20> - 303400
n51	100	285400 - <20> - 286400	285400 - <20> - 286400
n53	100	496700 - <20> - 499000	496700 - <20> - 499000
n65	100	384000 - <20> - 402000	422000 - <20> - 440000
n66	100	342000 - <20> - 356000	422000 - <20> - 440000
n70	100	339000 - <20> - 342000	399000 - <20> - 404000
n71	100	132600 - <20> - 139600	123400 - <20> - 130400
n75	100	N/A	286400 - <20> - 303400
n76	100	N/A	285400 - <20> - 286400
n77	15	620000 - <1> - 680000	620000 - <1> - 680000
	30	620000 - <2> - 680000	620000 - <2> - 680000
n78	15	620000 - <1> - 653333	620000 - <1> - 653333
	30	620000 - <2> - 653332	620000 - <2> - 653332
n79	15	693334 - <1> - 733333	693334 - <1> - 733333
	30	693334 - <2> - 733332	693334 - <2> - 733332
n80	100	342000 - <20> - 357000	N/A
n81	100	176000 - <20> - 183000	N/A
n82	100	166400 - <20> - 172400	N/A
n83	100	140600 - <20> -149600	N/A
n84	100	384000 - <20> - 396000	N/A
n86	100	342000 - <20> - 356000	N/A
n95	100	402000 - <20> - 405000	N/A
-003	45	705000 .4. 075000	705000 .4. 075000

325300 - <20> - 332100 n99 100 N/A NOTE 1: The channel numbers that designate carrier frequencies so close to the operating band edges that the carrier extends beyond the operating band edge shall not be used. NOTE 2: The following NREF are allowed for operation in Band n46: see Table 5.4.2.3-2. NOTE 3: The following NREF are allowed for operation in Band n96: see Table 5.4.2.3-3.

795000 - <1> - 875000

460000 - <20> - 480000

15

100

n96³

n97

795000 - <1> - 875000

N/A

Channel Bandwidth	Allowed N _{REF}		
10 MHz	782000, 788668		
20 MHz	744000, 745332, 746668, 748000, 749332, 750668, 752000, 753332, 754668, 756000, 765332, 766668, 768000, 769332,		
	770668, 772000, 773332, 774668, 776000, 777332, 778668,		
	780000, 781332, 783000, 784332, 785668, 787000, 788332, 789668, 791000, 792332, 793668		
40 MHz	744668, 746000, 748668, 751332, 754000, 755332, 766000,		
	767332, 770000, 772668, 775332, 778000, 780668, 783668,		
60 MHz	786332, 787668, 790332, 793000 745332, 746668, 748000, 752000, 753332, 754668, 766668,		
00 1011 12	768000, 769332, 773332, 774668, 778668, 780000, 784332, 785668, 787000, 791000, 792332		
80 MHz	746000, 747332, 752668, 754000, 767332, 768668, 774000, 779332, 785000, 786332, 791668		
the a	Hz channel bandwidth shall only apply in certain regions where absence of non 3GPP technologies can be guaranteed on a -term basis in this version of specification.		

Table 5.4.2.3-2: Allowed NREF (NR-ARFCN) for operation in Band n46

Channel Bandwidth	Allowed NREF		
20 MHz	797000, 798332, 799668, 801000, 802332, 803668, 805000,		
	806332, 807668, 809000, 810332, 811668, 813000, 814332,		
	815668, 817000, 818332, 819668, 821000, 822332, 823668,		
	825000, 826332, 827668, 829000, 830332, 831668, 833000,		
	834332, 835668, 837000, 838332, 839668, 841000, 842332,		
	843668, 845000, 846332, 847668, 849000, 850332, 851668,		
	853000, 854332, 855668, 857000, 858332, 859668, 861000,		
	862332, 863668, 865000, 866332, 867668, 869000, 870332,		
	871668, 873000, 874332		
40 MHz	797668, 800332, 803000, 805668, 808332, 811000, 813668,		
	816332, 819000, 821668, 824332, 827000, 829668, 832332,		
	835000, 837668, 840332, 843000, 845668, 848332, 851000,		
	853668, 856332, 859000, 861668, 864332, 867000, 869668,		
	872332		
60 MHz	798332, 799668, 803668, 805000, 809000, 810332, 814332,		
	815668, 819668, 821000, 825000, 826332, 830332, 831668,		
	835668, 837000, 841000, 842332, 846332, 847668, 851668,		
	853000, 857000, 858332, 862332, 863668, 867668, 869000,		
	873000		
80 MHz	799000, 804332, 809668, 815000, 820332, 825668, 831000,		
	836332, 841668, 847000, 852332, 857668, 863000, 868332		

5.4.3 Synchronization raster

5.4.3.1 Synchronization raster and numbering

The synchronization raster indicates the frequency positions of the synchronization block that can be used by the UE for system acquisition when explicit signalling of the synchronization block position is not present.

A global synchronization raster is defined for all frequencies. The frequency position of the SS block is defined as SS_{REF} with corresponding number GSCN. The parameters defining the SS_{REF} and GSCN for all the frequency ranges are in Table 5.4.3.1-1.

The resource element corresponding to the SS block reference frequency SS_{REF} is given in subclause 5.4.3.2. The synchronization raster and the subcarrier spacing of the synchronization block are defined separately for each band.

Frequency range	SS Block frequency position SSREF	GSCN	Range of GSCN	
0 – 3000 MHz	N * 1200kHz + M * 50 kHz, N=1:2499, M ε {1,3,5} (Note 1)	3N + (M-3)/2	2 – 7498	
3000 - 24250 MHz	3000 MHz + N * 1.44 MHz N = 0:14756	7499 + N	7499 – 22255	
NOTE 1: The default value for operating bands with SCS spaced channel raster is M=3.				

5.4.3.2 Synchronization raster to synchronization block resource element mapping

The mapping between the synchronization raster and the corresponding resource element of the SS block is given in Table 5.4.3.2-1.

Table 5.4.3.2-1: Synchronization raster to SS block resource element mapping

Resource element index k	120

k is the subcarrier number of SS/PBCH block defined in TS 38.211 clause 7.4.3.1[8].

5.4.3.3 Synchronization raster entries for each operating band

The synchronization raster for each band is given in Table 5.4.3.3-1. The distance between applicable GSCN entries is given by the <Step size> indicated in Table 5.4.3.3-1.

NR operating band	SS Block SCS	SS Block pattern ¹	Range of GSCN (First – <step size=""> – Last</step>
n1	15kHz	Case A	5279 - <1> - 5419
n2	15kHz	Case A	4829 - <1> - 4969
n3	15kHz	Case A	4517 - <1> - 4693
ъĘ	15kHz	Case A	2177 - <1> - 2230
n5	30kHz	Case B	2183 - <1> - 2224
n7	15kHz	Case A	6554 - <1> - 6718
n8	15kHz	Case A	2318 - <1> - 2395
n12	15kHz	Case A	1828 - <1> - 1858
n14	15 kHz	Case A	1901 - <1> - 1915
n20	15kHz	Case A	1982 - <1> - 2047
n24	15 kHz	Case A	3818 - <1> - 3892
	30 kHz	Case B	3824 - <1> - 3886
n25	15 kHz	Case A	4829 - <1> - 4981
n26	15 kHz	Case A	2153 - <1> - 2230
n28	15kHz	Case A	1901 - <1> - 2002
n29	15 kHz	Case A	1798 - <1> - 1813
n30	15 kHz	Case A	5879 - <1> - 5893
n34	15kHz	Case A	NOTE5
	30kHz	Case C	5036- <1> - 5050
	15kHz	Case A	NOTE 2
n38 —	30 kHz	Case C	6437 - <1> - 6538
n39	15kHz	Case A	NOTE 6
	30 kHz	Case C	4712 - <1> - 4789
n40	30kHz	CaseC	5762 - <1> - 5989
n41	15kHz	Case A	6246 - <3> - 6717
	30 kHz	Case C	6252 - <3> - 6714
n46 ³	30 kHz	Case C	8993 - <1> - 9530
n50	30kHz	Case C	3590 - <1> - 3781
n48	30 kHz	Case C	7884 - <1> - 7982
n51	15kHz	Case A	3572 - <1> - 3574
n53	15 kHz	Case A	6215 - <1> - 6232
n65	15 kHz	Case A	5279 - <1> - 5494
200	15kHz	Case A	5279 - <1> - 5494
n66	30kHz	Case B	5285 - <1> - 5488
n70	15kHz	Case A	4993 - <1> - 5044
n71	15kHz	Case A	1547 - <1> - 1624
n74	15kHz	Case A	3692 - <1> - 3790
n75	15kHz	Case A	3584 - <1> - 3787
n76	15kHz	Case A	3572 - <1> - 3574
n77	30kHz	Case C	7711 - <1> - 8329
n78	30kHz	Case C	7711 - <1> - 8051
n79	30kHz	Case C	8480 - <16> - 8880 ⁷
			8475 - <1> - 8884 ⁸
n96⁴	30 kHz	Case C	9531 - <1> - 10363
OTE 1: SS Block pattern OTE 2: The applicable SS 6543}.	is defined in section 4.1 in 7 S raster entries are GSCN =	r\$ 38.213 [9] - {6432, 6443, 6457, 6468, 647	
GSCN = {8996, 9 9288, 9301, 9315	, 9329, 9343, 9357, 9371, 9	5, 9079, 9093, 9107, 9121, 92 9385, 9402, 9416, 9430, 9444,	218, 9232, 9246, 9260, 9274, 9458, 9472, 9485, 9499, 9513
GSCN = {9548, 9 9756, 9770, 9784 9992, 10006, 100	, 9798, 9812, 9826, 9840, 9 20, 10034, 10048, 10062, 1	7,9631, 9645, 9659, 9673, 96	, 9923, 9937, 9951, 9964, 9978 10131, 10145, 10159, 10173,
OTE 5: The applicable S	S raster entries are GSCN =	= {5032, 5043, 5054}	-
OTE 6: The applicable S 4768, 4772, 4782	S raster entries are GSCN = , 4786, 4793}	* {4707, 4715, 4718, 4729, 473	

Table 5.4.3.3-1: Applicable SS raster entries per operating band

NOTE 7: The SS raster entries apply for channel bandwidths larger than or equal to 40 MHz NOTE 8: The SS raster entries apply for channel bandwidths smaller than 40 MHz

3GPP

5.4.4 TX–RX frequency separation

The default TX channel (carrier centre frequency) to RX channel (carrier centre frequency) separation for operating bands is specified in Table 5.4.4-1.

NR Operating Band	TX – RX
	carrier centre frequency
	separation
n1	190 MHz
n2	80 MHz
n3	95 MHz
n5	45 MHz
n7	120 MHz
n8	45 MHz
n12	30 MHz
n14	-30 MHz
n20	-41 MHz
n24	-101.5, -120.5 MHz
n25	80 MHz
n26	45 MHz
n28	55 MHz
n30	45 MHz
n65	190 MHz
n66	400 MHz
n70	300 MHz
n71	-46 MHz
n74	48 MHz
NOTE 1: Default TX-RX carrier of	centre frequency separation.

Table 5.4.4-1: UE TX-RX frequency separation

5.4A Channel arrangement for CA

5.4A.1 Channel spacing for CA

For intra-band contiguous carrier aggregation with two or more component carriers, the nominal channel spacing between two adjacent NR component carriers is defined as the following unless stated otherwise:

For NR operating bands with a 100 kHz channel raster:

Nominal channel spacing =
$$\begin{bmatrix} \frac{BW_{Channel(1)} + BW_{Channel(2)} - 2|GB_{Channel(1)} - GB_{Channel(2)}|}{0.6} \end{bmatrix} 0.3 \text{ [MHz]}$$

while for NR operating bands with 15 kHz channel raster:

Nominal channel spacing =
$$\left[\frac{BW_{Channel(1)} + BW_{Channel(2)} - 2|GB_{Channel(1)} - GB_{Channel(2)}|}{0.015 * 2^{n+1}}\right] 0.015 * 2^{n} \text{ [MHz]}$$

with

 $n=\mu_0$

 $n = \mu_0$

where BW_{Channel(1)} and BW_{Channel(2)} are the channel bandwidths of the two respective NR component carriers according to Table 5.3.2-1 with values in MHz, μ_0 is the largest μ value among the subcarrier spacing configurations supported in the operating band for both of the channel bandwidths according to Table 5.3.5-1 and *GB*_{Channel(i)} is the minimum guard band for channel bandwidth i according to Table 5.3.3-1 for the said μ value with μ as defined in TS 38.211. In case

there is no common μ value for both of the channel bandwidths, $\mu_0=1$ is selected and $GB_{Channel(i)}$ is the minimum guard band for channel bandwidth i according to Table 5.3.3-1 for $\mu=1$ with μ as defined in TS 38.211.

The channel spacing for intra-band contiguous carrier aggregation can be adjusted to any multiple of least common multiple of channel raster and sub-carrier spacing less than the nominal channel spacing to optimize performance in a particular deployment scenario.

For intra-band non-contiguous carrier aggregation, the channel spacing between two NR component carriers in different sub-blocks shall be larger than the nominal channel spacing defined in this subclause

5.4A.2 Channel raster for CA

For inter-band and intra-band contiguous carrier aggregation, the channel raster requirements in clause 5.4.2 apply for each operating band.

5.4A.3 Synchronization raster for CA

For inter-band and intra-band contiguous carrier aggregation, the synchronization raster requirements in clause 5.4.3 apply for each operating band.

5.4A.4 Tx-Rx frequency separation for CA

For inter-band carrier aggregation, the Tx-Rx frequency separation requirements in subclause 5.4.4 apply for each operating band.

For intra-band contiguous carrier aggregation, the same TX-RX frequency separation as specified in Table 5.4.4-1 is applied to PCC and SCC, respectively.

5.4E Channel arrangement for V2X

5.4E.1 Channel spacing

For NR V2X, the channel spacing requirements in clause 5.4.1 apply for each operating band.

5.4E.2 Channel raster

5.4E.2.1 NR-ARFCN and channel raster

For NR V2X, the NR-ARFCN and channel raster requirements in clause 5.4.2.1 apply for each operating band.

For NR V2X UE, the reference frequency can be shifted by configuration.

 $F_{REF_V2X} = F_{REF} + \Delta_{shift} + N * 5 \text{ kHz}$

where

 $\Delta_{shift} = 0$ kHz or 7.5 kHz indicated in IE (*frequencyShift7p5khz*), and

N can be set as one of following values $\{-1, 0, 1\}$, which are signalled by the network in higher layer parameters or configured by pre-configuration parameters.

5.4E.2.2 Channel raster to resource element mapping

For NR V2X, the channel raster to resource element mapping requirements in clause 5.4.2.2 apply for each operating band.

5.4E.2.3 Channel raster entries for each operating band

For NR V2X, the channel raster entries, the channel raster entries requirements in clause 5.4.2.3 apply for each operating band.

The RF channel positions on the channel raster in each NR V2X operating band are given through the applicable NR-ARFCN in Table 5.4.2.3-1, using the channel raster to resource element mapping in subclause 5.4E.2.2.

For NR V2X operating band n47, $\Delta F_{Raster} = I \times \Delta F_{Global}$, where $I \in \{1\}$. Every I^{th} NR-ARFCN within the operating band are applicable for the channel raster within the operating band and the step size for the channel raster in Table 5.4.2.3-1 is given as $\langle I \rangle$.

5.4E.3 Synchronization raster for V2X

There is no synchronization raster definition for NR V2X for both licensed bands and unlicensed bands.

5.5 Void

5.5A Configurations for CA

5.5A.0 General

The configurations for CA operating band including Band n41 also apply for the corresponding CA operating bands with Band n90 replacing Band n41 but with otherwise identical parameters. For brevity the said configuration for CA operating bands with Band n90 are not listed in the tables below but are covered by this specification. For BCS4 and BCS5 combinations with n41, the n90 equivalents also include 5 MHz.

Non-contiguous resource allocation and almost contiguous allocation are not applicable for each NR carrier of intra-band contiguous and non-contiguous CA configurations.

For a CA configuration with one or more operating band supporting asymmetric channel bandwidths as specified in sub-clause 5.3.6, requirements are defined for an asymmetric UL and DL channel bandwidth combination of a supported asymmetric channel bandwidth combination set for an operating band of the CA configuration when the said UL and DL channel bandwidths are also contained in a supported bandwidth combination set of the CA configuration.

5.5A.1 Configurations for intra-band contiguous CA

Power class 3 is supported for all uplinks. Power classes other than power class 3 are supported as indicated in Table 5.5A.1-1.

Table 5.5A.1-1: NR CA configurations and bandwidth combination sets defined for intra-band contiguous CA

3GPP

		NR	CA configurati		th combinatio	n set		I
NR CA configuratio n	Uplink CA configur ation or single uplink carrier ⁶	Channel bandwidths for carrier (MHz)	Channel bandwidth s for carrier (MHz)	Channel bandwidth s for carrier (MHz)	Channel bandwidth s for carrier (MHz)	Channel bandwidth s for carrier (MHz)	Maximum aggregate d bandwidt h (MHz)	Bandwidth combination set
CA_n40B	-	20 50	80 50				100	0
		40	80, 100				180	0
		50, 60, 80	60, 80, 100					
CA_n41C	n41 ^{4,5} CA_n41	10	100				-	
04_11410	C	15, 20	90, 100				100	1
		40 50, 60, 80,	80, 90, 100 60, 80, 90, 100				190	
CA_n46B	-	90 20, 40, 60	20, 40				100	0
CA_n46C	-	60, 80	60, 80				160	0
CA_n46D	-	60, 80	80	80			240	0
CA_n46E	-	80	80	80	80		320	0
CA_n46M	-	20, 40, 60	20, 40	20, 40			140	0
CA_n46N	-	20, 40, 80	20, 40	20, 40	20, 40		200	0
CA_n46O	-	20, 60	20, 40	20, 40	20, 40	20, 40	220	0
		5	15, 20					
	CA_n48B	10, 15, 20	10, 15, 20				40	0
		15, 20	15, 20					
		10	50, 60, 80, 90					
CA_n48B	-	15, 20	40, 50, 60, 80				100	1
		40	40, 50, 60					
	-	10, 15, 20, 30, 40	10, 15, 20, 30, 40, 50, 60, 70, 80, 90				100	2
		5²	20, 40					
		10	15, 20, 40					
CA_n66B	-	15	15, 20				50	0
							-	
		50	60, 80, 100					
		60	60, 80, 100				1	
		80	80, 100				200	0
	CA 77	100	100				1	
CA_n77C	CA_n77 C	10	100					
		15, 20	90, 100				1	
		25, 30	80, 90, 100				200	1
		40	70, 80, 90, 100					

		50, 60,70, 80,90, 100	60, 70,80, 90, 100				
CA_n77D	-	100	100	100		300	0
CA_n78B	-	20	50			70	0
		50	60, 80, 100				
		60	60, 80, 100			200	0
		80	80, 100			200	
		100	100				
CA_n78C	CA_n78	10	100				
	С	15, 20	90, 100				
		25, 30	80, 90, 100			200	1
		40	70, 80, 90, 100			200	
		50, 60, 70,	60, 70, 80,				
04		80, 90, 100	90, 100	400		000	
CA_n78D	-	100	100	100		300	0
		50	60, 80, 100				
CA_n79C		60	60, 80, 100			 200	0
		80	80, 100				
CA	_	100	100	100		 200	
CA_n79D		100	100		ble irrespective of t	300	0

5.3A.5-1, and smaller than or equal to the maximum aggregated bandwidth.

NOTE 4: Power Class 2 is allowed for this uplink combination or single uplink carrier in this downlink/uplink combination NOTE 5: Power Class 1.5 is allowed for this uplink combination or single uplink carrier in this downlink/uplink combination NOTE 6: Only single uplink carriers with power class other than PC3 are listed.

Table 5.5A.1-2: Void

5.5A.2 Configurations for intra-band non-contiguous CA

Table 5.5A.2-1: NR CA configurations and bandwidth combination sets defined for intra-band noncontiguous CA

NR CA Configuration	Uplink CA Configurations or single uplink carrier	Channel bandwidths for carrier (MHz)	Channel bandwidths for carrier (MHz)	Maximum Aggregated bandwidth (MHz)	Bandwidth combinatior set
		10, 15, 20, 40, 50, 60	10, 15, 20, 40, 50, 60, 80, 90, 100	140 ²	0
CA_n48(2A)		10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100	10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100	140 ²	1
		5 ^(note) , 10, 15, 20	5 ^(note) , 10, 15, 20, 40	60	0
CA_n66(2A)	-	5, 10, 15, 20, 25, 30, 40	5, 10, 15, 20, 25, 30, 40	80	1
		5, 10, 15, 20, 40	5, 10, 15, 20, 40	80	2
CA_n71(2A)	-	5,10, 15, 20	5,10,15, 20	30	0
CA_n77(2A)	-	20, 40, 80, 100	20, 40, 80, 100	200	0
		10, 20, 40, 50, 60, 80, 90, 100	10, 20, 40, 50, 60, 80, 90, 100	200	0
CA_n78(2A)		10, 20, 25, 30, 40, 50, 60, 80, 90, 100	10, 20, 25, 30, 40, 50, 60, 80, 90, 100	200	1
		10, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100	10, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100	200	2

the minimum frequency gaps in between NR non-contiguous component carriers.

5.5A.3 Configurations for inter-band CA

Table 5.5A.3-1: Void

Table 5.5A.3-2: Void

Table 5.5A.3-3: Void

5.5A.3.1 Configurations for inter-band CA (two bands)

Table 5.5A.3.1-1: NR CA configurations and bandwidth combinations sets defined for inter-band CA (two bands)

NR CA configuration	Uplink CA configuration or single uplink carrier ⁵	NR Band	Channel bandwidth (MHz) (NOTE 3)	Bandwidth combination se
CA_n1A-n3A	CA_n1A-n3A	n1	5, 10, 15, 20	0
		n3	5, 10, 15, 20, 25, 30	
		n1	5, 10, 15, 20, 25, 30, 40, 50	1
		n3	5, 10, 15, 20, 25, 30, 40	
CA_n1(2A)-n3A	-	n1	CA_n1(2A)_BCS0	0
		n3	5, 10, 15, 20, 25, 30, 40	
CA_n1(2A)-n5A	-	n1	CA_n1(2A)_BCS0	0
		n5	5, 10, 15, 20	
CA_n1A-n8A	CA_n1A-n8A	n1	5, 10, 15, 20	0
		n8	5, 10, 15, 20	
CA_n1(2A)-n8A	-	n1	CA_n1(2A)_BCS0	0
		n8	5, 10, 15, 20	
CA_n1A-n77A	-	n1	5, 10, 15, 20	0
		n77	10, 15, 20, 40, 50, 60, 80, 90, 100	
CA_n1A-n78A	n78⁴ CA_n1A-n78A	n1	5, 10, 15, 20	0
	_	n78	10, 15, 20, 40, 50, 60, 80, 90, 100	
		n1	5, 10, 15, 20, 25, 30, 40	1
		n78	10, 15, 20, 40, 50, 60, 80, 90, 100	
		n1	5, 10, 15, 20, 25, 30, 40	2
		n78	10, 15, 20, 40, 50, 60, 80, 90, 100	
CA_n1A-n78(2A)	CA_n1A-n78A	n1	5, 10, 15, 20	0
_ ()	_	n78	CA_n78(2A)_BCS0	
		n1	5, 10, 15, 20, 25, 30, 40, 50	1
		n78	CA_n78(2A)_BCS1	
		n1	5, 10, 15, 20	2
		n78	CA_n78(2A)_BCS2	
CA_n1A-n78C	CA_n1A-n78A	n1	5, 10, 15, 20	0
		n78	CA_n78C_BCS0	
		n1	5, 10, 15, 20, 25, 30, 40, 50	1
		n78	CA_n78C_BCS0	
		n1	5, 10, 15, 20, 25, 30, 40	2
		n78	CA_n78C_BCS0	
CA_n1(2A)-n78A	-	n1	CA_n1(2A)_BCS0	0
		n78	10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100	
CA_n1A-n79A	CA_n1A-n79A	n1	5, 10, 15, 20	0
		n79	40, 50, 60, 80, 100	
CA_n2A-n5A	CA_n2A-n5A	n2	5, 10, 15, 20	0
		n5	5, 10, 15, 20	

CA_n2A-n48A	CA_n2A-n48A	n2	5, 10, 15, 20	0
		n48	5, 10, 15, 20, 40, 50 ¹ , 60 ¹ , 80 ¹ , 90 ¹ , 100 ¹	
CA_n2A-n66A	-	n2	5, 10, 15, 20	0
		n66	5, 10, 15, 20, 40	
	CA_n2A-n66A	n2	5, 10, 15, 20	1
		n66	5, 10, 15, 20, 25, 30, 40	
CA_n2A-n77A	- CA_n2A-n77A	n2	5, 10, 15, 20	0
		n77	10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100	
CA_n3A-n5A	CA_n3A-n5A	n3	5, 10, 15, 20, 25, 30, 40, 50	0
		n5	5, 10, 15, 20	
CA_n3(2A)-n5A	-	n3	CA_n3(2A)_BCS0	0
		n5	5, 10, 15,	
CA_n3(2A)-n8A	-	n3	CA_n3(2A)_BCS0	0
		n8	5, 10, 15, 20	
CA_n3A-n41A	n41 ⁴ CA_n3A-n41A ⁴	n3	5, 10, 15, 20, 25, 30	0
		n41	10, 15, 20, 40, 50, 60, 80, 90, 100	
CA_n3A-n77A	-	n3	5, 10, 15, 20, 25, 30	0
		n77	10, 15, 20, 40, 50, 60, 80, 90, 100	
CA_n3A-n78A	n78⁴ CA_n3A-n78A⁴	n3	5, 10, 15, 20, 25, 30	0
		n78	10, 15, 20, 40, 50, 60, 80, 90, 100	
		n3	5, 10, 15, 20, 25, 30, 40,	1
		n78	10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100	
CA_n3A-n78(2A)	CA_n3A-n78A CA_n78(2A)	n3	5, 10, 15, 20, 25, 30	0
		n78	CA_n78(2A)_BCS0	
	CA_n3A-n78A	n3	5, 10, 15, 20, 25, 30, 40	1
		n78	CA_n78(2A)_BCS2	
CA_n3(2A)-n78A	-	n3	CA_n3(2A)_BCS0	0
		n78	10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100	
CA_n3A-n79A	CA_n3A-n79A	n3	5, 10, 15, 20, 25, 30	0
		n79	40, 50, 60, 80, 100	
CA_n5A-n7A	-	n5	5, 10, 15, 20	0
		n7	5, 10, 15, 20, 25, 30, 40, 50	
CA_n5A-n66A	CA_n5A-n66A	n5	5, 10, 15, 20	0
		n66	5, 10, 15, 20, 40	7
		n5	5, 10, 15, 20	1
		n66	5, 10, 15, 20, 25, 30, 40	

CA_n5A-n77A	- CA_n5A-n77A	n5	5, 10, 15, 20	0
		n77	10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100	
CA_n5A-n78A	CA_n5A-n78A	n5	5, 10, 15, 20	0
		n78	10, 15, 20, 40, 50, 60, 80, 90, 100	
		n5	5, 10, 15, 20	1
		n78	10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100	
CA_n5A-n78(2A)	CA_n5A-n78A	n5	5, 10, 15, 20	0
		n78	CA_n78(2A)_BCS2	
CA_n7A-n78A	CA_n7A-n78A	n7	5, 10, 15, 20	0
		n78	10, 15, 20, 40, 50, 60, 80, 90, 100	
		n7	5, 10, 15, 20, 25, 30, 40, 50	1
		n78	10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100	
CA_n8A-n75A	-	n8	5, 10, 15, 20	0
		n75	5, 10, 15, 20	
CA_n8A-n78A	CA_n8A-n78A	n8	5, 10, 15, 20	0
		n78	10, 15, 20, 40, 50, 60, 80, 90, 100	
		n8	5, 10, 15, 20	1
		n78	10, 15, 20, 25, 30, 40, 50, 60, 80, 90, 100	
CA_n8A-n78(2A)	CA_n8A-n78A	n8	5, 10, 15, 20	0
		n78	CA_n78(2A)_BCS1	
CA_n8A-n79A	-	n8	5, 10, 15, 20	0
		n79	10, 15, 20, 40, 50, 60, 80, 100	
CA_n24A-n41A	CA_n24A-n41A	n24	5, 10	0
	_	n41	10, 15, 20, 30, 40, 50, 60, 80, 90, 100	
CA_n24A-n41(2A)	CA_n24A-n41A	n24	5, 10	0
_ 、 ,	_	n41	CA_n41(2A)_BCS1	
CA_n24A-n48A	CA_n24A-n48A	n24	5, 10	0
	_	n48	5, 10, 15, 20, 40, 50, 60, 80, 90, 100	
CA_n24A-n48B	CA_n24A-n48A	n24	5, 10	0
		n48	CA_n48B_BCS1	
CA_n24A-n48(2A)	CA_n24A-n48A	n24	5, 10	0
_ 、 ,	_	n48	CA_n48(2A)_BCS0	
CA_n24A-n77A	CA_n24A-n77A	n24	5, 10	0
_		n77	10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100	1
CA_n24A-n77C	CA_n24A-n77A	n24	5, 10	0
	_	n77	CA_n77C_BCS1	1
CA_n25A-n46A	-	n25	5, 10, 15, 20	0
		n46	20, 40, 60, 80	
<u>.</u>		n26	5, 10, 15, 20	0
CA_n26A-n66A	CA_n26A-n66A	n66	5, 10, 15, 20, 25, 30, 40	٦ آ

CA_n26A-n66(2A)	CA n26A-n66A	n26	5, 10, 15, 20	0
	—	n66	CA_n66(2A)_BCS0	
CA_n26A-n70A	CA_n26A-n70A	n26	5, 10, 15, 20	0
		n70	5, 10, 15, 20 ¹ , 25 ¹	
CA_n28A-n41A	CA_n28A-n41A	n28	5, 10, 15, 20	0
		n41	10, 15, 20, 40, 50, 60, 80, 90, 100	
		n28	5, 10, 15, 20	1
		n41	10, 15, 20, 25, 30, 40, 50, 60, 80, 90, 100	
CA_n28A-n75A	-	n28	5, 10, 15, 20	0
		n75	5, 10, 15, 20	
CA_n28A-n78A	CA_n28A-n78A	n28	5, 10, 15, 20	0
		n78	10, 15, 20, 40, 50, 60, 80, 90, 100	
CA_n28A-n78(2A)	CA_n28A-n78A	n28	5, 10, 15, 20	0
_ 、 ,	_	n78	CA_n78(2A)_BCS0	
CA_n28A-n79A	CA_n28A-n79A	n28	5, 10, 15, 20, 30	0
		n79	40, 50, 60, 80, 100	
CA_n29A-n66A	-	n29	5, 10	0
		n66	5, 10, 15, 20, 40	
CA_n29A-n66B	-	n29	5, 10	0
0/(_120/(1000)		n66	CA_n66B_BCS0	
CA_n29A-n66(2A)		n29	5, 10	0
0/(_120/(100(2/))		n66	CA_n66(2A)_BCS0	
CA_n29A-n70A		n29	5, 10	0
CA_II29A-II/0A	_	n70	5, 10, 15, 20 ¹ , 25 ¹	
CA_n29A-n71A	-	n29	5, 10	0
CA_IIZ9A-II/ IA	-	n71	5, 10, 15, 20	
CA_n41A-n78A		n41	10, 15, 20, 40, 50, 60, 80, 100	0
CA_1141A-1178A	-	n78	10, 15, 20, 40, 50, 60, 80, 100	
CA_n41A-n79A	CA_n41A-n79A		10, 15, 20, 40, 50, 60, 80, 90, 100	0
CA_1141A-1179A	CA_1141A-1179A	n41 n79		0
			40, 50, 60, 80, 100	4
		n41	10, 15, 20, 40, 50, 60	1
		n79	40, 50, 60, 80, 100	
CA_n41C-n79A	CA_n41A-n79A CA_n41C	n41	CA_n41C_BCS0	0
		n79	40, 50, 60, 80, 100	
CA_n46A-n48A	CA_n46A-n48A	n46	20, 40, 60, 80	0
		n48	20	
CA_n46B-n48A	CA_n46A-n48A	n46	CA_n46B_BCS0	0
		n48		
CA_n46C-n48A	CA_n46A-n48A	n46	CA_n46C_BCS0	0
—		n48	20	

CA_n46D-n48A	CA_n46A-n48A	n46	CA_n46D_BCS0	0
		n48	20	
CA_n46A-n66A	-	n46	20, 40, 60, 80	0
		n66	5, 10, 15, 20, 25, 30, 40	
CA_n48A-n66A	CA_n48A-n66A	n48	5, 10, 15, 20, 40, 50 ¹ , 60 ¹ , 80 ¹ , 90 ¹ , 100 ¹	0
		n66	5, 10, 15, 20, 40	
		n48	5, 10, 15, 20, 40, 50 ¹ , 60 ¹ , 80 ¹ , 90 ¹ , 100 ¹	1
		n66	5, 10, 15, 20, 25, 30, 40	
		n48	5, 10, 15, 20, 30, 40, 50 ¹ , 60 ¹ , 70 ¹ , 80 ¹ , 90 ¹ , 100 ¹	2
		n66	5, 10, 15, 20, 25, 30, 40,	
CA_n48A-n66(2A)	CA_n48A-n66A	n48	5, 10, 15, 20, 30, 40, 50 ¹ , 60 ¹ , 70 ¹ , 80 ¹ , 90 ¹ , 100 ¹	0
		n66	CA_n66(2A)_BCS0	
CA_n48B-n66A	CA_n48A-n66A	n48	CA_n48B_BCS0	0
		n66	5, 10, 15, 20, 40	
		n48	CA n48B BCS1	1
		n66	5, 10, 15, 20, 25, 30, 40	
		n48	CA_n48B_BCS2	2
		n66	5, 10, 15, 20, 25, 30, 40	
CA_n48(2A)-n66A	CA n48A-n66A	n48	CA_n48(2A)_BCS0	0
_ 、 ,	_	n66	5, 10, 15, 20, 25, 30, 40	
		n48	CA_n48(2A)_BCS0	1
		n66	5, 10, 15, 20, 25, 30, 40	
		n48	CA_n48(2A)_BCS1	2
		n66	5, 10, 15, 20, 25, 30, 40	
CA_n48(2A)-n66(2A)	CA n48A-n66A	n48	CA_n48(2A)_BCS1	0
_ (), ()	_	n66	CA_n66(2A)_BCS0	
CA_n48A-n70A ⁶	CA_n48A-n70A	n48	5, 10, 15, 20, 30, 40, 50 ¹ , 60 ¹ , 70 ¹ , 80 ¹ , 90 ¹ , 100 ¹	0
_	_	n70	5, 10, 15, 20 ¹ , 25 ¹	
CA_n48(2A)-n70A	CA_n48A-n70A	n48	CA_n48(2A)_BCS1	0
		n70	5, 10, 15, 20 ¹ , 25 ¹	
CA_n48B-n70A	CA_n48A-n70A	n48	CA_n48B_BCS2	0
		n70	5, 10, 15, 20 ¹ , 25 ¹	
CA_n48A-n71A	CA_n48A-n71A	n48	5, 10, 15, 20, 30, 40, 50 ¹ , 60 ¹ , 70 ¹ , 80 ¹ , 90 ¹ , 100 ¹	0
		n71	5, 10, 15, 20	
CA_n48A-n71(2A)	CA_n48A-n71A	n48	5, 10, 15, 20, 30, 40, 50 ¹ , 60 ¹ , 70 ¹ , 80 ¹ , 90 ¹ , 100 ¹	0
		n71	CA_n71(2A)_BCS0	
CA_n48(2A)-n71A	CA_n48A-n71A	n48	CA_n48(2A)_BCS1	0
		n71	5, 10, 15, 20	
CA_n48(2A)-n71(2A)	CA_n48A-n71A	n48	CA_n48(2A)_BCS1	0
	1	n71	CA_n71(2A)_BCS0	1

Release 17

CA_n48B-n71A	CA_n48A-n71A	n48	CA_n48B_BCS2	0
		n71	5, 10, 15, 20	
CA_n66A-n70A	-	n66	5, 10, 15, 20, 25	0
		n70	5, 10, 15, 20 ¹ , 25 ¹	
CA_n66B-n70A	-	n66	CA_n66B_BCS0	0
		n70	5, 10, 15, 20 ¹ , 25 ¹	
CA_n66(2A)-n70A	-	n66	CA_n66(2A)_BCS0	0
		n70	5, 10, 15, 20 ¹ , 25 ¹	
CA_n66A-n71A	CA_n66A-n71A	n66	5, 10, 15, 20, 40	0
		n71	5, 10, 15, 20	
		n66	5, 10, 15, 20, 25, 30, 40	1
		n71	5, 10, 15, 20	
CA_n66A-n71(2A)	-	n66	5, 10, 15, 20, 40	0
		n71	CA_n71(2A)_BCS0	
	CA_n66A-n71A	n66	5, 10, 15, 20, 25, 30, 40	1
	_	n71	CA_n71(2A)_BCS0	
CA_n66(2A)-n71A	CA_n66A-n71A	n66	CA_n66(2A)_BCS0	0
_ 、 ,	_	n71	5, 10, 15, 20	
CA_n66(2A)-n71(2A)	CA_n66A-n71A	n66	CA_n66(2A)_BCS1	0
_ () ()	—	n71	CA_n71(2A)_BCS0	
CA_n66B-n71A	CA_n66A-n71A	n66	CA_n66B_BCS0	0
—	—	n71	5, 10, 15, 20	
CA_n66A-n77A	- CA_n66A-n77A	n66	5, 10, 15, 20, 40	0
		n77	10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100	
		n66	5, 10, 15, 20, 25, 30, 40	1
		n77	10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100	
		n66	n66 channel bandwidths in Table 5.3.5-1	4 and 5
		n77	n77 channel bandwidths in Table 5.3.5-1	
CA_n70A-n71A	CA_n70A-n71A	n70	5, 10, 15, 20 ¹ , 25 ¹	0
		n71	5, 10, 15, 20	
CA_n70A-n71(2A)	CA_n70A-n71A	n70	5, 10, 15, 20 ¹	0
		n71	CA_n71(2A)_BCS0	
CA_n75A-n78A	-	n75	5, 10, 15, 20	0
		n78	10, 15, 20, 40, 50, 60, 80, 90, 100	
CA_n76A-n78A	-	n76	5	0
		n78	10, 15, 20, 40, 50, 60, 80, 90, 100	
CA_n77A-n79A	-	n77	10, 15, 20, 40, 50, 60, 80, 90, 100	0
		n79	40, 50, 60, 80, 100	
CA_n78A-n79A	-	n78	10, 15, 20, 40, 50, 60, 80, 90, 100	0
		n79	40, 50, 60, 80, 100	

NOTE 1: This UE channel bandwidth is applicable only to downlink.

NOTE 2: The minimum requirements for intra-band contiguous or non-contiguous CA apply.

NOTE 3: The SCS of each channel bandwidth for NR band refers to Table 5.3.5-1.

NOTE 4: Power Class 2 is allowed for this uplink combination or single uplink carrier in this downlink/uplink combination

NOTE 5: Only single uplink carriers with power class other than PC3 are listed.

NOTE 6: The same configuration applies to corresponding NR-DC configuration in Table 5.5B.1-1. If UE supporting NR-DC configuration do not support the corresponding CA configuration, NR-DC configuration is used in CA test cases

5.5A.3.2 Configurations for inter-band CA (three bands)

Table 5.5A.3.2-1: NR CA configurations and bandwidth combinations sets defined for inter-band CA (three bands)

NR CA configuration	Uplink CA configuration or single uplink carrier6	NR Band	Channel bandwidth (MHz) (NOTE 3)	Bandwidth combination set
CA_n1A-n78A-n79A4	CA_n1A-n78A CA_n1A-n79A CA_n78A-n79A	n1	5, 10, 15, 20	0
		n78	10, 15, 20, 40, 50, 60, 80, 90	
		n79	40, 50, 60, 80	
		n1	5, 10, 15, 20	1
		n78	10, 15, 20, 25, 30, 40, 50, 60, 80, 90	
		n79	40, 50, 60, 80	
CA_n26A-n66A-n70A	CA_n26A-n66A CA_n26A-n70A	n26	5, 10, 15, 20	0
		n66	5, 10, 15, 20, 25, 30, 40	
		n70	5, 10, 15, 20 ¹ , 25 ¹	
CA_n26A-n66(2A)-n70A	CA_n26A-n66A CA_n26A-n70A	n26	5, 10, 15, 20	0
		n66	CA_n66(2A)_BCS0	
		n70	5, 10, 15, 20 ¹ , 25 ¹	
CA_n29A-n66A-n70A	-	n29	5, 10	0
		n66	5, 10, 15, 20, 40	
		n70	5, 10, 15, 20 ¹ , 25 ¹	
CA_n29A-n66B-n70A	-	n29	5, 10	0
		n66	CA_n66B_BCS0.	
		n70	5, 10, 15, 20 ¹ , 25 ¹	
CA_n29A-n66(2A)-n70A	-	n29	5, 10	0
		n66	CA_n66(2A)_BCS0	

		n70	5, 10, 15, 20 ¹ , 25 ¹	
CA_n48A-n66A-n70A	CA_n48A-n66A CA_n48A-n70A	n48	5, 10, 15, 20, 30, 40, 50, 60, 80, 90, 100	0
		n66	5, 10, 15, 20, 25, 30, 40	
		n70	5, 10, 15, 20 ¹ , 25 ¹	
CA_n48A-n66(2A)-n70A	CA_n48A-n66A CA_n48A-n70A	n48	5, 10, 15, 20, 30, 40, 50, 60, 80, 90, 100	0
		n66	CA_n66(2A)_BCS0	
		n70	5, 10, 15, 20 ¹ , 25 ¹	
CA_n48(2A)-n66A-n70A	CA_n48A-n66A CA_n48A-n70A	n48	CA_n48(2A)_BCS1	0
		n66	5, 10, 15, 20, 25, 30, 40	
		n70	5, 10, 15, 20 ¹ , 25 ¹	
CA_n48B-n66A-n70A	CA_n48A-n66A CA_n48A-n70A	n48	CA_n48B_BCS2	0
		n66	5, 10, 15, 20, 25, 30, 40	
		n70	5, 10, 15, 20 ¹ , 25 ¹	
CA_n48A-n66A-n71A	CA_n48A-n71A CA_n66A-n71A CA_n48A-n66A	n48	5, 10, 15, 20, 30, 40, 50, 60, 80, 90, 100	0
		n66	5, 10, 15, 20, 25, 30, 40	
		n71	5, 10, 15, 20	
CA_n48A-n66(2A)-n71A	CA_n48A-n71A CA_n66A-n71A CA_n48A-n66A	n48	5, 10, 15, 20, 30, 40, 50, 60, 80, 90, 100	0
		n66	CA_n66(2A)_BCS0	
		n71	5, 10, 15, 20	
CA_n48(2A)-n66A-n71A	CA_n48A-n71A CA_n66A-n71A CA_n48A-n66A	n48	CA_n48(2A)_BCS1	0
		n66	5, 10, 15, 20, 25, 30, 40	
		n71	5, 10, 15, 20	
CA_n48B-n66A-n71A	CA_n48A-n71A CA_n66A-n71A CA_n48A-n66A	n48	CA_n48B_BCS2	0
		n66	5, 10, 15, 20, 25, 30, 40	
		n71	5, 10, 15, 20	
CA_n48A-n66A-n71(2A)	CA_n48A-n71A CA_n66A-n71A CA_n48A-n66A	n48	5, 10, 15, 20, 30, 40, 50, 60, 80, 90, 100	0
		n66	5, 10, 15, 20, 25, 30, 40	
		n71	CA_n71(2A)_BCS0	

CA_n48A-n70A-n71A	CA_n48A-n71A CA_n70A-n71A CA_n48A-n70A	n48	5, 10, 15, 20, 30, 40, 50, 60, 80, 90, 100	0
		n70	5, 10, 15, 20 ¹ , 25 ¹	
		n71	5, 10, 15, 20	
CA_n48(2A)-n70A-n71A	CA_n48A-n71A CA_n70A-n71A CA_n48A-n70A	n48	CA_n48(2A)_BCS1	0
	—	n70	5, 10, 15, 20 ¹ , 25 ¹	
		n71	5, 10, 15, 20	
CA_n48A-n70A-n71(2A)	CA_n48A-n71A CA_n70A-n71A CA_n48A-n70A	n48	5, 10, 15, 20, 30, 40, 50, 60, 80, 90, 100	0
		n70	5, 10, 15, 20 ¹ , 25 ¹	
		n71	CA_n71(2A)_BCS0	
CA_n66A-n70A-n71A	CA_n66A-n71A CA_n70A-n71A	n66	5, 10, 15, 20, 40	0
		n70	5, 10, 15, 20 ¹ , 25 ¹	
		n71	5, 10, 15, 20	
CA_n66A-n70A-n71(2A)	CA_n66A-n71A CA_n70A-n71A	n66	5, 10, 15, 20, 25, 30, 40	0
		n70	5, 10, 15, 20 ¹ , 25 ¹	
		n71	CA_n71(2A)_BCS0	
CA_n66B-n70A-n71A	CA_n66A-n71A CA_n70A-n71A	n66	CA_n66B_BCS0	0
		n70	5, 10, 15, 20 ¹ , 25 ¹	
		n71	5, 10, 15, 20	
CA_n66(2A)-n70A-n71A	CA_n66A-n71A CA_n70A-n71A	n66	CA_n66(2A)_BCS0	0
		n70	5, 10, 15, 20 ¹ , 25 ¹	
		n71	5, 10, 15, 20	

NOTE 2: For the 20 MHz bandwidth, the minimum requirements are specified for NR UL carrier frequencies confined to either 713-723 MHz or 728-738 MHz.

NOTE 3: The SCS of each channel bandwidth for NR band refers to Table 5.3.5-1.

NOTE 4: Simultaneous Rx/Tx capability for TDD combinations does not apply for UEs supporting band n78 with an n77 implementation.

5.5A.3.3 Configurations for inter-band CA (four bands)

Table 5.5A.3.3-1: NR CA configurations and bandwidth combinations sets defined for inter-band CA (four bands)

Editor's note: table missing??

5.5B Configurations for DC

For an NR-DC configuration specified in Table 5.5B.1-1, the bandwidth combination sets for the corresponding NR CA configuration in 5.5A.3, i.e., dual uplink inter-band carrier aggregation with uplink assigned to two NR bands, are applicable to Dual Connectivity. If UE supporting NR-DC configuration do not support the corresponding CA configuration, NR-DC configuration is used in CA test cases.

71

NR-DC configuration	Uplink NR-DC configuration
DC_n48A-n70A	DC_n48A-n70A

Table 5.5B.1-1: Inter-band NR-DC configurations (two bands)

Release 17

5.5C Configurations for SUL

SUL configuration	NR Band					Cha	innel ban	dwidth (N	1Hz) (NO	Bandwidth combination se					
		5	10	15	20	25	30	40	50	60	70	80	90	100	
											MHz				
SUL_n41A-n83A	n41		10	15	20		30	40	50	60		80	90	100	0
	n83	5	10	15	20		30								
SUL_n78A-n80A	n78		10	15	20			40	50	60		80	90	100	0
	n80	5	10	15	20	25	30								
	n78		10	15	20	25	30	40	50	60	70	80	90	100	1
	n80	5	10	15	20	25	30	40							
SUL_n78A-n81A	n78		10	15	20			40	50	60		80	90	100	0
	n81	5	10	15	20										
SUL_n78A-n82A	n78		10	15	20			40	50	60		80	90	100	0
	n82	5	10	15	20										
SUL_n78A-n83A	n78		10	15	20			40	50	60		80	90	100	0
	n83	5	10	15	20										
	n78		10	15	20	25	30	40	50	60	70	80	90	100	1
	n83	5	10	15	20		30								
SUL_n78A-n84A	n78		10	15	20			40	50	60		80	90	100	0
	n84	5	10	15	20										
	n78		10	15	20	25	30	40	50	60	70	80	90	100	1
	n84	5	10	15	20	25	30	40	50						
SUL_n78A-n86A	n78		10	15	20			40	50	60	70	80	90	100	0
_	n86	5	10	15	20										
SUL_n79A-n80A	n79							40	50	60		80		100	0
_	n80	5	10	15	20	25	30								
	n79							40	50	60		80		100	1
	n80	5	10	15	20	25	30	40							
SUL_n79A-n81A	n79							40	50	60		80		100	0
_	n81	5	10	15	20										1
SUL_n79A-n83A	n79							40	50	60		80		100	0
-	n83	5	10	15	20		30								1

Table 5.5C-1: Supported channel bandwidths per SUL band combination

Table 5.5C-2: Supported channel bandwidths per SUL band combination with intra-band non-contiguous CA

FFS

Table 5.5C-3: Supported channel bandwidths per SUL band combination with intra-band contiguous CA

SUL band combination with CA	SUL configuration	NR Band	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz	Bandwidth combination set
SUIL = 78C = 80A	SUL_n78A-n80A	n78	See CA_n78C Bandwidth Combination Set 1 in Table 5.5A.1-1													
SUL_n78C-n80A	30L_11/0A-1100A	n80	5	10	15	20	25	30	40							0
SUL_n41C-n83A	SUL_n41A-n83A	n41	See CA_n41C Bandwidth Combination Set 1 in Table 5.5A.1-1													
30L_1141C-1163A		n83	5	10	15	20		30								0
SUIL = 72C = 24A		n78	See CA_n78C Bandwidth Combination Set 1 in Table 5.5A.1-1											0		
SUL_n78C-n84A	SUL_n78A-n84A	n84	5	10	15	20	25	30	40	50						0
SUIL p70C p82A	SUL_n79A-n83A	n79			See (CA_n79	C Band	lwidth C	ombina	tion Se	t 0 in Ta	able 5.5	A.1-1			0
SUL_n79C-n83A		n83	5	10	15	20		30								- 0

Table 5.5C-4: Supported channel bandwidths per SUL band combination with inter-band CA

SUL band combination with CA	SUL configuration	NR Band	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	70 MHz	80 MHz	90 MHz	100 MHz	Bandwidth combination set
		n1	5	10	15	20	25	30	40	50						
CA_n1A_SUL_n78A-n80A	SUL_n78A-n80A	n78		10	15	20	25	30	40	50	60	70	80	90	100	0
		n80	5	10	15	20	25	30	40							
		n1	5	10	15	20	25	30	40	50						0
CA_n1A_SUL_n78A-n84A S	SUL_n78A-n84A	n78		10	15	20	25	30	40	50	60	70	80	90	100	
		n84	5	10	15	20	25	30	40	50						
		n3	5	10	15	20	25	30	40							0
CA_n3A_SUL_n78A-n80A	SUL_n78A-n80A	n78		10	15	20	25	30	40	50	60	70	80	90	100	
		n80	5	10	15	20	25	30	40							
		n28	5	10	15	20		30								0
CA_n28A_SUL_n41A-n83A	SUL_n41A-n83A	n41		10	15	20		30	40	50	60		80	90	100	
		n83	5	10	15	20		30								
		n28	5	10	15	20		30								0
CA_n28A_SUL_n79A-n83A	SUL_n79A-n83A	n79							40	50	60		80		100	
		n83	5	10	15	20		30								