
3GPP TSG-RAN WG5 Testing
R5s150497
01 Jan – 31 Dec 2015
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	36.523-3
	CR
	CRNum
	rev
	-
	Current version:
	12.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Correction to common function f_IMS_SIP_DecodeMatchAndCheckSDP()

	
	

	Source to WG:
	Anite

	Source to TSG:
	R5

	
	

	Work item code:
	TEI8_Test
	
	Date:
	2015-06-02

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-12

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)

	
	

	Reason for change:
	From RFC 3264:-

Nearly all aspects of the session can be modified. New streams can be added, existing streams can be deleted, and parameters of existing streams can change. When issuing an offer that modifies the session, the "o=" line of the new SDP MUST be identical to that in the previous SDP, except that the version in the origin field MUST increment by one from the previous SDP. If the version in the origin
line does not increment, the SDP MUST be identical to the SDP with that version number. The answerer MUST be prepared to receive an offer that contains SDP with a version that has not changed; this is effectively a no-op. However, the answerer MUST generate a valid answer (which MAY be the same as the previous SDP from the answerer, or MAY be different), according to the procedures defined in Section 6.

The current implementation of f_IMS_SIP_DecodeMatchAndCheckSDP(), when called with check type “newSDP”, currently throws an error if the session version has not incremented. This does not allow the case where the UE sends an SDP identical to the previous one that was sent, and so does not increment the session version. This can happen e.g. at re-INVITE following failed SRVCC handover.

	
	

	Summary of change:
	Modified the check to require that Session version is incremented only when the received SDP body is not identitcal to the previous SDP.
NOTE : This check still allows for the case where the UE sends an otherwise identical SDP content but does choose to update the session version, which is not explicitly disallowed by the above reference.

	
	

	Consequences if not approved:
	A conformant UE may fail the test cases

	
	

	Clauses affected:
	13.4.3.4, 13.4.3.5

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

Change 1
	Function name
	f_IMS_SIP_DecodeMatchAndCheckSDP()

	Reason for change
	From RFC 3264:-

Nearly all aspects of the session can be modified. New streams can be added, existing streams can be deleted, and parameters of existing streams can change. When issuing an offer that modifies the session, the "o=" line of the new SDP MUST be identical to that in the previous SDP, except that the version in the origin field MUST increment by one from the previous SDP. If the version in the origin
line does not increment, the SDP MUST be identical to the SDP with that version number. The answerer MUST be prepared to receive an offer that contains SDP with a version that has not changed; this is effectively a no-op. However, the answerer MUST generate a valid answer (which MAY be the same as the previous SDP from the answerer, or MAY be different), according to the procedures defined in Section 6.

The current implementation of f_IMS_SIP_DecodeMatchAndCheckSDP(), when called with check type “newSDP”, currently throws an error if the session version has not incremented. This does not allow the case where the UE sends an SDP identical to the previous one that was sent, and so does not increment the session version. This can happen e.g. at re-INVITE following failed SRVCC handover.

	Summary of change
	Modified the check to require that Session version is incremented only when the received SDP body is not identitcal to the previous SDP.

	TTCN module
	IMS_SDP_Messages.ttcn

	MCC160 Comment
	

Before change

	 function f_IMS_SIP_DecodeMatchAndCheckSDP(template (omit) SdpBody p_SdpBody,

 template SDP_Message p_SDP_Message_Template,

 SDP_Message_Check_Type p_SdpCheck := newSDP,

 boolean p_CheckConnections := true) runs on IMS_PTC return SDP_Message

 { /* @sic R5-150702: generic check of origin sic@ */

….

….

 /* @sic R5-150702: sic@ */

 v_PrevSdpMessage := f_IMS_PTC_ImsInfo_DialogGetPrevSdpMessageRX();

 select (p_SdpCheck) { /* @sic R5-150702 sic@ */

 case (asPreviousSDP) { /* current SDP shall be identically as previous SDP (i.e. even the session version has to be the same) */

 if (not match(v_SDP_Message, v_PrevSdpMessage)) {

 f_IMS_SetVerdictFailOrInconc(__FILE__, __LINE__, "received SDP message is different than previous one");

 }

 }

 case (newSDP) {

 if (p_CheckConnections) { // check at least one connections field is sent

 f_IMS_SDP_CheckConnections(v_SDP_Message);

 }

 if (ispresent(v_PrevSdpMessage)) {

 v_CurrSessionVersion := str2int(v_SDP_Message.origin.session_version);

 v_PrevSessionVersion := str2int(valueof(v_PrevSdpMessage.origin.session_version));

 if (v_CurrSessionVersion != v_PrevSessionVersion + 1) { /* @sic R5-143201 sic@ */
 f_IMS_SetVerdictFailOrInconc(__FILE__, __LINE__, "session version not incremented");

 }

 }

 f_IMS_PTC_ImsInfo_DialogSetPrevSdpMessageRX(v_SDP_Message);

 }

 }

 }

 return v_SDP_Message;

 }

After change
	 function f_IMS_SIP_DecodeMatchAndCheckSDP(template (omit) SdpBody p_SdpBody,
 template SDP_Message p_SDP_Message_Template,

 SDP_Message_Check_Type p_SdpCheck := newSDP,

 boolean p_CheckConnections := true) runs on IMS_PTC return SDP_Message

 { /* @sic R5-150702: generic check of origin sic@ */

….

….

 /* @sic R5-150702: sic@ */

 v_PrevSdpMessage := f_IMS_PTC_ImsInfo_DialogGetPrevSdpMessageRX();

 select (p_SdpCheck) { /* @sic R5-150702 sic@ */

 case (asPreviousSDP) { /* current SDP shall be identically as previous SDP (i.e. even the session version has to be the same) */

 if (not match(v_SDP_Message, v_PrevSdpMessage)) {

 f_IMS_SetVerdictFailOrInconc(__FILE__, __LINE__, "received SDP message is different than previous one");

 }

 }

 case (newSDP) {

 if (p_CheckConnections) { // check at least one connections field is sent

 f_IMS_SDP_CheckConnections(v_SDP_Message);

 }

 if (ispresent(v_PrevSdpMessage)) {

 v_CurrSessionVersion := str2int(v_SDP_Message.origin.session_version);

 v_PrevSessionVersion := str2int(valueof(v_PrevSdpMessage.origin.session_version));

 if (not match(v_SDP_Message, v_PrevSdpMessage) and (v_CurrSessionVersion != v_PrevSessionVersion + 1)) { /* @sic R5-143201 sic@ */
 f_IMS_SetVerdictFailOrInconc(__FILE__, __LINE__, "session version not incremented");

 }

 }

 f_IMS_PTC_ImsInfo_DialogSetPrevSdpMessageRX(v_SDP_Message);

 }

 }

 }

 return v_SDP_Message;

 }

