Page 1

3GPP TSG-RAN WG5 Testing
(
R5s130011
01 Jan – 31 Dec 2013
	CR-Form-v10

	CHANGE REQUEST

	

	(

	34.229-3
	CR
	
	(

rev
	-
	(

Current version:
	9.6.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/Change-Requests.

	

	Proposed change affects: (

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Corrections to IMS_36523_IWD_12wk48 test suite

	
	

	Source to WG:
(

	Rohde & Schwarz

	Source to TSG:
(

	R5

	
	

	Work item code:
(

	TEI8_Test
	
	Date: (

	2013-01-04

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-9

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)

	
	

	Reason for change:
(

	1. Insufficient timer value in IMS Receive Request procedure.

2. Incorrect logic for the determination of done condition in the IMS main loop.

3. Undefined variables in case that the UE was not registered.

	
	

	Summary of change:
(

	1. 1. Timer value increased to 180 sec. in function ‘f_IMS_ReceiveRequest()’.’

2. Logic in IMS main loop corrected.

3. Variables v_NW_Address and v_UE_Address set acc. to the header of the incoming IP_SOCKET_IND.
4.

	
	

	Consequences if
(

not approved:
	TTCN implementation could FAIL a conformant UE

	
	

	Clauses affected:
(

	IMS_CommonProcedures_Registration.ttcn,
MTC_IMS_36523.ttcn;

IP_PTC_IMS_Handler.ttcn

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
(

	

3GPP TSG-RAN WG5 E-Mail 2013
R5s130011
Title:
Corrections to IMS_36523_IWD_12wk48 test suite
Source:
Rohde & Schwarz

Agenda Item:
TTCN Issues

Document for:
Approval

Contact:

Holger Jauch

Holger.Jauch@rohde-schwarz.com

Tel. +49 89 4129 11534

1. Overview

This document lists a TTCN change needed to correct issues in the ‘IMS_36523_IWD_12wk48’ test suite which is included in ATS ‘iwd-EUTRA-B2012-03_D12wk48’.

2. Table of Contents

21. Overview

2. Table of Contents
2
3. Corrections
2
 Change 1 – Correction to function ‘f_IMS_ReceiveRequest()’
2
 Change 2 – Correction to function ‘f_MTC_IMS_MainLoop()’
3
 Change 3 – Correction to altstep ‘a_IP_IMS_UL_ReceiveDataUDP()’
5

3. Corrections

Change 1 – Correction to function ‘f_IMS_ReceiveRequest()’
	Function name
	f_IMS_ReceiveRequest ()

	Reason for change
	The value of 30 seconds in the IMS Receive Request procedure was too low to ensure that
a) the user switches on the UE and triggers IMS registrations via MMI,
b) the UE boots, performs cell selection and finally attaches to the cell.

	Summary of change
	Timer value increased to 180 sec. in function ‘f_IMS_ReceiveRequest()’.

	TTCN module
	CommonIMS\IMS_CommonProcedures_Registration.ttcn

	MCC160 Comment
	Removed the function instead. See R5s120907

Before change

	...

function f_IMS_ReceiveRequest(template IMS_DATA_REQ p_IMS_DATA_REQ,

 float p_TimerVal := 30.0) runs on IMS_PTC return IMS_DATA_REQ // @olaf timout increasedd

 {

 var IMS_DATA_REQ v_IMS_DATA_REQ;

 timer t_Watchdog := p_TimerVal;

 t_Watchdog.start;

 IMS_Server.receive(p_IMS_DATA_REQ) -> value v_IMS_DATA_REQ; // receive request

 t_Watchdog.stop;

 return v_IMS_DATA_REQ;

 }

...

After change

	...

 group SendReceiveFunctions {

 function f_IMS_ReceiveRequest(template IMS_DATA_REQ p_IMS_DATA_REQ,

 float p_TimerVal := 180.0) runs on IMS_PTC return IMS_DATA_REQ // @olaf timout increasedd

 {

 var IMS_DATA_REQ v_IMS_DATA_REQ;

 timer t_Watchdog := p_TimerVal;

 t_Watchdog.start;

 IMS_Server.receive(p_IMS_DATA_REQ) -> value v_IMS_DATA_REQ; // receive request

 t_Watchdog.stop;

 return v_IMS_DATA_REQ;

 }

...
	…

Change 2 – Correction to function ‘f_MTC_IMS_MainLoop()’
	Function name
	f_MTC_IMS_MainLoop ()

	Reason for change
	The logic for the determination of done condition in the main while loop was not correct.

	Summary of change
	Logic corrected, see below.

	TTCN module
	IMS_34229\MTC_IMS_36523.ttcn

	MCC160 Comment
	Accepted

Before change

	...

 function f_MTC_IMS_MainLoop(timer p_GuardTimer) runs on MTC_IMS

 { /* MTC main loop; called from the testcases

 * NOTE: it is assumed that the IMS_PTC is started just before calling this loop */

 var boolean v_IMS1_Done := (ptc_IMS1 != null);

 var boolean v_IMS2_Done := (ptc_IMS2 != null);
 var template (omit) IMS_UT_CommandSource_Type v_CommandSource := omit;

 var boolean v_WaitingForCnf;

 var boolean v_CnfRequiredbyRef;

 while (not (v_IMS1_Done or v_IMS2_Done)) {
 v_WaitingForCnf := isvalue(v_CommandSource);

 alt {

 [not v_IMS1_Done] ptc_IMS1.done { // terminate the loop when the IMS PTC(s) have done its work

 v_IMS1_Done := true;

 }

 [not v_IMS2_Done] ptc_IMS2.done { // terminate the loop when the IMS PTC(s) have done its work

 v_IMS2_Done := true;

 }

 [not v_WaitingForCnf] a_MTC_ReceiveFromIMS_SendToUT(v_CnfRequiredbyRef, IMS_MMI[tsc_Index_PDN1], ims1) {

 if (v_CnfRequiredbyRef) {

 v_CommandSource := ims1;

 }

 }

 [not v_WaitingForCnf] a_MTC_ReceiveFromIMS_SendToUT(v_CnfRequiredbyRef, IMS_MMI[tsc_Index_PDN2], ims2) {

 if (v_CnfRequiredbyRef) {

 v_CommandSource := ims2;

 }

 }

 [not v_WaitingForCnf] a_MTC_ReceiveFromIPCAN_SendToUT(v_CnfRequiredbyRef) {

 if (v_CnfRequiredbyRef) {

 v_CommandSource := ipcan;

 }

 }

 [] a_MTC_ReceiveFromUT(v_CommandSource) {

 v_CommandSource := omit;

 }

 [] p_GuardTimer.timeout {

 f_MTC_IMS_Stop(fail);

 }

 [] any component.killed {

 f_MTC_IMS_Stop(inconc);

 }

 }

 }

 f_MTC_IMS_Stop(pass); /* Note: "pass" overrules "none" only */

 }

}
...

After change

	...

 function f_MTC_IMS_MainLoop(timer p_GuardTimer) runs on MTC_IMS

 { /* MTC main loop; called from the testcases

 * NOTE: it is assumed that the IMS_PTC is started just before calling this loop */

 var boolean v_IMS1_Done := (ptc_IMS1 == null);

 var boolean v_IMS2_Done := (ptc_IMS2 == null);
 var template (omit) IMS_UT_CommandSource_Type v_CommandSource := omit;

 var boolean v_WaitingForCnf;

 var boolean v_CnfRequiredbyRef;

 while (not (v_IMS1_Done and v_IMS2_Done)) {
 v_WaitingForCnf := isvalue(v_CommandSource);

 alt {

 [not v_IMS1_Done] ptc_IMS1.done { // terminate the loop when the IMS PTC(s) have done its work

 v_IMS1_Done := true;

 }

 [not v_IMS2_Done] ptc_IMS2.done { // terminate the loop when the IMS PTC(s) have done its work

 v_IMS2_Done := true;

 }

 [not v_WaitingForCnf] a_MTC_ReceiveFromIMS_SendToUT(v_CnfRequiredbyRef, IMS_MMI[tsc_Index_PDN1], ims1) {

 if (v_CnfRequiredbyRef) {

 v_CommandSource := ims1;

 }

 }

 [not v_WaitingForCnf] a_MTC_ReceiveFromIMS_SendToUT(v_CnfRequiredbyRef, IMS_MMI[tsc_Index_PDN2], ims2) {

 if (v_CnfRequiredbyRef) {

 v_CommandSource := ims2;

 }

 }

 [not v_WaitingForCnf] a_MTC_ReceiveFromIPCAN_SendToUT(v_CnfRequiredbyRef) {

 if (v_CnfRequiredbyRef) {

 v_CommandSource := ipcan;

 }

 }

 [] a_MTC_ReceiveFromUT(v_CommandSource) {

 v_CommandSource := omit;

 }

 [] p_GuardTimer.timeout {

 f_MTC_IMS_Stop(fail);

 }

 [] any component.killed {

 f_MTC_IMS_Stop(inconc);

 }

 }

 }

 f_MTC_IMS_Stop(pass); /* Note: "pass" overrules "none" only */

 }

}
...
	…

Change 3 – Correction to altstep ‘a_IP_IMS_UL_ReceiveDataUDP()’
	Altstep name
	a_IP_IMS_UL_ReceiveDataUDP()

	Reason for change
	The variables v_NW_Address and v_UE_Address were undefined in case the UE was not registered.

	Summary of change
	Variables v_NW_Address and v_UE_Address are set according to the header of the incoming IP_SOCKET_IND.

	TTCN module
	IP_PTC\IP_PTC_IMS_Handler.ttcn

	MCC160 Comment
	Accepted in principle but implemented as per R5s120907

Before change

	...

 altstep a_IP_IMS_UL_ReceiveDataUDP(IMS_Server_Type p_ImsServer,

 integer p_PdnIndex,

 template (present) IP_AddrInfo_Type p_IpAddr,

 template (present) PortNumber_Type p_PortNumber,

 IMS_ProtectedUnprotected_Type p_ProtectedUnprotected) runs on IP_PTC

 { /* receive data from the UE */

 var IP_SOCKET_IND v_IP_SOCKET_IND;

 var Datagram_Content_Type v_Data;

 var template (omit) IP_AddrInfo_Type v_NW_Address := omit;

 var template (omit) IP_AddrInfo_Type v_UE_Address := omit;

 var template (value) IMS_RoutingInfo_Type v_RoutingInfo;

 var IMS_ClientServer_Type v_ClientServer;

 // receive UDP data

 [] IP_SOCK.receive(cr_UDP_DATA_IND(cr_IP_Socket(p_IpAddr, p_PortNumber)))

 -> value v_IP_SOCKET_IND

 {

 v_Data := v_IP_SOCKET_IND.DATA.Ind.UDP.RecvFrom.Buffer;

 if (not fl_ImsServer_UeIsRegistered(p_ImsServer)) {

 /* initial access: => IMS PTC gets handed over the UE's and the NW's IP address (=> IPv4 or IPv6) */

 v_NW_Address := v_IP_SOCKET_IND.DATA.ConnectionId.Local.IpAddr; // may be IPv4 or IPv6

 v_UE_Address := v_IP_SOCKET_IND.DATA.ConnectionId.Remote.IpAddr; // may be IPv4 or IPv6
 v_ClientServer := server; // intial access is only applicable for requests from the UE

 }

 else {

 v_ClientServer := fl_IP_IMS_UL_ResponseOrRequest(v_Data); /* for UDP Requests and Responses are sent by the UE from Port_uc to Port_ps,

 * i.e. there is not data for Port_us to Port_pc and therefore Requests and Responses

 * cannot be distinguished by the port on which they have been received */

 }

 v_RoutingInfo := cs_IMS_RoutingInfo(udp, p_ProtectedUnprotected, v_UE_Address, v_NW_Address);

 fl_IP_IMS_UL_DecodeAndSend(p_PdnIndex, v_ClientServer, v_RoutingInfo, v_Data);

 }

 }

...

After change

	...

 altstep a_IP_IMS_UL_ReceiveDataUDP(IMS_Server_Type p_ImsServer,

 integer p_PdnIndex,

 template (present) IP_AddrInfo_Type p_IpAddr,

 template (present) PortNumber_Type p_PortNumber,

 IMS_ProtectedUnprotected_Type p_ProtectedUnprotected) runs on IP_PTC

 { /* receive data from the UE */

 var IP_SOCKET_IND v_IP_SOCKET_IND;

 var Datagram_Content_Type v_Data;

 var template (omit) IP_AddrInfo_Type v_NW_Address := omit;

 var template (omit) IP_AddrInfo_Type v_UE_Address := omit;

 var template (value) IMS_RoutingInfo_Type v_RoutingInfo;

 var IMS_ClientServer_Type v_ClientServer;

 // receive UDP data

 [] IP_SOCK.receive(cr_UDP_DATA_IND(cr_IP_Socket(p_IpAddr, p_PortNumber)))

 -> value v_IP_SOCKET_IND

 {

 v_Data := v_IP_SOCKET_IND.DATA.Ind.UDP.RecvFrom.Buffer;

 v_NW_Address := v_IP_SOCKET_IND.DATA.ConnectionId.Local.IpAddr;

 v_UE_Address := v_IP_SOCKET_IND.DATA.ConnectionId.Remote.IpAddr;
 if (not fl_ImsServer_UeIsRegistered(p_ImsServer)) {

 /* initial access: => IMS PTC gets handed over the UE's and the NW's IP address (=> IPv4 or IPv6) */

 v_ClientServer := server; // intial access is only applicable for requests from the UE

 }

 else {

 v_ClientServer := fl_IP_IMS_UL_ResponseOrRequest(v_Data); /* for UDP Requests and Responses are sent by the UE from Port_uc to Port_ps,

 * i.e. there is not data for Port_us to Port_pc and therefore Requests and
Responses

 * cannot be distinguished by the port on which they have been received */

 }

 v_RoutingInfo := cs_IMS_RoutingInfo(udp, p_ProtectedUnprotected, v_UE_Address, v_NW_Address);

 fl_IP_IMS_UL_DecodeAndSend(p_PdnIndex, v_ClientServer, v_RoutingInfo, v_Data);

 }

 }

...
	…

�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary. Use the format of document number specified by the � HYPERLINK "http://www.3gpp.org/About/WP.htm" ��3GPP Working Procedures�.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark appropriate boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Office® 2003 applications. Prefered format is ISO standard yyyy-MM-dd.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected and the CRs which are linked. This is particularly important where the affected specs belong to a different working group than that which will agree the present CR.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

