

	
3GPP TSG-RAN5 Meeting #2022-TTCN email	R5s220123
Online, , 10th Dec 2021 - 31st Dec 2022
	CR-Form-v12.2

	CHANGE REQUEST

	

	
	38.523-3
	CR
	2323
	rev
	-
	Current version:
	17.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:	
	Correction to function f_NR5GC_508RRC_IntraNR_HO_IntraCell_Step1_8

	
	

	Source to WG:
	ROHDE & SCHWARZ

	Source to TSG:
	R5

	
	

	Work item code:
	5GS_NR_LTE-UEConTest
	
	Date:
	2022-01-07

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)

	
	

	Reason for change:
	In the function f_NR5GC_508RRC_IntraNR_HO_IntraCell_Step1_8, at Step 7, PDCP counts are being set based on an activation time. However, at Step 8, whilst re-establishing security, PDCP counts are being obtained with immediate activation time which would not include the increment of the DL PDCP SN for the transmission of the RRCReconfiguration message at Step 2. Hence, this mechanism does not guarantee the values that are obtained at Step 8 are the ones that were set at Step 7

	
	

	Summary of change:
	It is recommended to obtain the PDCP counts independent of the flag p_SetGetOfPDCPCount and increment the DL PDCP SN for the transmission of the RRCReconfiguration message at Step 2 and in the case of RBConfig_KeyChange being TRUE, reset the PDCP count to 0 as well as use the obtained PDCP counts at Step 1 to pass as a parameter to functions that re-establish security.

	
	

	Consequences if not approved:
	A Conformant UE may fail these test cases

	
	

	Clauses affected:
	[bookmark: _GoBack]7.1.3.4.2.NR5GC, 7.1.2.2.6.NR5GC, 7.1.2.3.11.NR5GC

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	

	affected:
	
	X
	 Test specifications
	

	(show related CRs)
	
	X
	 O&M Specifications
	

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

[bookmark: _Toc92457116]Table of Contents
Table of Contents	2
1	Corrections required for function f_NR5GC_508RRC_IntraNR_HO_IntraCell_Step1_8	2
1.1	Correction to f_NR5GC_508RRC_IntraNR_HO_IntraCell_Step1_8	2
1.2	Correction to f_NR_SS_AS_ActivateSecurity_Current	6
1.3	Correction to f_NR_RRC_CipherActTime_GetCurrent	8

1. [bookmark: _Toc122434488][bookmark: _Toc295288959][bookmark: _Toc92457117]Corrections required for function f_NR5GC_508RRC_IntraNR_HO_IntraCell_Step1_8
0.1 [bookmark: _Toc92457118]Correction to f_NR5GC_508RRC_IntraNR_HO_IntraCell_Step1_8
	Function name
	f_NR5GC_508RRC_IntraNR_HO_IntraCell_Step1_8()

	Reason for change
	In the function f_NR5GC_508RRC_IntraNR_HO_IntraCell_Step1_8, at Step 7, PDCP counts are being set based on an activation time. However, at Step 8, whilst re-establishing security, PDCP counts are being obtained with immediate activation time which would not include the increment of the DL PDCP SN for the transmission of the RRCReconfiguration message at Step 2. Hence, this mechanism does not guarantee the values that are obtained at Step 8 are the ones that were set at Step 7.

	Summary of change
	It is recommended to obtain the PDCP counts independent of the flag p_SetGetOfPDCPCount and increment the DL PDCP SN for the transmission of the RRCReconfiguration message at Step 2 and in the case of RBConfig_KeyChange being TRUE, reset the PDCP count to 0 as well as use the obtained PDCP counts at Step 1 to pass as a parameter to functions that re-establish security.

	TTCN module
	NR5GC_Handover

	MCC160 Comment
	

Before Change:
	function f_NR5GC_508RRC_IntraNR_HO_IntraCell_Step1_8(NR_CellId_Type p_NR_CellId,
 template (value) DL_DCCH_Message p_RRCReconfiguration,
 boolean p_RBConfig_KeyChange := true,
 template (value) NR_RadioBearerList_Type p_NR_RadioBearerList,
 template (value) NR_RachProcedureConfig_Type p_RachProcedureConfig,
 template (value) TimingInfo_Type p_TimingInfo := cs_TimingInfo_Now,
 RNTI_Value p_RNTI_Value := tsc_C_RNTI_Value3,
 template (omit) MeasConfig p_MeasConfig := omit,
 NextHopChainingCount p_NCC := tsc_NR_38508_NextHopChainingCount,
 template (omit) ReconfigurationWithSync.rach_ConfigDedicated p_RACH_ConfigDedicated := omit,
 boolean p_SetGetOfPDCPCount := true
) runs on NR_BASE_PTC
 { //Added p_SetGetOfPDCPCount to be set to false in PDCP tc with TM mode

 var SubFrameTiming_Type v_Timing;
 var IntegerList_Type v_DrbIdList := f_NR_GetActiveDRBs(p_NR_CellId); // List of DRBs to release in the cell

 var NR_PdcpCountInfoList_Type v_NR_PdcpCountInfoList;
 var NR_SecurityParams_Type v_RRC_SecurityParams;

 // Step 1. Before T: Get PDCP count for AM DRBs and SRBs (if applied).
 // Not needed in PDCP tc with PDCP configured in TM mode
 if (p_SetGetOfPDCPCount){
 v_NR_PdcpCountInfoList := f_NR_GetPdcpCountInfoListIntraNR_HO(p_NR_CellId, p_NR_RadioBearerList, p_RBConfig_KeyChange);
 // @sic R5s191200 R5s201150 sic@
 }

 /* For intra cell HO the HO procedure and the SS configuration must be executed with timing info.
 * This is to make sure SS reconfiguration is done properly and in time before UE access the new cell. */
 if (f_TimingInfo_IsNow(p_TimingInfo)) {
 v_Timing := f_NR_GetNextSendOccasion_DL(p_NR_CellId, tsc_NR_DelayBeforeIntraCellHO);
 } else {
 v_Timing := valueof(p_TimingInfo.SubFrame);
 }

 //Step 2 At T: Send RRCReconfiguration.
 SRB.send(cas_NR_SRB1_RrcPdu_REQ(p_NR_CellId, cs_TimingInfo_NR(v_Timing), p_RRCReconfiguration));
 /* Note: current implementation releases SRBs and reconfigures C-RNTI 5ms after sending the RRCConnectionReconfiguration
 => RLC ACK is not taken into consideration */

 <<SKIPPED CODE>>

 // Step 8 At T + 10ms: Re-establish security, disable TA transmission.
 // NOTE 2: For AM DRBs the PDCP count is maintained while for SRBs and UM DRBs the PDCP count is reset to 0.
 if ((p_NCC > tsc_NR_38508_NextHopChainingCount) or p_RBConfig_KeyChange) { // @sic R5s191200 R5s200309 sic@
 f_NR_SS_AS_ActivateSecurity_Current(p_NR_CellId, p_NCC, cs_TimingInfo_NR(v_Timing)); //@sic R5s200754 sic@
 } else {
 v_RRC_SecurityParams := f_NR_Security_Get();
 v_RRC_SecurityParams.AS_Ciphering.ActTimeList := f_NR_RRC_CipherActTime_GetCurrent(p_NR_CellId, false);
 f_NR_SS_RRC_EnableIntProt_CiphULandDL(p_NR_CellId,
 v_RRC_SecurityParams.AS_Integrity,
 v_RRC_SecurityParams.AS_Ciphering,
 cs_TimingInfo_NR(v_Timing)); // @sic R5s191200_r2 sic@
 }

 // Disable TA transmission
 f_NR_ULGrantConfiguration_Common(p_NR_CellId, cs_TimingInfo_NR(v_Timing), -, cs_NR_UplinkTimeAlignment_Stop, cs_UL_GrantConfig_OnSR);

}

After Change:
	function f_NR5GC_508RRC_IntraNR_HO_IntraCell_Step1_8(NR_CellId_Type p_NR_CellId,
 template (value) DL_DCCH_Message p_RRCReconfiguration,
 boolean p_RBConfig_KeyChange := true,
 template (value) NR_RadioBearerList_Type p_NR_RadioBearerList,
 template (value) NR_RachProcedureConfig_Type p_RachProcedureConfig,
 template (value) TimingInfo_Type p_TimingInfo := cs_TimingInfo_Now,
 RNTI_Value p_RNTI_Value := tsc_C_RNTI_Value3,
 template (omit) MeasConfig p_MeasConfig := omit,
 NextHopChainingCount p_NCC := tsc_NR_38508_NextHopChainingCount,
 template (omit) ReconfigurationWithSync.rach_ConfigDedicated p_RACH_ConfigDedicated := omit,
 boolean p_SetGetOfPDCPCount := true
) runs on NR_BASE_PTC
 { //Added p_SetGetOfPDCPCount to be set to false in PDCP tc with TM mode

 var SubFrameTiming_Type v_Timing;
 var IntegerList_Type v_DrbIdList := f_NR_GetActiveDRBs(p_NR_CellId); // List of DRBs to release in the cell

 var NR_PdcpCountInfoList_Type v_NR_PdcpCountInfoList;
 var NR_SecurityParams_Type v_RRC_SecurityParams;
 var integer i; //WA#

 // Step 1. Before T: Get PDCP count for AM DRBs and SRBs (if applied).
 // Not needed in PDCP tc with PDCP configured in TM mode
 //WA#
 v_NR_PdcpCountInfoList := f_NR_SS_PdcpCount_Get(p_NR_CellId);
 v_NR_PdcpCountInfoList[0].DL.Value := int2bit((bit2int(v_NR_PdcpCountInfoList[0].DL.Value) + 1), 32);

 /* For intra cell HO the HO procedure and the SS configuration must be executed with timing info.
 * This is to make sure SS reconfiguration is done properly and in time before UE access the new cell. */
 if (f_TimingInfo_IsNow(p_TimingInfo)) {
 v_Timing := f_NR_GetNextSendOccasion_DL(p_NR_CellId, tsc_NR_DelayBeforeIntraCellHO);
 } else {
 v_Timing := valueof(p_TimingInfo.SubFrame);
 }

 //Step 2 At T: Send RRCReconfiguration.
 SRB.send(cas_NR_SRB1_RrcPdu_REQ(p_NR_CellId, cs_TimingInfo_NR(v_Timing), p_RRCReconfiguration));
 /* Note: current implementation releases SRBs and reconfigures C-RNTI 5ms after sending the RRCConnectionReconfiguration
 => RLC ACK is not taken into consideration */

 <<SKIPPED CODE>>

 // Step 8 At T + 10ms: Re-establish security, disable TA transmission.
 // NOTE 2: For AM DRBs the PDCP count is maintained while for SRBs and UM DRBs the PDCP count is reset to 0.
 if ((p_NCC > tsc_NR_38508_NextHopChainingCount) or p_RBConfig_KeyChange) { // @sic R5s191200 R5s200309 sic@
 //WA#
 for (i := 0; i < lengthof(v_NR_PdcpCountInfoList); i:= i + 1) {
 v_NR_PdcpCountInfoList[i].DL.Value := int2bit(0, 32);
 v_NR_PdcpCountInfoList[i].UL.Value := int2bit(0, 32);
 }
 f_NR_SS_AS_ActivateSecurity_Current(p_NR_CellId, p_NCC, cs_TimingInfo_NR(v_Timing), -,v_NR_PdcpCountInfoList); //@sic R5s200754 sic@ WA#
 } else {
 v_RRC_SecurityParams := f_NR_Security_Get();
 v_RRC_SecurityParams.AS_Ciphering.ActTimeList := f_NR_RRC_CipherActTime_GetCurrent(p_NR_CellId, false,-, v_NR_PdcpCountInfoList); //WA#
 f_NR_SS_RRC_EnableIntProt_CiphULandDL(p_NR_CellId,
 v_RRC_SecurityParams.AS_Integrity,
 v_RRC_SecurityParams.AS_Ciphering,
 cs_TimingInfo_NR(v_Timing)); // @sic R5s191200_r2 sic@
 }

 // Disable TA transmission
 f_NR_ULGrantConfiguration_Common(p_NR_CellId, cs_TimingInfo_NR(v_Timing), -, cs_NR_UplinkTimeAlignment_Stop, cs_UL_GrantConfig_OnSR);

 }

0.2 [bookmark: _Toc92457119]Correction to f_NR_SS_AS_ActivateSecurity_Current
	Function name
	f_NR_SS_AS_ActivateSecurity_Current()

	Reason for change
	In the function f_NR5GC_508RRC_IntraNR_HO_IntraCell_Step1_8, at Step 7, PDCP counts are being set based on an activation time. However, at Step 8, whilst re-establishing security, PDCP counts are being obtained with immediate activation time which would not include the increment of the DL PDCP SN for the transmission of the RRCReconfiguration message at Step 2. Hence, this mechanism does not guarantee the values that are obtained at Step 8 are the ones that were set at Step 7.

	Summary of change
	It is recommended to obtain the PDCP counts independent of the flag p_SetGetOfPDCPCount and increment the DL PDCP SN for the transmission of the RRCReconfiguration message at Step 2 and in the case of RBConfig_KeyChange being TRUE, reset the PDCP count to 0 as well as use the obtained PDCP counts at Step 1 to pass as a parameter to functions that re-establish security.

	TTCN module
	NR_SecuritySteps

	MCC160 Comment
	

Before Change:
	function f_NR_SS_AS_ActivateSecurity_Current(NR_CellId_Type p_NR_CellId,
 NextHopChainingCount p_NCC := tsc_NR_38508_NextHopChainingCount,
 template (value) TimingInfo_Type p_TimingInfo := cs_TimingInfo_Now,
 boolean p_IncrSRB1_DL := false
) runs on NR_BASE_PTC
 {
 //@sic R5s201221: added p_IncrSRB1_DL. sic@
 var NR_SecurityParams_Type v_RRC_SecurityParams := f_NR_Security_Get();

 // refresh security keys
 v_RRC_SecurityParams := f_NR_InitAS_KeyChaining_KeyRefresh(f_NR_CellInfo_GetPhysicalCellId(p_NR_CellId),
 f_NR_CellInfo_GetFrequencySSB(p_NR_CellId),
 v_RRC_SecurityParams,
 p_NCC);

 // reset the PDCP sequence numbers for ciphering
 v_RRC_SecurityParams.AS_Ciphering.ActTimeList := f_NR_RRC_CipherActTime_GetCurrent(p_NR_CellId, false, p_IncrSRB1_DL);
 f_NR_SS_RRC_EnableIntProt_CiphULandDL(p_NR_CellId,
 v_RRC_SecurityParams.AS_Integrity,
 v_RRC_SecurityParams.AS_Ciphering,
 p_TimingInfo);
 f_NR_Security_Set(v_RRC_SecurityParams);
 }

After Change:
	function f_NR_SS_AS_ActivateSecurity_Current(NR_CellId_Type p_NR_CellId,
 NextHopChainingCount p_NCC := tsc_NR_38508_NextHopChainingCount,
 template (value) TimingInfo_Type p_TimingInfo := cs_TimingInfo_Now,
 boolean p_IncrSRB1_DL := false,
 template(omit) NR_PdcpCountInfoList_Type p_PdcpCountInfoList:= omit //WA#
) runs on NR_BASE_PTC
 {
 //@sic R5s201221: added p_IncrSRB1_DL. sic@
 var NR_SecurityParams_Type v_RRC_SecurityParams := f_NR_Security_Get();

 // refresh security keys
 v_RRC_SecurityParams := f_NR_InitAS_KeyChaining_KeyRefresh(f_NR_CellInfo_GetPhysicalCellId(p_NR_CellId),
 f_NR_CellInfo_GetFrequencySSB(p_NR_CellId),
 v_RRC_SecurityParams,
 p_NCC);

 // reset the PDCP sequence numbers for ciphering
 v_RRC_SecurityParams.AS_Ciphering.ActTimeList := f_NR_RRC_CipherActTime_GetCurrent(p_NR_CellId, false, p_IncrSRB1_DL, p_PdcpCountInfoList); //WA#
 f_NR_SS_RRC_EnableIntProt_CiphULandDL(p_NR_CellId,
 v_RRC_SecurityParams.AS_Integrity,
 v_RRC_SecurityParams.AS_Ciphering,
 p_TimingInfo);
 f_NR_Security_Set(v_RRC_SecurityParams);
 }

0.3 [bookmark: _Toc92457120]Correction to f_NR_RRC_CipherActTime_GetCurrent
	Function name
	f_NR_RRC_CipherActTime_GetCurrent()

	Reason for change
	In the function f_NR5GC_508RRC_IntraNR_HO_IntraCell_Step1_8, at Step 7, PDCP counts are being set based on an activation time. However, at Step 8, whilst re-establishing security, PDCP counts are being obtained with immediate activation time which would not include the increment of the DL PDCP SN for the transmission of the RRCReconfiguration message at Step 2. Hence, this mechanism does not guarantee the values that are obtained at Step 8 are the ones that were set at Step 7.

	Summary of change
	It is recommended to obtain the PDCP counts independent of the flag p_SetGetOfPDCPCount and increment the DL PDCP SN for the transmission of the RRCReconfiguration message at Step 2 and in the case of RBConfig_KeyChange being TRUE, reset the PDCP count to 0 as well as use the obtained PDCP counts at Step 1 to pass as a parameter to functions that re-establish security.

	TTCN module
	NR_SecuritySteps

	MCC160 Comment
	

Before Change:
	function f_NR_RRC_CipherActTime_GetCurrent(NR_CellId_Type p_NR_CellId, boolean p_IncrSRB1, boolean p_IncrSRB1_DL := false) runs on NR_BASE_PTC return NR_SecurityActTimeList_Type
 {

 <<SKIPPED CODE>>

 v_PdcpCountInfoList := f_NR_SS_PdcpCount_Get(p_NR_CellId);

 <<SKIPPED CODE>>

After Change:
	function f_NR_RRC_CipherActTime_GetCurrent(NR_CellId_Type p_NR_CellId, boolean p_IncrSRB1, boolean p_IncrSRB1_DL := false, template(omit) NR_PdcpCountInfoList_Type p_PdcpCountInfoList:= omit) runs on NR_BASE_PTC return NR_SecurityActTimeList_Type
 {

 <<SKIPPED CODE>>

 //WA#
 if (isvalue(p_PdcpCountInfoList)) {
 v_PdcpCountInfoList := valueof(p_PdcpCountInfoList);
 } else {
 v_PdcpCountInfoList := f_NR_SS_PdcpCount_Get(p_NR_CellId);
 }

 <<SKIPPED CODE>>

