

	
3GPP TSG-RAN5 Meeting #2022-TTCN email	R5s220106
Online, , 13th Dec 2021 - 31st Dec 2022
	CR-Form-v12.1

	CHANGE REQUEST

	

	
	38.523-3
	CR
	2308
	rev
	-
	Current version:
	17.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:	
	Correction for TCP functions

	
	

	Source to WG:
	Keysight Technologies

	Source to TSG:
	R5

	
	

	Work item code:
	5GS_NR_LTE-UEConTest
	
	Date:
	2022-01-04

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	Race conditions have been observed in some test cases following IMS de-regisration, while the “StopPDN” request (issued from either EUTRA or NR5GC PTC) is processed in the IP PTC. The TTCN is getting stuck during closing of 1 TCP socket because there is a clash between the SS closing the socket and the UE trying to close it at the same time.

This should be handled in the function fl_TCP_Close() but there is a mismatch happening with the TCP close indication coming from the SS, because it gets matched against the IP connection details that were passed into the function from f_TcpServer_Stop(). This has the “remote” part of the connection set to “omit” but the indication from the SS has the “remote” connection details filled in. This causes a mismatch, and the message stays in the queue and blocks the TCP close cnf that comes shortly after.

	
	

	Summary of change:
	The template parameters are changed such that only the “local” connection details are checked when receiving TCP CLOSE IND.

	
	

	Consequences if not approved:
	Execution of some test cases can intermittently hang, with IMS-enabled UE

	
	

	Clauses affected:
	Common function fl_TCP_Close()

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

[bookmark: _Toc92222473]Table of Contents
Table of Contents	2
1	Overview	3
2	Corrections required	3
2.1	Change 1	3

1. [bookmark: _Toc122434485][bookmark: _Toc92222474]Overview
This document lists all the changes needed to correct issues in the ATS iwd-TTCN3-B2020-09_D12wk49 related to the title of this CR.
Contact:	Shaun Harry
	shaun.harry@keysight.com

1. [bookmark: _Toc122434488][bookmark: _Toc295288959][bookmark: _Toc92222475]Corrections required
1. [bookmark: _Toc30685521][bookmark: _Toc83829269][bookmark: _Toc92222476]Change 1
	Function name
	fl_TCP_Close()

	Reason for change
	Race conditions have been observed in some test cases following IMS de-regisration, while the “StopPDN” request (issued from either EUTRA or NR5GC PTC) is processed in the IP PTC. The TTCN is getting stuck during closing of 1 TCP socket because there is a clash between the SS closing the socket and the UE trying to close it at the same time.
This should be handled in the function fl_TCP_Close() but there is a mismatch happening with the TCP close indication coming from the SS, because it gets matched against the IP connection details that were passed into the function from f_TcpServer_Stop(). This has the “remote” part of the connection set to “omit” but the indication from the SS has the “remote” connection details filled in. This causes a mismatch, and the message stays in the queue and blocks the TCP close cnf that comes shortly after.

	Summary of change
	The template parameters are changed such that only the “local” connection details are checked when receiving TCP CLOSE IND.

	TTCN module
	TCP_Functions.ttcn

	MCC160 Comment
	

Before Change
	function fl_TCP_Close(template (value) IP_Connection_Type p_IP_Connection,
boolean p_WaitForCNF) runs on IP_PTC
{
IP_SOCK_CTRL.send(cs_TCP_CLOSE_REQ(p_IP_Connection));
if (p_WaitForCNF) {
alt {
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_CNF(p_IP_Connection)) { }
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_CNF(?)) { repeat; } /* @sic R5s170043: pending CNF for previous call with p_WaitForCNF==false sic@
* NOTE: in general the CNFs in case of p_WaitForCNF==false may occur at any time */
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_IND(p_IP_Connection)) { repeat; } /* @sic R5s150270 change 1 sic@ */
}
}
}

After Change
	function fl_TCP_Close(template (value) IP_Connection_Type p_IP_Connection,
boolean p_WaitForCNF) runs on IP_PTC
{
IP_SOCK_CTRL.send(cs_TCP_CLOSE_REQ(p_IP_Connection));
if (p_WaitForCNF) {
alt {
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_CNF(p_IP_Connection)) { }
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_CNF(?)) { repeat; } /* @sic R5s170043: pending CNF for previous call with p_WaitForCNF==false sic@
* NOTE: in general the CNFs in case of p_WaitForCNF==false may occur at any time */
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_IND(cr_TCP_ConnectionId (p_IP_Connection.Local, *))) { repeat; }
}
}
}

