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	Reason for change:
	Race conditions have been observed in some test cases following IMS de-regisration, while the “StopPDN” request (issued from either EUTRA or NR5GC PTC) is processed in the IP PTC. The TTCN is getting stuck during closing of 1 TCP socket because there is a clash between the SS closing the socket and the UE trying to close it at the same time.
 
This should be handled in the function fl_TCP_Close() but there is a mismatch happening with the TCP close indication coming from the SS, because it gets matched against the IP connection details that were passed into the function from f_TcpServer_Stop(). This has the “remote” part of the connection set to “omit” but the indication from the SS has the “remote” connection details filled in. This causes a mismatch, and the message stays in the queue and blocks the TCP close cnf that comes shortly after.


	
	

	Summary of change:
	The template parameters are changed such that only the “local” connection details are checked when receiving TCP CLOSE IND.

	
	

	Consequences if not approved:
	Execution of some test cases can intermittently hang, with IMS-enabled UE
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	Common function fl_TCP_Close()
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1. [bookmark: _Toc122434485][bookmark: _Toc92222474]Overview
This document lists all the changes needed to correct issues in the ATS iwd-TTCN3-B2020-09_D12wk49 related to the title of this CR.
Contact:	Shaun Harry
	shaun.harry@keysight.com


1. [bookmark: _Toc122434488][bookmark: _Toc295288959][bookmark: _Toc92222475]Corrections required
1. [bookmark: _Toc30685521][bookmark: _Toc83829269][bookmark: _Toc92222476]Change 1
	Function name
	fl_TCP_Close()

	Reason for change
	Race conditions have been observed in some test cases following IMS de-regisration, while the “StopPDN” request (issued from either EUTRA or NR5GC PTC) is processed in the IP PTC. The TTCN is getting stuck during closing of 1 TCP socket because there is a clash between the SS closing the socket and the UE trying to close it at the same time. 
This should be handled in the function fl_TCP_Close() but there is a mismatch happening with the TCP close indication coming from the SS, because it gets matched against the IP connection details that were passed into the function from f_TcpServer_Stop(). This has the “remote” part of the connection set to “omit” but the indication from the SS has the “remote” connection details filled in. This causes a mismatch, and the message stays in the queue and blocks the TCP close cnf that comes shortly after.

	Summary of change
	The template parameters are changed such that only the “local” connection details are checked when receiving TCP CLOSE IND.

	TTCN module
	TCP_Functions.ttcn

	MCC160 Comment
	



Before Change
	function fl_TCP_Close(template (value) IP_Connection_Type p_IP_Connection,
boolean p_WaitForCNF) runs on IP_PTC
{
IP_SOCK_CTRL.send(cs_TCP_CLOSE_REQ(p_IP_Connection));
if (p_WaitForCNF) {
alt {
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_CNF(p_IP_Connection)) { }
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_CNF(?)) { repeat; } /* @sic R5s170043: pending CNF for previous call with p_WaitForCNF==false sic@
* NOTE: in general the CNFs in case of p_WaitForCNF==false may occur at any time */
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_IND(p_IP_Connection)) { repeat; } /* @sic R5s150270 change 1 sic@ */
}
}
}    




After Change
	function fl_TCP_Close(template (value) IP_Connection_Type p_IP_Connection,
boolean p_WaitForCNF) runs on IP_PTC
{
IP_SOCK_CTRL.send(cs_TCP_CLOSE_REQ(p_IP_Connection));
if (p_WaitForCNF) {
alt {
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_CNF(p_IP_Connection)) { }
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_CNF(?)) { repeat; } /* @sic R5s170043: pending CNF for previous call with p_WaitForCNF==false sic@
* NOTE: in general the CNFs in case of p_WaitForCNF==false may occur at any time */
[] IP_SOCK_CTRL.receive(cr_TCP_CLOSE_IND(cr_TCP_ConnectionId (p_IP_Connection.Local, *))) { repeat; }
}
}
}    




