Page 1

3GPP TSG-RAN5 Meeting #2018
R5s180387
Online, 15th Dec 2017, - 31st Dec 2018
	CR-Form-v11.2.1

	CHANGE REQUEST

	

	
	36.523-3
	CR
	4195
	rev
	-
	Current version:
	14.3.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Correction to NB-IoT TC 22.6.1a

	
	

	Source to WG:
	ROHDE & SCHWARZ

	Source to TSG:
	R5

	
	

	Work item code:
	TEI13_Test, NB_IOT-UEConTest
	
	Date:
	2018-05-31

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-14

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	In the current TTCN implementation of this function, for steps 7- 8 the TTCN is coded as follows:

//@siclog "Step 7 - 8" siclog@
 for (N := 6; N <- v_Nmax2; N := N + 1) { // @sic R5s170767 sic@ //WA#22_6_1a
 v_IpPacket := fl_TC_22_6_1a_CreateDatagram(v_IpTypeIsIPv4, int2str(N));
 fl_NBIOT_IpPacket_SendRecv_CP(p_CellId, v_IpPacket, "Step 8", false);
 }
This causes a problem, because the loop runs until N = 8 for IPv4, and N=10 for IPv6 options. This means that the situation when v_Nmax2 = 9 and v_Nmax2 = 11 never get executed.

This needs to be corrected.

Also, when the function fl_TC_22_6_1_CreateDatagram() is called when v_Nmax2 = 11, the index passed translates into 11a. For this, there is no handling in function fl_TC_22_6_1_CreateDatagram(). This too needs to be handled.

	
	

	Summary of change:
	Modified the TTCN so that v_Nmax2 = 9 and v_Nmax2 = 11 is now executed. Also updated the function fl_TC_22_6_1_CreateDatagram() to handle index 11a.

Please see screenshot.

	
	

	Consequences if not approved:
	A conformant UE may fail the test case

	
	

	Clauses affected:
	22.6.1a

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	

	affected:
	
	X
	 Test specifications
	

	(show related CRs)
	
	X
	 O&M Specifications
	

	
	

	Other comments:
	

Table of Contents
3Table of Contents

1
Corrections required
4
1.1
fl_TC_22_6_1_CreateDatagram()
4
1.2
fl_TC_22_6_1a_Step1_12()
5

1 Corrections required

1.1 fl_TC_22_6_1_CreateDatagram()
	Function name
	fl_TC_22_6_1_CreateDatagram ()

	Reason for change
	In the current TTCN implementation of this function, for steps 7- 8 the TTCN is coded as follows:

//@siclog "Step 7 - 8" siclog@
 for (N := 6; N <- v_Nmax2; N := N + 1) { // @sic R5s170767 sic@ //WA#22_6_1a
 v_IpPacket := fl_TC_22_6_1a_CreateDatagram(v_IpTypeIsIPv4, int2str(N));
 fl_NBIOT_IpPacket_SendRecv_CP(p_CellId, v_IpPacket, "Step 8", false);
 }
This causes a problem, because the loop runs until N = 8 for IPv4, and N=10 for IPv6 options. This means that the situation when v_Nmax2 = 9 and v_Nmax2 = 11 never get executed.

This needs to be corrected

	Summary of change
	Modified the TTCN so that v_Nmax2 = 9 and v_Nmax2 = 11 is now executed.

Please see screenshot.

	TTCN module
	NBIOT_ESM_Testcases.ttcn

	MCC160 Comment
	Accepted

Before Change:

	<<SKIPPED CODE>>
//@siclog "Step 7 - 8" siclog@
 for (N := 6; N <- v_Nmax2; N := N + 1) { // @sic R5s170767 sic@
 v_IpPacket := fl_TC_22_6_1a_CreateDatagram(v_IpTypeIsIPv4, int2str(N));
 fl_NBIOT_IpPacket_SendRecv_CP(p_CellId, v_IpPacket, "Step 8", false);
 }

<<SKIPPED CODE>>

After Change:

	<<SKIPPED CODE>>
for (N := 6; N <= v_Nmax2; N := N + 1) { // @sic R5s170767 sic@ //WA#22_6_1a
 v_IpPacket := fl_TC_22_6_1a_CreateDatagram(v_IpTypeIsIPv4, int2str(N));
 fl_NBIOT_IpPacket_SendRecv_CP(p_CellId, v_IpPacket, "Step 8", false);
 }

<<SKIPPED CODE>>

1.2 fl_TC_22_6_1a_Step1_12()

	Function name
	fl_TC_22_6_1a_Step1_12 ()

	Reason for change
	In the current TTCN implementation of this function, for steps 7- 8 the TTCN is coded as follows:

//@siclog "Step 7 - 8" siclog@
 for (N := 6; N <- v_Nmax2; N := N + 1) { // @sic R5s170767 sic@ //WA#22_6_1a
 v_IpPacket := fl_TC_22_6_1a_CreateDatagram(v_IpTypeIsIPv4, int2str(N));
 fl_NBIOT_IpPacket_SendRecv_CP(p_CellId, v_IpPacket, "Step 8", false);
 }
This causes a problem, because the loop runs until N = 8 for IPv4, and N=10 for IPv6 options. This means that the situation when v_Nmax2 = 9 and v_Nmax2 = 11 never get executed.

Also, when the function fl_TC_22_6_1_CreateDatagram() is called when v_Nmax2 = 11, the index passed translates into 11a. For this, there is no handling in function fl_TC_22_6_1_CreateDatagram(). This too needs to be handled.

	Summary of change
	Updated the function fl_TC_22_6_1_CreateDatagram() to handle index 11a.

Please see screenshot.

	TTCN module
	NBIOT_ESM_Testcases.ttcn

	MCC160 Comment
	Accepted

Before Change:

	<<SKIPPED CODE>>

case ("10", "11", "12", "5a") { // Filters #10, #11, #12 are derived from #17
 v_TOS_TC := 'B3'O;
 v_Protocol := tsc_IP_Protocol_TCP;
 v_SourcePort := 60101;
 v_DestPort := 60451;
 v_IPv6_FlowLabel := 5;
 }

<<SKIPPED CODE>>

After Change:

	<<SKIPPED CODE>>

case ("10", "11", "12", "5a", "11a" /*WA#22_6_1a introduced 11a*/) { // Filters #10, #11, #12 are derived from #17
 v_TOS_TC := 'B3'O;
 v_Protocol := tsc_IP_Protocol_TCP;
 v_SourcePort := 60101;
 v_DestPort := 60451;
 v_IPv6_FlowLabel := 5;
 }

<<SKIPPED CODE>>

