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	Reason for change:
	In the current TTCN implementation of this function, for steps 7- 8 the TTCN is coded as follows:

//@siclog "Step 7 - 8" siclog@
    for (N := 6; N <- v_Nmax2; N := N + 1) { // @sic R5s170767 sic@ //WA#22_6_1a
      v_IpPacket := fl_TC_22_6_1a_CreateDatagram(v_IpTypeIsIPv4, int2str(N));
      fl_NBIOT_IpPacket_SendRecv_CP(p_CellId, v_IpPacket, "Step 8", false);
    }
This causes a problem, because the  loop runs until N = 8 for IPv4, and N=10 for IPv6 options. This means that the situation when v_Nmax2 = 9 and v_Nmax2 = 11 never get executed. 

This needs to be corrected.

Also, when the function fl_TC_22_6_1_CreateDatagram() is called when v_Nmax2 = 11, the index passed translates into 11a. For this, there is no handling in function fl_TC_22_6_1_CreateDatagram(). This too needs to be handled.

	
	

	Summary of change:
	Modified the TTCN so that v_Nmax2 = 9 and v_Nmax2 = 11 is now executed. Also updated the function fl_TC_22_6_1_CreateDatagram() to handle index 11a.

Please see screenshot.
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1 Corrections required

1.1 fl_TC_22_6_1_CreateDatagram()
	Function name
	fl_TC_22_6_1_CreateDatagram ()

	Reason for change
	In the current TTCN implementation of this function, for steps 7- 8 the TTCN is coded as follows:

//@siclog "Step 7 - 8" siclog@
    for (N := 6; N <- v_Nmax2; N := N + 1) { // @sic R5s170767 sic@ //WA#22_6_1a
      v_IpPacket := fl_TC_22_6_1a_CreateDatagram(v_IpTypeIsIPv4, int2str(N));
      fl_NBIOT_IpPacket_SendRecv_CP(p_CellId, v_IpPacket, "Step 8", false);
    }
This causes a problem, because the  loop runs until N = 8 for IPv4, and N=10 for IPv6 options. This means that the situation when v_Nmax2 = 9 and v_Nmax2 = 11 never get executed. 

This needs to be corrected

	Summary of change
	Modified the TTCN so that v_Nmax2 = 9 and v_Nmax2 = 11 is now executed. 

Please see screenshot.

	TTCN module
	NBIOT_ESM_Testcases.ttcn

	MCC160 Comment
	Accepted


Before Change:

	<<SKIPPED CODE>>
//@siclog "Step 7 - 8" siclog@
    for (N := 6; N <- v_Nmax2; N := N + 1) { // @sic R5s170767 sic@
      v_IpPacket := fl_TC_22_6_1a_CreateDatagram(v_IpTypeIsIPv4, int2str(N));
      fl_NBIOT_IpPacket_SendRecv_CP(p_CellId, v_IpPacket, "Step 8", false);
    }

<<SKIPPED CODE>>


After Change:

	<<SKIPPED CODE>>
for (N := 6; N <= v_Nmax2; N := N + 1) { // @sic R5s170767 sic@ //WA#22_6_1a
      v_IpPacket := fl_TC_22_6_1a_CreateDatagram(v_IpTypeIsIPv4, int2str(N));
      fl_NBIOT_IpPacket_SendRecv_CP(p_CellId, v_IpPacket, "Step 8", false);
    }

<<SKIPPED CODE>>


1.2 fl_TC_22_6_1a_Step1_12()

	Function name
	fl_TC_22_6_1a_Step1_12 ()

	Reason for change
	In the current TTCN implementation of this function, for steps 7- 8 the TTCN is coded as follows:

//@siclog "Step 7 - 8" siclog@
    for (N := 6; N <- v_Nmax2; N := N + 1) { // @sic R5s170767 sic@ //WA#22_6_1a
      v_IpPacket := fl_TC_22_6_1a_CreateDatagram(v_IpTypeIsIPv4, int2str(N));
      fl_NBIOT_IpPacket_SendRecv_CP(p_CellId, v_IpPacket, "Step 8", false);
    }
This causes a problem, because the  loop runs until N = 8 for IPv4, and N=10 for IPv6 options. This means that the situation when v_Nmax2 = 9 and v_Nmax2 = 11 never get executed. 

Also, when the function fl_TC_22_6_1_CreateDatagram() is called when v_Nmax2 = 11, the index passed translates into 11a. For this, there is no handling in function fl_TC_22_6_1_CreateDatagram(). This too needs to be handled.

	Summary of change
	Updated the function fl_TC_22_6_1_CreateDatagram() to handle index 11a.

Please see screenshot.

	TTCN module
	NBIOT_ESM_Testcases.ttcn

	MCC160 Comment
	Accepted


Before Change:

	<<SKIPPED CODE>>

case ("10", "11", "12", "5a") { // Filters #10, #11, #12 are derived from #17
        v_TOS_TC     := 'B3'O;
        v_Protocol   := tsc_IP_Protocol_TCP;
        v_SourcePort := 60101;
        v_DestPort   := 60451;
        v_IPv6_FlowLabel := 5;
      }

<<SKIPPED CODE>>


After Change:

	<<SKIPPED CODE>>

case ("10", "11", "12", "5a", "11a" /*WA#22_6_1a introduced 11a*/) { // Filters #10, #11, #12 are derived from #17
        v_TOS_TC     := 'B3'O;
        v_Protocol   := tsc_IP_Protocol_TCP;
        v_SourcePort := 60101;
        v_DestPort   := 60451;
        v_IPv6_FlowLabel := 5;
      }

<<SKIPPED CODE>>


