
3GPP TSG-RAN WG5 Testing
R5s170316
12 Dec 2016 – 31 Dec 2017

	CR-Form-v11.2

	CHANGE REQUEST

	

	
	34.229-3
	CR
	0492
	rev
	-
	Current version:
	13.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Correction to retransmission of 183 Session in progress from UE

	
	

	Source to WG:
	Anritsu Ltd.

	Source to TSG:
	R5

	
	

	Work item code:
	TEI8_Test
	
	Date:
	2017-04-13

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-13

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	 As per RFC 3262:
1 Introduction

…

The reliability mechanism works by mirroring the current reliability mechanisms for 2xx final responses to INVITE. Those requests are transmitted periodically by the Transaction User (TU) until a separate transaction, ACK, is received that indicates reception of the 2xx by the UAC. The reliability for the 2xx responses to INVITE and ACK messages are end-to-end. In order to achieve reliability for provisional responses, we do nearly the same thing. Reliable provisional responses are retransmitted by the TU with an exponential backoff. Those retransmissions cease when a PRACK message is received.

3 UAS Behavior
…

 The reliable provisional response is passed to the transaction layer periodically with an interval that starts at T1 seconds and doubles for each retransmission (T1 is defined in Section 17 of RFC 3261). Once passed to the server transaction, it is added to an internal list of unacknowledged reliable provisional responses. The transaction layer will forward each retransmission passed from the UAS core.

…
 Retransmissions of the reliable provisional response cease when a matching PRACK is received by the UA core.
In case of IMS MT call TCs there should be allowed retransmission of such as messages (183 Session in progress) that are sent via unreliable transport (UDP) from UE.

Currently there is only one 183 Session in progress expected and the PRACK is sent after the bearers are established. The bearer establishment can take more than 500ms and the PRACK will not be sent to UE within T1 (500ms by default from RFC 3261) and the UE might retransmit the 183 message causing the TC to fail.

Prose CR will be raised.

	
	

	Summary of change:
	Allowed retransmissions of 183 Session in progress from UE.

	
	

	Consequences if not approved:
	Conformant UE will fail test case

	
	

	Clauses affected:
	IMS MT call TCs.

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	X
	
	 Test specifications
	TS/TR ... CR ... 34.229-1

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

Change 1

	Function name
	f_IMS_ReceiveResponse_OptionalTrying_Timeout

	Reason for change
	In case of IMS MT call TCs there should be allowed retransmission of such as messages (183 Session in progress) that are sent via unreliable transport (UDP) from UE.

Currently there is only one 183 Session in progress expected and the PRACK is sent after the bearers are established. The bearer establishment can take more than 500ms and the PRACK will not be sent to UE within T1 (500ms by default from RFC 3261) and the UE might retransmit the 183 message causing the TC to fail.

Prose CR will be raised.

	Summary of change
	Allowed retransmissions of 183 Session in progress from UE.

	TTCN module
	Common\IMS\IMS_Procedures_CallControl.ttcn

	MCC160 Comment
	

Before change

 function f_IMS_ReceiveResponse_OptionalTrying_Timeout(timer p_Timer,

 template (value) INVITE_Request p_InviteRequest,

 template (present) InternetProtocol_Type p_Protocol,

 template (present) IMS_Response_Type p_Response,

 boolean p_AllowTrying := true) runs on IMS_PTC return template (omit) IMS_DATA_RSP

 {

 var IMS_DATA_RSP v_IMS_DATA_RSP_Ref;

 var template (omit) IMS_DATA_RSP v_IMS_DATA_RSP := omit;

 var boolean v_TimerIsRunning := p_Timer.running;

 var boolean v_AllowTrying := p_AllowTrying;

 alt {

 [v_AllowTrying] a_IMS_ReceiveResponse(p_InviteRequest.msgHeader,

 p_Protocol,

 cr_Response(c_statusLine100, f_IMS_InviteResponse_100_MessageHeaderRX(p_InviteRequest)),

 v_IMS_DATA_RSP_Ref) /* @sic R5s140350: v_IMS_DATA_RSP is 'out' parameter sic@ */

 {

 v_AllowTrying := false;

 repeat;

 }

 [] a_IMS_ReceiveResponse(p_InviteRequest.msgHeader,

 p_Protocol,

 p_Response,

 v_IMS_DATA_RSP_Ref) /* @sic R5s140350: v_IMS_DATA_RSP is 'out' parameter sic@ */

 {

 /* NOTE: p_Timer has to be stopped by the caller of this function - if started; (necessary due to implementation for 16.X test cases) */

 v_IMS_DATA_RSP := v_IMS_DATA_RSP_Ref;

 }

 [v_TimerIsRunning] p_Timer.timeout

 {

 }

 }

 return v_IMS_DATA_RSP;

 }
After change

function f_IMS_ReceiveResponse_OptionalTrying_Timeout(timer p_Timer,

 template (value) INVITE_Request p_InviteRequest,

 template (present) InternetProtocol_Type p_Protocol,

 template (present) IMS_Response_Type p_Response,

 boolean p_AllowTrying := true) runs on IMS_PTC return template (omit) IMS_DATA_RSP

 {

 var IMS_DATA_RSP v_IMS_DATA_RSP_Ref;

 var template (omit) IMS_DATA_RSP v_IMS_DATA_RSP := omit;

 var boolean v_TimerIsRunning := p_Timer.running;

 var boolean v_AllowTrying := p_AllowTrying;

 var default v_Retransmissions := null;
 alt {

 [v_AllowTrying] a_IMS_ReceiveResponse(p_InviteRequest.msgHeader,

 p_Protocol,

 cr_Response(c_statusLine100, f_IMS_InviteResponse_100_MessageHeaderRX(p_InviteRequest)),

 v_IMS_DATA_RSP_Ref) /* @sic R5s140350: v_IMS_DATA_RSP is 'out' parameter sic@ */

 {

 v_AllowTrying := false;

 repeat;

 }

 [] a_IMS_ReceiveResponse(p_InviteRequest.msgHeader,

 p_Protocol,

 p_Response,

 v_IMS_DATA_RSP_Ref) /* @sic R5s140350: v_IMS_DATA_RSP is 'out' parameter sic@ */

 {

 /* NOTE: p_Timer has to be stopped by the caller of this function - if started; (necessary due to implementation for 16.X test cases) */

 v_IMS_DATA_RSP := v_IMS_DATA_RSP_Ref;

 }

 [v_TimerIsRunning] p_Timer.timeout

 {

 }

 }

 if (p_Protocol == udp) {

 v_Retransmissions := activate(a_IMS_ReceiveResponse(p_InviteRequest.msgHeader, p_Protocol, p_Response, v_IMS_DATA_RSP_Ref));

 }
 return v_IMS_DATA_RSP;

 }
