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1.
Introduction
RAN5 has been discussing FR2 Occupied bandwidth measurement uncertainty for several meetings already ([1-[16]) with the following agreements:
· In [15] the following proposals were endorsed:

	Proposal 1: Apply a span of 1.5 CHBW for 400 MHz and use the same span for the other channel bandwidth in order to optimize the impact of noise. 

Proposal 2: Select DFT-s-OFDM QPSK as waveform and modulation since it has the lowest MPR and allows to reduce the impact of noise on the OBW MU.


· In [16] the following proposals were endorsed: 
	Proposal 1: OEM and chipset vendors to provide the information on the Tx spectrum shape (PSD, slope), to help determine MU of FR2 OBW test for frequency band n260.
Proposal 2: Reduce FR2 OBW span from 2*CBW to 1.5 *CBW.


During offline discussions in RAN5#87e, it was indicated that same waveforms as defined in [10] could be used for FR2b (n260).

Additionally, simulations of noise impact and signal flatness from different test equipment vendors during RAN5#87e were diverging due to different centre frequencies. After double-checking which centre frequency was used in [10], it was agreed during offline discussions to use 28 GHz in the simulations as centre frequency.

This document provides updated simulation results on the noise and signal flatness impact on the FR2 OBW measurement uncertainty and makes proposals to progress/conclude on this discussion.

2.
Occupied Bandwidth measurement uncertainty metric

As described in [14], three different metrics have been considered to define OBW measurement uncertainty along the discussion: 

	Option 1 : (OBWmeas - OBWsignal) / OBWsignal *100
Option 2 : (OBWmeas - OBWsignal) / CBW *100
Option 3 : (OBWmeas – NRB*SCS+12*0.99) / OBWsignal *100


Where:

· OBWmeas is the measured OBW which includes effect of any distortions in test system e.g. noise impact, flatness factors, etc. 

· OBWsignal is the measured OBW of the UE signals without any test system distortion.
· CBW is the channel bandwidth of the UE signal as defined in [17] Section 5.3.

Taking into account that the goal of this evaluation is to quantify the system distortion impact with a real signal when measuring the OBW against CBW limits, Option 2 could be the most appropriate option.
Proposal 1: Use (OBWmeas - OBWsignal) / CBW *100 as the metric to define OBW MU.
3.
Test system distortion

Two main contributors have been considered for OBW MU evaluation:

· Test equipment Rx noise level: Analysis to be run for different values of SNR relative to the channel power of the UE signal: SNR=15-40 dB.

· Test equipment Rx Signal flatness: [13] already considered ±2.19 dB worst case signal flatness assumption.

Proposal 2: Analyze OBW MU for SNR=15-40 dB and signal flatness ±2.19 dB.
Regarding Rx signal flatness, in our simulations we have considered 3 different cases:

· Case 1: 0 dB flatness (to allow quantification of noise and signal flatness separately).

· Case 2: As described in [13], 3 control points along the OBW measurement span (edges + mid points) with normal distribution of variance 2.19dB and linear interpolation between them.
· Case 3: normal distribution of variance ±2.19dB in each frequency point of the analysed span.
For cases 2 and 3, the measured OBW and error [absolute and %CBW] have been simulated for 10,000 realizations of flatness distortions.
4.
Simulation results
In [10], two datasets were provided for a PC3 device: one for Tx BW of 100MHz and second for Tx BW of 400MHz. For each dataset theta pol & phi pol RAW data were provided separately with the following Tx configuration:

1) UE Orientation: Beam peak direction

2) UE Tx Band: n257

3) UE Tx Freq: Mid (28 GHz)

4) BW: 100MHz dataset & 400MHz(4CA) dataset

5) SCS: Lowest for corresponding BW

6) UL Config: CP-OFDM QPSK, Outer full
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Figure 1 100 MHz reference signal spectrum [10]
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Figure 2 400 MHz reference signal spectrum [10]
According to our simulations where interpolation of the provided data has been applied in order to improve the resolution of the OBW results, these signals are characterized by the following parameters:

Table 1: Results of the two reference data sets
	
	100 MHz CHBW dataset
	4x100 MHz CA dataset

	center frequency [GHz]
	28.0
	28.0

	OBW (span = 1.5 * CBW) [MHz]
	96.4
	398.2

	CP [dBm]
	20.3
	18.3


Simulation results are as follows:
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	Figure 3 OBWmeas for 100 MHz reference signal (Cases 1 and 2)
	Figure 4 (OBWmeas - OBWsignal) for 100 MHz reference signal (Cases 1 and 2)
	Figure 5 (OBWmeas - OBWsignal) / CBW *100 for 100 MHz reference signal (Cases 1 and 2)
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	Figure 6 OBWmeas for 100 MHz reference signal (Cases 1 and 3)
	Figure 7 (OBWmeas - OBWsignal) for 100 MHz reference signal (Cases 1 and 3)
	Figure 8 (OBWmeas - OBWsignal) / CBW *100 for 100 MHz reference signal (Cases 1 and 3)


	[image: image9.png]560

540

520

OBW for CBW= 400 MHz & Channel Power= 18.3 dBm

—-©-=400 MHz flatness 0 dB
|—&—400 MHz 2.5%-tile flatness 2.19 dB.
—5—400 MHz 97.5%-tile flatness 2.19 dB

(=2
Meoﬁee@-e B8 B88BEEEEE

15 20 25 30 35
SNR from channel power [dB]

40




	[image: image10.png]OBW absolute error for CBW= 400 MHz & Channel Power= 18.3 dBm

—-©-=400 MHz flatness 0 dB

|—&—400 MHz 2.5%-tile flatness 2.19 dB.
—5—400 MHz 97.5%-tile flatess 2.19 dB

Pes g 00088888 gsaaase

=&

15 20 25 30 35
SNR from channel power [dB]

40




	[image: image11.png]OBW percentage error for CBW= 400 MHz & Channel Power= 18.3 dBm

40

—-©-=400 MHz flatness 0 dB
|—&—400 MHz 2.5%-tile flatness 2.19 dB.

35 —5—400 MHz 97.5%-tile flatess 2.19 dB

D W
IS

)
S

OBW percentage error [%]

0 i\‘s\s\sﬁs_f;g_g 00886888 &-88-884

15 20 25 30 35 40
SNR from channel power [dB]





	Figure 9 OBWmeas for 400 MHz reference signal (Cases 1 and 2)
	Figure 10 (OBWmeas - OBWsignal) for 400 MHz reference signal (Cases 1 and 2)
	Figure 11 (OBWmeas - OBWsignal) / CBW *100 for 400 MHz reference signal (Cases 1 and 2)
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	Figure 12 OBWmeas for 400 MHz reference signal (Cases 1 and 3)
	Figure 13 (OBWmeas - OBWsignal) for 400 MHz reference signal (Cases 1 and 3)
	Figure 14 (OBWmeas - OBWsignal) / CBW *100 for 400 MHz reference signal (Cases 1 and 3)


Observation 1: Big difference between RX signal flatness statistical analysis for Cases 2 & 3. 
Proposal 3: Use normal distribution of variance ±2.19dB in each frequency point of the analyzed span to determine Rx signal flatness impact on FR2 OBW MU.

Observation 2: At least 18 dB SNR are required to avoid a failing OBW verdict when measuring 100 MHz CBW signals.

Observation 3: At least 25 dB SNR are required to avoid a failing OBW verdict when measuring 400 MHz CBW signals.

5.
Test Equipment Noise floor

Test equipment noise floor to be considered in FR2 OBW test case is the same as for ACLR. They can be inferred for 400 MHz signal from [18] as follows:
Table 2: TE noise floor for FR2 OBW test case
	Frequency Range 
	UL level

[dBm/CBW]
	SNR
[dB]
	TE Noise Floor
[dBm/CBW]

	
	
	TE1
[19]
	TE2
[20]
	TE3
[21]
	TE1
[19]
	TE2
[20]
	TE3
[21]

	23.45 GHz ≤ f ≤ 32.125 GHz
	22.4-1.7-16-6.5 -17 = 
-18.8
	-11.0
	-11.2
	-10
	-7.8
	-7.6
	-8.8

	32.125 GHz < f ≤ 40.8 GHz
	20.6-1.7-16-16-6.5 =

-19.6
	-14.1
	-14.1
	-14
	-5.5
	-5.5
	-5.6


Considering the channel power measurements in Table 1 in this document, maximum SNR available is as shown in Table 3:

Table 3: Max SNR available in TE for FR2 OBW test case
	Frequency Range 
	Channel Bandwidth
	Max SNR

[dB]

	
	
	TE1
[19]
	TE2
[20]
	TE3
[21]
	Min {TE1, TE2, TE3}

	23.45 GHz ≤ f ≤ 32.125 GHz
	100 MHz
	34.1
	33.9
	35.1
	33.9

	
	400 MHz
	26
	25.8
	27
	25.8

	32.125 GHz < f ≤ 40.8 GHz
	100 MHz
	29.8
	29.8
	29.9
	29.7

	
	400 MHz
	23.8
	23.8
	23.9
	23.7


6.
MPR considerations
Regarding SNR values described in Observations 2 & 3, it must be considered that:

· Reference signals in [10] where obtained for CP-OFDM signals while in RAN5#87-e proposal 2 in [17] was agreed to use DFT-s in order to maximize dynamic range. 

When comparing MPR values for PC3 signals [16], it can be seen that there is a MPR 2 dBs lower in the case of edge RB allocation and QPSK modulation for all channel bandwidths when using DFT-s-OFDM instead of CP-OFDM waveform.
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Figure 15 MPR comparison between DFT-s-OFDM and CP-OFDM waveforms
Observation 4: Around 2 dB improvement could be expected in OBW SNR dynamic range when using DFT-s-OFDM instead of CP-OFDM waveforms for the same channel bandwidth.

· Reference signals for 400 MHz in [10] where provided for a carrier aggregation configuration 4x100 MHz instead of a 400 MHz single component carrier signal.

It is worthy to compare MPR values for CA configuration and single component carrier for 400 MHz in order to check whether any further improvement could be expected when having 400 MHz CBW:
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Figure 16 MPR comparison between (CBW aggregated= 4x100MHz, CP-OFDM) and (CBW=400MHz, DFT-s-OFDM).
Observation 5: Around 4.5 dB improvement could be expected in OBW SNR dynamic range when using DFT-s-OFDM instead of CP-OFDM waveforms and CBW=400 MHz instead of CBW=4x100 MHz.

Observation 6: Different analysis should be performed for single CC CBW=400 MHz and CA CBW = 4x 100 MHz.

· As reference signals where real UL signals, they should already include MPR. 

7.
OBW MU proposal

Considering all the aspects described in this document as well as the fact that the evaluation has been carried out based on the UL signals from a single chipset vendor, the following OBW measurement uncertainties are proposed:

Table 4 Measurement Uncertainty proposal for FR2 OBW (CBW<=400MHz)
	CBW
	Item
	FR2a
	FR2b

	≤ 200 MHz
	Measurement Uncertainty
	1% of CBW
	1% of CBW

	400MHz
	Measurement Uncertainty
	0.45 % of CBW
	0.45 % of CBW


Proposal 4: Define measurement uncertainty for FR2 OBW as described in Table 4.
8.
Conclusion

This document provides updated simulation results on the noise and signal flatness impact on the FR2 OBW measurement uncertainty and makes proposals to progress/conclude on this discussion.

Following proposals and observations are made:

Proposal 1: Use (OBWmeas - OBWsignal) / CBW *100 as the metric to define OBW MU.
Proposal 2: Analyze OBW MU for SNR=15-40 dB and signal flatness ±2.19 dB.

Observation 1: Big difference between RX signal flatness statistical analysis for Cases 2 & 3. 

Proposal 3: Use normal distribution of variance ±2.19dB in each frequency point of the analyzed span to determine Rx signal flatness impact on FR2 OBW MU.

Observation 2: At least 18 dB SNR are required to avoid a failing OBW verdict when measuring 100 MHz CBW signals.

Observation 3: At least 25 dB SNR are required to avoid a failing OBW verdict when measuring 400 MHz CBW signals.

Observation 4: Around 2 dB improvement could be expected in OBW SNR dynamic range when using DFT-s-OFDM instead of CP-OFDM waveforms for the same channel bandwidth.

Observation 5: Around 4.5 dB improvement could be expected in OBW SNR dynamic range when using DFT-s-OFDM instead of CP-OFDM waveforms and CBW=400 MHz instead of CBW=4x100 MHz.

Observation 6: Different analysis should be performed for single CC CBW=400 MHz and CA CBW = 4x 100 MHz.

Proposal 4: Define measurement uncertainty for FR2 OBW as described in Table 4. 
	CBW
	Item
	FR2a
	FR2b

	≤ 200 MHz
	Measurement Uncertainty
	1% of CBW
	1% of CBW

	400MHz
	Measurement Uncertainty
	0.45 % of CBW
	0.45 % of CBW
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