Page 1

3GPP TSG-RAN WG5 Meeting #63
R5-142245
Seoul, Korea, 19th – 23rd May 2014

	CR-Form-v11

	CHANGE REQUEST

	

	
	34.229-3
	CR
	CRNum
	rev
	-
	Current version:
	10.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Routine maintenance and updates

	
	

	Source to WG:
	MCC TF160

	Source to TSG:
	R5

	
	

	Work item code:
	TEI8_Test
	
	Date:
	07/05/2014

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-10

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)

	
	

	Reason for change:
	1. Incorrect port name for XCAP ASPs
2. Different interpretations regarding handling of delimiters by SIP codec

3. Missing clarification regarding whether or not URL encoding shall be done by the codec
4. As syntactical correctness of SDP messages shall be considered as test requirement respective pass/fail criteria are needed in TTCN

	
	

	Summary of change:
	1. Corrected port name for XCAP ASPs
2. Clarification and examples added to clause 7.3.2 regarding handling of delimiters by SIP codec

3. Clarification added that URL encoding shall not be done by the codec
4. Two stage encoding/decoding of SDP messages to achieve pass/fail criteria

	
	

	Consequences if not approved:
	Inconsistent specification

	
	

	Clauses affected:
	6.5, 7.3.2, 7.3.3, 7.3.4

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

<Start of Next Modified Section>
6.5
XCAP server ASP definitions

XCAP Layer ASPs are applicable to clause 5.2. and 5.6.

	Name
	XCAP_REQ

	Port
	XCAP_PORT

	Comment
	ASP type for sending a request to the external XCAP server according to RFC 4825 [26]

	Parameter Name
	Parameter Type
	Comment

	method
	charstring
	GET, PUT, DELETE or RESET

	xcapExpression
	charstring
	XCAP expression sent by the UE in its http request line

	contentType
	charstring
	media type as contained in the HTTP content type header (optional)

	xmlBody
	charstring
	XML fragment sent by the UE in its http body or simservs document initialised by the test cases (optional)

	Name
	XCAP_RSP

	Port
	XCAP_PORT

	Comment
	ASP type for sending the response to the XCAP_REQ from the XCAP server to TTCN

	Parameter Name
	Parameter Type
	Comment

	errorInfo
	charstring
	string indicating a system error (optional)

	contentType
	charstring
	media type as contained in the HTTP content type header (optional)

	xmlBody
	charstring
	Result returned by the XCAP server (optional)

<End of Modified Section>

<Start of Next Modified Section>

7.3.2
Deviations of the type definition semantic

-
Most of the 'literals' of a message (for example: the string "Via" or "v" in the message header fields) are not represented.

-
The TTCN-3 charstring type is used where we stop structuring even if the ABNF uses structured types. More details found in clause 8.3.3.

-
Wherever possible parts are mapped to their best type representation, e.g. DIGIT based rules are mapped to integer type not to a charstring type.

-
All of the following delimiters (including preceding or following whitespace) defined by the ABNF grammar to separate the parts of a message are not represented (see note).

STAR = SWS "*" SWS ; asterisk

SLASH = SWS "/" SWS ; slash

EQUAL = SWS "=" SWS ; equal

LPAREN = SWS "(" SWS ; left parenthesis

RPAREN = SWS ")" SWS ; right parenthesis

RAQUOT = ">" SWS ; right angle quote

LAQUOT = SWS "<"; left angle quote

COMMA = SWS "," SWS ; comma

SEMI = SWS ";" SWS ; semicolon

COLON = SWS ":" SWS ; colon

LDQUOT = SWS DQUOTE; open double quotation mark

RDQUOT = DQUOTE SWS ; close double quotation mark

HCOLON = *(SP / HTAB) ":" SWS

SP = single space

HTAB = tab

SWS = sep whitespace

NOTE:
If they are present within a pure charstring they will be handled like a normal character and are still included.

-
Messages which are not of interest to the test suite are left undecoded as a charstring and will not be further structured.
Further clarifications on the handling of delimiters are provided hereafter:

In many cases the TTCN-3 type definitions are of lower granularity than the BNF and the codec shall consider the TTCN type definitions only. Therefore as stated in the NOTE above the rules for handling of delimiters do not require delimiters to be blindly removed from strings but the codec shall only deal with the delimiters needed to encode/decode the TTCN-3 types; sub-structures of the BNF being mapped to TTCN-3 charstrings need to be handled in TTCN and are out of scope of the codec implementation.

Example 1:
According to the BNF Alert-Info is defined as
Alert-Info = "Alert-Info" HCOLON alert-param *(COMMA alert-param)
alert-param = LAQUOT absoluteURI RAQUOT *(SEMI generic-param)
The corresponding TTCN-3 type definition is
type record AlertInfo { FieldName fieldName (ALERT_INFO_E),
 AlertInfoBody_List alertInfoBody optional }
type set of AlertInfoBody AlertInfoBody_List;
type record AlertInfoBody { charstring url,
 SemicolonParam_List genericParams optional }
(LAQUOT and RAQUOT are delimiters of the URI field which shall be removed by the codec in UL.
Example 2:

Some fields according to the BNF for SIP are defined as “(token LWS)/ quoted-string”, i.e. the field can be either a (case-insensitive) token or a quoted string. In general in TTCN this can be mapped
a) to a charstring or
b) to a union of two charstring (one for the token, one for the quoted string).
In case of a) the codec shall preserve the double-quotes for the quoted-string as otherwise it cannot be distinguished from a token anymore which is vital when case-sensitivity matters whereas in case of b) the double quotes shall be removed.
<End of Modified Section>

<Start of Next Modified Section>

7.3.3
Additional requirements for codec implementations (SIP/IMS Message

The SIP/IMS codec is based on a normalized encoding which is always produced by an encoder. Decoder implementations, however, have to handle normalization before, or when constructing the structured message value, e.g. long versus compact form, whitespace compression, delimiter removal, same header grouping, etc. All these aspects will be handled in the next clause.

7.3.3.1
Differences between BNF - TTCN-3 Type Mapping

In normal cases the mapping is straight forward. Below you find the exceptions, including potential examples.

-
The root message type is not a SIP-message but directly a Request or Response type which is represented as a TTCN-3 record. All Method - Message names (INVITE, BYE, ACK etc.) and all message header field names (To, From, CallID, CSeq, Via etc.) are mapped to an enumerated type in TTCN-3 to simplify the extension of new headers. During encoding, the long-form of these message header fields is always used. The respective field in the header type is restricted to values which are allowed.

	BNF rules of RFC
	TTCN-3 Type Mapping

	SIP-message =

Request / Response
	type record REGISTER_Request {…},

type record INVITE_Request {…},

type record PRACK_Request {…},

type record NOTIFY_Request {…},

type record UPDATE_Request {…},

…

type record Response {…}

	Method =

INVITEm

/ ACKm

/ OPTIONSm

/ BYEm

/ CANCELm

/ REGISTERm

/ …
	type enumerated Method { ACK_E, BYE_E, CANCEL_E, INVITE_E, OPTIONS_E, REGISTER_E, …}

-
The structure of the message header fields are mapped to a "set " type in TTCN-3, because the order of these header fields is not mandatory. There is an Unknown Header List given in the type system to decode unknown headers with ID and Value.

	message-header =
(

…

/ Contact

/ Content-Disposition

…

/ Via

/ Warning

/ WWW-Authenticate

/ extension-header) CRLF
	type set MessageHeader {

…

Contact contact optional,

ContentDisposition contentDisposition optional,

…

Via via,

Warning warning optional,

WwwAuthenticate wwwAuthenticate optional,

UndefinedHeader_List undefinedHeader_List optional

}

-
The various parameter lists defined in the BNF are mapped and combined into three different TTCN-3 sets of generic-param types. These types differ only in their name: SemicolonParam_List, AmpersandParam_List, CommaParam_List to distinguish between the relevant separators.

	uri-parameters =

*(";" uri-parameter)
	type set of GenericParam SemicolonParam_List;

	Authentication-Info =
"Authentication-Info" HCOLON ainfo

*(COMMA ainfo)
	type record AuthenticationInfo {

FieldName fieldName(AUTHENTICATION_INFO_E),

CommaParam_List ainfo

}

	ainfo =

nextnonce

/ message-qop

/ response-auth

/ cnonce

/ nonce-count
	type set of GenericParam CommaParam_List;

	Headers =

"?" header *("&" header)
	type set of GenericParam AmpersandParam_List;

-
Any more specific parameter rule (e.g. uri-param, user-param, lr-param , digest-cln, etc.) is simplified to the generic-param rule which will be mapped as a record structure of two charstrings (ID and paramValue). This is equivalent to a token with an optional generic value (token [EQUAL gen-value]).

	digest-cln =

realm

/ domain

/ nonce

/ opaque

/ stale

/ algorithm

/ qop-options

/ auth-param
	type record GenericParam {

charstring id ,

charstring paramValue optional

}

-
In addition to the pure charstring as a base type, the TTCN-3 type system provides base integer types which are unrestricted to the model e.g. the portField, CSeq number, maxForward digit.

	user =

1*(unreserved

/ escaped / user-unreserved

)

telephone-subscriber as defined in RFC 2806
	charstring

	password =

*(unreserved

/ escaped

/"&"

/ "="

/ "+"

/ "$"

/ ","

)
	charstring

	Port =

1*DIGIT
	integer

	Status-Code =

Informational

/ Redirection

/ Success

/ Client-Error

/ Server-Error

/ Global-Failure

/ extension-code
	integer

-
Where the same header type can appear multiple times within a message, they will be decoded as a single header field, with multiple list elements. The order of appearance of the headers will be preserved within the header list value.

	Contact =

("Contact" / "m") HCOLON

(STAR / (contact-param

*(COMMA contact-param)

)

)
	type record Contact {

FieldName fieldName(CONTACT_E),

ContactBody contactBody

}

	contact-param =

(name-addr / addr-spec)

*(SEMI contact-params)
	type record ContactAddress {

Addr_Union addressField,

SemicolonParam_List contactParams optional

}

type union ContactBody {

charstring wildcard,

ContactAddress_List contactAddresses

}

Used in

type set of ContactAddress ContactAddress_List;

-
The BNF (clause 7.3.1 Header Field Format RFC 3261 [16]) specifies that several WWW or Proxy Authentication/Authorization headers should not be combined into a single header; however they will be decoded into such in the codec. If these need to be sent downlink then a new, 'raw' (pure charstring) message type will be introduced.
	Authorization =

"Authorization" HCOLON credentials
	type record Authorization {

 FieldName fieldName(AUTHORIZATION_E),

 Credentials body

}

	Credentials =

("Digest" LWS digest-response)

/ other-response
	type union Credentials {

CommaParam_List digestResponse,

OtherAuth otherResponse

}

-
The different schemes (sip, sips, tel, fax, absoluteUri) in the SIP URI are all handled via the same type definition. The union “UriComponents” can be enhanced to support further specific URI formats. Nevertheless it is possible to use the “other” branch of “UriComponents” for any other URI format in which case the charstring shall contain the URI without the scheme and the first “:”.

	Request-URI =

SIP-URI

/ SIPS-URI

/ absoluteURI

with

SIP-URI =

"sip:"

[userinfo]

hostport

uri-parameters

[headers]

and

SIPS-URI =

"sips:"

[userinfo]

hostport

uri-parameters

[headers]

and

absoluteURI =

scheme ":" (hier-part / opaque-part)
	type record SipUriComponents {

 // sip-uri acc. to RFC 3261 [16] cl. 19.1

 UserInfo

userInfo optional,

 HostPort

hostPort

}

type record TelUriComponents {

 // tel-uri acc. to RFC 3966 [38]

 charstring
subscriber

}

type record UrnUriComponents {

 // urn-uri acc. to RFC 2141 [39]

 charstring
namespaceId,

// e.g. "service"

 charstring
namespaceSpecificString
// e.g. "sos"

}

type union UriComponents {

 SipUriComponents
sip,

// scheme: "sip" or sips"

 TelUriComponents
tel,

// scheme: "tel"

 UrnUriComponents
urn,
// scheme: "urn"

 charstring

other

}

type record SipUrl

{

 charstring

scheme,

 UriComponents

components,

 SemicolonParam_List

urlParameters optional,

 AmpersandParam_List

headers optional

}type record SipUrl {

charstring scheme,

UserInfo userInfo optional,

HostPort hostPort,

SemicolonParam_List urlParameters optional,

AmpersandParam_List headers optional

}

-
Universal charstrings shall be supported by the codec especially for the Display name in the URI.

-
For downlink messages, if a message body is included, the TTCN may set the len field in the ContentLength header to the value -1. In this case the codec shall replace the value by the actual length of the encoded message body (see clause 7.3.4).

-
According to the SIP type definitions there are many ‘charstring’ fields being optional in records;
(in UL the decoder shall map missing information by setting the respective field to omit rather than by assigning an empty string (“”).

-
type union Addr_Union
As in 'NameAddr' the field 'displayName' is optional in the first place the two branches of 'Addr_Union' are equivalent when there is no 'displayName'; nevertheless in UL the decoder shall use the branch ‘nameAddr’ if – and only if – the address information is surrounded by ‘<’ and ‘>’ (what is needed at least when there is a display name followed by the address information)

-
IPv6 address in URI
When an IPv6 address is used as hostname in a SIP URI it is typically surrounded by ‘[‘ and ‘]’ what is matter of the codec: in DL the codec shall add ‘[‘ and ‘]’ when needed, in UL the ‘[‘ and ‘]’ shall be removed i.e. in the ‘host’ field of the SipUriComponents’ hostPort there shall be no ‘[‘ or ‘]’ at the beginning or at the end.

7.3.3.2
URL Encoding

Several fields or parameters in SIP headers require URL encoding (e.g. Contact header, Accept-Contact header). In TTCN there is no encoding rule defined for URL encoding and there is no specific type definition for URL encoded strings. For that reason URL encoding/decoding is not a matter of codec implementation but shall be done in TTCN.
<End of Modified Section>

<Start of Next Modified Section>

7.3.4
Additional requirements for codec implementations (Message Body)

The message body of a SIP message may contain the message of other protocols (SDP, SMS, etc.) and can be represented e.g. by XML. Therefore the type definitions for these protocols can be TTCN-3 as well as XSD definitions.

As in principle the message body of a SIP message may host any XSD definition, SIP and XSD definitions are decoupled:
To avoid import of all potential XSD definitions the XML body of SIP messages is defined as a charstring. This requires a two-stage encoding and decoding: In DL an XML message needs to be encoded in TTCN first before it gets put in the message body of a SIP message, in UL the XML message contained in the message body needs to be explicitly decoded in TTCN. By defining the XML message body as a charstring the SIP definitions are independent from any XSD definitions and a specific XSD definition needs to be known only when it is really used.
An SDP message may be contained in the message body itself or in a MIME message. In both cases the SDP message is represented as charstring in the SIP message and as for XML a two-stage encoding and decoding is applied in TTCN. This allows explicit fail assignments in case of syntactical incorrect SPD messages when syntactical correctness is a test requirement.
NOTE:
Test specifications (e.g. TS 34.229-1 [5]) define the criteria for syntactical correctness and codec implementations follow these criteria.
In detail the message body for SIP messages is defined as:

	type charstring XmlBody;
type charstring SdpBody;
type union MessageBody {

SdpBody

sdpMessageBody

XmlBody

xmlBody,

MIME_Message

mimeMessageBody,

charstring

sipfrag,

charstring

textplain,

SimpleMsgSummary
simpleMsgSummary,

octetstring

smsMessage

};

	NOTE:
In contrast to SIP and SDP definitions which are commonly defined by ETSI the definition of the message body is project specific i.e. other IMS test projects at ETSI may use different definitions of the message body.

<End of Modified Section>

