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Summary

In TS 34.121 statistical tests are decided according to a standardized method. R&S re-considerd statistical testing, taking additionally  into account memory and time dependency.
All our statistical test concepts survived except one: 

BER testing (clause 6) is not correct.
A solution for the incorrect decision method is not within view.
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1. Introduction
To decide a statistical test, we assumed, that the binomial-distribution and its approximations, like Poisson,  is a good approach for the decision strategy. Here we want to investigate whether this is true. The binomial distribution is correct for random process with events which occur memory-less and time-independent. We know, that the events in our measurement tasks are not memory-less and not time-independent in any case.
1) A data stream is convolutional coded with a coder of constraint length C. On the air interface errors occur. For static test environment those errors occur memory-less and time-independent. The receiver processes the coded and erroneous data stream with a Viterbi decoder of constraint-length C and trace-back-length T.  The remaining errors do not occur any more memoryless.   
2)  A data-stream is transmitted over a multipath propagation channel. The quality of the channel fluctuates, and hence the instantaneous BER or BLER or any success ratio is time-dependent.

3) Packets are transmitted over the air interface. On a corrupted packet, incremental redundancy is transmitted, to repair the corrupted packet afterwards. The packet errors do not occur any more memoryless. 
We want to investigate, how much the above mentioned memory and the time–dependency in the statistical tests modify the distribution, we used up to now.

What is memory in statistics?

The outcome of one sample is dependent on a random process and the characteristic of this random process is dependent on the outcome of other samples of this process, where the dependency from the other samples may be weighted individually. The memory may effect like feedback and/or feed-forward.
What is time dependency in statistics?

The outcome of one sample is dependent on a random process and the characteristic of the random process is dependent on an external process versus time.
We did not find a textbook definition for those questions.

2. BER measurement in AWGN after channel decoding
2.1 Model
 
[image: image1]
The memory looks like a feed-forward memory
The errors from the Error Source are processed by the Viterbi-decoder.

The memory resides inside the Viterbi Decoder. The trace back length T of the Viterbi Decoder represents the memory length.

2.2 Observations
	First observation
	Good* implementation   
	Bad* implementation

	Raw BER low (Decoded BER lower                                  
	↓ ↓ ↓
	↓ ↓



	Raw BER medium (Decoded BER medium                          
	↓
	↑

	Raw BER high(Decoded BER higher                          
	
	


*)Good /Bad may mean: Correct / Faulty    or     Costly /  Economical
Second observation
The distribution gets broader compared with the binomial distribution of same BER.
2.3 Explanation for the  observations
The Viterbi Decoder can successfully correct a few errors.

If the number of errors  is too high, the Viterbi decoder is not any more successful, or even introduces additional errors. There is a transition range in between both extremes.
(known from BER versus S/N for different channel-coders in AWGN.)
Translated into distributions it means, that the good end of the original distribution is distorted towards ne=0 and the bad end is distorted towards ne=ns. (ne=number of errors, ns=number of samples)
Simulations on this effect see Annex 1
Annex 4 contains one measurement example.
2.4 Conclusion 

The distribution is considerably broader than the equivalent  binomial one: Our decision process is risky.
The distribution depends on implementation, i.e. there is no correction factor available prior to the test.
3. Time dependency due to multipath propagation

3.1 Model
We discuss two closely related models (a) and (b):

We have several error generators,  each has its own error probability. P1, P2, …e.g. 6 of them

a) Pi are selected by a clock, creating a P1….P6 duty cycle.

b) Pi are selected at random by a dice.
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3.2 Observation
a) After integer clock cycles (including 1) per trial we observe a distribution with mean value equal to the weighted mean of the Pi (17.5% here, equal weight). The distribution is narrower than the equivalent binomial distribution. Conceptually we replaced the continuous time dependency of the real multipath propagation channel by discrete time dependency. We replaced the random fluctuation of the real multipath fading by a deterministic sequence (clock). Having observed that the sequence-order is irrelevant to the result, we replaced the  discrete time dependency by a weighted combination of several different distributions.
b) After 6 tosses it is not certain, that the dice takes each generator once. After very many tosses, we will observe the same distribution as generated by the clock. (fair dice / equal duty cycle of the clock, same trial length) After finite tosses the preliminary mean of the dice determines the measured distribution. The dice models the multipath propagation channel regarding the random fluctuation. The distribution is narrower than the equivalent binomial distribution, same as (a). As concluded above, the time dependency can be replaced by a weighted combination of several different distributions.
Summary: The combined distribution is narrower than the compact distribution. This is simulated in Annex 2
3.3 Explanation of the observation

Two independent binomial-trials with (sample length n, mean value µ) = ( n1,µ1)  and (ns2,µ1) are combined to one trial by convolving the two distributions. This results is one distribution of sample length (n1+n2) and a mean value (µ1+µ2). However the width of the combination, expressed as σ, is smaller than the σ of the  compact binomial-trial of sample length (n1 + n2) and mean value (µ1 + µ2). This is calculated for a special case in the calculation in Annex 2.1
Simulations see Annex 2
3.4 Conclusion

Our decision process is conservative.

4. Throughput tests, impact of HARQ process
4.1 Model

[image: image4]
4.2 Observation
BLER is better than P1.

The distribution is narrower than the  compact binomial distribution of same BLER.
4.3 Explanation of the Observation

We have to explain 3 effects:

1) In real throughput tests, in case of block error, the initial (unsuccessful) packet and the subsequent incremental redundancy blocks commonly carry the throughput. In the statistical model just the final successful incremental redundancy block is counted as successful, whereas the preceding unsuccessful blocks are counted as block errors.  However, when decisions on throughput are excluded inside an HARQ process, both views are equal.

2) In subclause “3.Time dependent statistics in multipath propagation conditions” it is shown, that the combined distribution of different distributions is in any case narrower than the compact distribution of the equivalent mean. The statistical model combines different error generators.
3)In throughput tests there is an additional effect, narrowing the combined distribution. This is caused by the feedback memory. On error the next lower generator is activated. This means, on error, it follows another error with  lower probability . This introduces order. We cannot calculate, however we can confirm this effect by simulations in Annex 3
Throughput tests are performed in multipath propagation conditions. We believe that this measurement condition is already covered in clause 3.
4.4 Conclusion:

Our decision process is conservative.

5.Consequence of the observations
5.1 BER tests in static propagation conditions after Viterbi decoding
The error distribution after the Viterbi decoder (decoded distribution) is considerably broader than the binomial distribution of the same BER. Our former  assumption, that BER decisions after termination of a TTI block eliminate the memory effect, and hence the binomial distribution is applicable, is not true! The memory inside the TTI blocks or the overall memory, both have  equal effect on the decoded distribution. The error distribution is implementation dependent and configuration dependent (puncturing). In addition it seems that the decoded distribution depends on the raw BER.
The simulation in Annex A.1.1 show, that there is a widening factor of x≈3 for one  special 3GPP case. It seems that a Gaussian like shape of the distribution is preserved. 
Annex 4 shows one measurement example. We are not convinced that the measurement is correct. It is even wider than the simulation and the similarity to a Gaussian like shape is lost.
5.1.1Situation:

The BER test, specified up to now, is wrong  (decisions are more risky than stated )
The reason is, that we measure decoded BER.

The early decision concept is not responsible for the fault.

5.1.2 General way forward:
We need a reference distribution. This reference distribution cannot be derived from theory. It must be derived from simulations, based on agreed simulation assumptions, or even from a set of measurements. The reference distribution again can be applied for the early decision concept.
In order gain a reference distributions, the delegates are encouraged to contribute distributions, measured and/or simulated, relevant for BER-tests. 

Fortunately all BER tests are performed with 12.2kbit/s RMC with a limit 0.1% 

Hence we need :

BER distributions with RMC 12.2 kb/s, with mean value 0.1% and 0.15% (bad DUT).  

5.1.3 Correcting the decision strategy:

We see two possibilities to correct the fault, made up to now:

a) create new  decision limits using compensated wrong decision risk (or confidence level). 
b) leave the decision limits and estimate a real wrong decision risk versus the calculated one. 
5.1.4 Consequence for BER testing

a) Consume more test time or 

b) Reduce confidence level.

As in  the blocking test (12750 repetitions) both is inter-related, there is no choice between test time and confidence level. Test time will be longer in any case. 
5.2 BLER tests in multipath propagation conditions

As effects, causing deviations from the binomial distribution, we see time dependency due to Doppler spread and memory due to delay spread in multipath propagation conditions. As shown above, the time dependency narrows the distribution of errors with a tendency for conservative decisions. The random characteristic of the fluctuation in the  multipath propagation channel is already regarded by the minimum test time (cross 990 wave-lengths before the first decision is possible) Delay spread causes error by inter symbol interference. Delay spread is very short. (0.3 us/ km) This is much shorter than a TTI-block (10 to 40 ms). We propose to regard block errors as memoryless. Hence the decision strategy, used up to now  is regarded as confirmed on the save side.
5.3 Throughput tests in multipath propagation conditions.

The same arguments as for  “BLER tests in multipath propagation conditions” hold for throughput tests with a tendency for conservative decision. Delay spread (0.3 us/ km)  is still much shorter than a TTI-block (2 ms). An additional memory is introduced by the up to 4 step HARQ cycle. As reasoned above, it is necessary to terminate a HARQ cycle, to get correct BLER values. The HARQ process itself is a mechanism, introducing order into the statistics, narrowing the distribution furtheron.  Hence the decision strategy, used up to now, is regarded as confirmed on the save side.

5.4 Success ratio in RRM tests 

The same arguments as for “ BLER tests in multipath propagation conditions” hold for success ratio tests in RRM. No additional memory or time dependency-effects could be identified.
5.5 Statistical A-GPS tests

Changing the scenario for each single test, ensure that the test results are independent. The UE’s memory is invalidated and the memory due to the simple multipath fading profile is short (0.5 GPS chip),  compared to the expected reaction time (20s) Hence the decision strategy, based on the binomial distribution is justified. 
Annex
A.1:    General simulations on BER measurement in AWGN after channel decoding
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Figure 1: Figure 1 to 5 shall show: 

· The decoded distribution is wider than the equivalent binomial distribution.
· The decoded distributions exhibit a Gaussian like shape
· Termination of blocks does not remove the memory effect.

· The decoded distribution is implementation dependent.

· The  width of the decoded distribution is dependent on the raw BER.

Channel Coder: 3,[7,5]  

Raw BER is set to 5%. (500 errors in 10000 samples)
Viterbi decoder trace back depth: 3*7
Data segmentation:
Red:    1 block 10000 samples (without termination)
Green: 100 blocks, each block 100 samples, without termination

Blue:   100 blocks, each block 100 samples, with termination

Statistics: 10000 samples per test, 10000 tests

Observation:

Raw BER 5% ( Decoded BER 0.75% approx., considerable improvement.

σ (decoded distribution) is approx 1.9*σ(binomial distribution)
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Figure 2:

Channel Coder: 3,[7,5]  

Raw BER is set to 10%. (1000 errors in 10000 samples)

Viterbi decoder trace back depth: 3*7

Data segmentation:

Red:    1 block 10000 samples without termination

Green: 100 blocks, each block 100 samples, without termination

Blue:   100 blocks, each block 100 samples, with termination

Statistics: 10000 samples per test, 10000 tests

Observation:

Raw BER 10% ( Decoded BER 6.5% approx., poor improvement.

σ (decoded distribution) is approx 2.2*σ(binomial distribution)
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Figure 3:

Channel Coder: 3,[7,5]  

Raw BER is set to 20%. (2000 errors in 10000 samples)

Viterbi decoder trace back depth: 3*7

     Data segmentation:

Red:    1 block, 10000 samples without termination

Green: 100 blocks, each block 100 samples, without termination

Blue:   100 blocks, each block 100 samples, with termination

Statistics: 10000 samples per test, 10000 tests

Observation:

Raw BER 20% ( Decoded BER 29% approx., worsening

σ (decoded distribution) is approx 1.985*σ(binomial distribution)
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Figure 4: The decoded BER distribution is implementation dependent.
Channel Coder: 3,[7,5]  

Raw BER is set to 5%. (500 errors in 10000 samples)

Viterbi decoder 
Blue:   trace back depth: 3*3

Red:    trace back depth: 3*5
Green: trace back depth: 3*7
     Data segmentation:  100 samples per Block,  100 Blocks

Statistics: 10000 samples per test, 10000 tests

Observation:

Raw BER 5% ( Decoded BER 0.8% for a cheap implementation
Raw BER 5% ( Decoded BER 0.75% for a medium implementation

Raw BER 5% ( Decoded BER 0.74% for an expensive implementation 

A.1.1  3GPP specific Simulation
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Figure 5: 3GPP specific simulation
Channel Coder: 9,[561,753] According to R= ½ coder in 25.212, clause 4.2.3.1  

Raw BER is set to 5%. (1220 errors in 244000 samples)

Viterbi decoder Trace Back Depth: 7*9, hard decisions are processed. 
Data segmentation:  244 samples per Block, 8 tail bits, each block terminated, 100 Blocks

Statistics: 244000 samples per test, 10000 tests

Observation:

Raw BER 5% ( decoded BER 0.082% 

σ (decoded distribution) is approx 3.3*σ(binomial distribution)

Note: 
No puncturing, 
R ½ coder, (no R 1/3 , no turbo)

No variety in BER: 5% Raw BER.

Decoded BER near the minimum requirement (0.1%).

A.2     Simulations on time dependency due to multipath fading conditions
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Figure 6

Combined statistics from 6 different contributions, each weighted 1/6,

compared with the equivalent compact distribution.

Statistics: 1000 samples per test, 10000 tests

Observation: σ (combined statistics) < σ(compact distribution)
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Figure 7

Combined statistics from 6 different contributions, differently weighted,

compared with the equivalent compact distribution.

Statistics: 1000 samples per test, 10000 tests

Observation: σ (combined statistics) < σ(compact distribution)

A.2.1  Calculation on combined distributions
	Combining 2 distributions
	Distribution pair 1
	Distribution pair 2

	Nomenclature
	n number of samples

p              probability

µ             mean value of the distribution

σ  standard deviation of the distribution (σ2 Variance)

	For any pair of  distributions

regardless of p:
	µ = µ1 + µ2

σ2 = σ21 + σ22

n = n1 + n2

	For Binomial distribution
	mean value                        µ = n p

variance                    σ2 = n p (1-p)

	Combining rules
	n1 = n2 = n/2
p1 = p2 = p

	n1 = n2= n/2
p1 < p2

p1 = p – Δp, p2 = p + Δp


	Interpretation 
	n = n1 + n2 samples are drawn from one random process with probability p.


	half of the samples are drawn from  a process with probability p – Δp, 

half of the samples are drawn from a process with probability p + Δp 



	σ2 = ?
	σ2 = (n1 + n2) p (1-p)

σ2 = n1 p (1-p) + n2 p (1-p)

σ2 =          σ21        +       σ22


	σ21 = n/2  (p-Δp) (1-(p-Δp))

σ22 = n/2  (p+Δp) (1-(p+Δp))

σ2 = σ21 +σ22

……………

σ2 =  n p (1- (p+ Δp2/p))

	Result
	n p (1-p)                              >
	n p (1- (p+ Δp2/p))

	
	σ compact > σ combined
 for any Δp ≠ 0


A.3     Simulations on Throughput tests.
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Figure 8
4 step HARQ process
Process:0.4, 0.2, 0.1, 0.05

This represents the following process:

draw from the generator P1=0.4 (Error probability = 0.4)

on error draw from the generator P2=0.2, else back to P1

on error draw from the generator P3=0.1, else back to P1

on error draw from the generator P4=0.05

back to P1 in any case

Process:0.2, 0.1, 0.05, 0.01
Process:0.1, 0.05, 0.025, 0.01

Process:0.05, 0.025, 0.01, 0.005

compared with the equivalent compact distribution.

Statistics: 1000 samples per test, 10000 tests

Observation: σ (HARQ-combined distribution) < σ(compact distribution)

A.3.1  Comparison: Independent statistics/time dependent statistics/memory statistics
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Figure 9: Comparison: Combined distribution (Fading)/ Combined distribution (HARQ process)/compact binomial distribution.

Observation:

σ (HARQ-combined distribution)<σ (combined distribution)< σ(compact distribution)  
A.4     Measurements in Comparison to Simulations
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Figure 10

The blue distribution is the equivalent binomial distribution: binom (0.031%,244000)

The red distribution is a measured one:

7921 tests, RMC 12.2 kbit/s in AWGN, Downlink power is -106.5 dBm, OCNS is -1.0 dB

Raw BER unknown We are not certain, if the measurement was reliable.

The green distribution is simulated: 10000 tests. 1/3 rate 3 GPP coder without puncturing. Decoder: hard decision, trace back duration 9*7, Raw BER=9% 

The pink distribution is simulated: 10000 tests. 1/3 rate 3 GPP coder with puncturing according to 3GPP. Decoder: 3 stage decoder, trace back duration 9*7. Raw BER=7% 

(nearest to 3GPP)

Observation

1) σmeasured > σsimulated > σbinomial
2) The measured distribution has bad similarity with  a standard Binomial shape, it is assymetric.

3) We expected that at least the pink distribution would exhibit some similarities with the measured distribution, however it is not the case.

4)  Questions and speculations:
4a) In our simulations we assumed independent raw bit errors. 

In real live raw bit errors are caused by AWGN.
Is it allowed to assume, that AWGN causes independent raw bit errors?
4b) RMC 12.2 kbit/s is defined with an r = 1/3 coder and puncturing (rate matching). 14.2% of the coded bits are removed. Those puncturing positions are treated as “don’t-know-bits” by the decoder. 14.2% is high, compared to 7% real raw bit errors in our simulation.

While the raw bit errors occur independent (or not?), the punctured bits occur at predefined positions. We expected that the independent bit errors cause a Gaussian like distribution and the presence of predefined punctured bits distort this distribution. However this is hardly observable in the pink distribution.

5) Conclusion: 
In statistical testing an analytical distribution with known parameters is the basis for decisions. Sometimes the distribution is known only by nature, including some few free parameters. Those parameters could be estimated during the test, or specific distribution-parameters could be agreed for specific test-parameters (e.g dependent on the spec limit)

Performing simulations and measurements we lost even the knowledge about the nature of the distribution, to be used for decision. We only know: The decisions up to now are risky.
In order gain a reference distributions, the delegates are encouraged to contribute distributions, measured and/or simulated, relevant for BER-tests. 

Fortunately all BER tests are performed with 12.2kbit/s RMC with a limit 0.1% 
Hence we need :
BER distributions with RMC 12.2 kb/s, with mean value 0.1% and 0.15% (bad DUT).  
A.5. Decision strategy  (repetition) 
We repeat the decision strategy, used up to now. The presentation is different to that, currently used in 34.121 Annex F.6
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Figure 11
Customer Risk, predefined test time

H0 (0-Hypothesis) is a Limit DUT. In order to fail the test, the measurement shall indicate evidence, that the DUT is worse than the limit with high probability. In case of no evidence, no fail is decided 

Definition of Customer Risk:

Fail ( Fail (directly)
No fail(Undecided ( Pass

Consequence of Customer Risk

There is a range between the decision threshold and the limit, where bad DUTs may be undecided, hence passed. Submitting a large population of DUTs on the limit to a test, a large fraction will be passed and a small fraction will be failed.

Property of Customer risk:

Î: such a measurement value gives evidence, that the DUT is worse than the limit with high probability: hence we decide fail (directly) 

Î: such a measurement value gives no evidence, that the DUT is worse than the limit with high probability: It follows: undecided. Due to application of customer risk we re-decide pass. 

Here the decision threshold is fixed, once the test time is predefined.
The decision threshold extends over 100% probability.

The shorter part above (e.g.10%) describes the probability that a DUT on the limit will be measured worse than the decision threshold. This is defined as fail. The complement, the longer part below (e.g.90%) describes the probability that a DUT on the limit will be measured better than the decision threshold. This is defined as “No fail(Undecided ( Pass”

Using the Binomial Distribution, this concept is applied for throughput tests.

Customer Risk / Early decisions
Using early decisions, we again submit a large population of DUTs on the limit to a test.

We give up the predefined test time.

Instead we allow decisions at several instants during the test. e.g. ne1, ne2 and ne3.

A pass or fail decision for one DUT is  allowed at ne1 OR ne2 Or ne3 (note the logical OR).
The pass probabilities at ne1, ne2 and ne3 must sum up to 90% (keeping the example above)

The fail probabilities at ne1, ne2 and ne3 must sum up to 10% (example above)

The pass probability at ne1 is e.g. 30%. Referring to the figure, this is left of the original decision threshold.

The fail probability at ne1 is e.g. 3.333%. Referring to the figure, this is right of the original decision threshold.

At ne1  33.333% of the population is decided. 66.666% is not yet decided (will be decided later). At ne3 the entire population is decided. In practise we have more decision instants.

They are all calculated, using standard distributions like  Poisson and its inverse for BER , BLER and RRM tests 
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