Effect of EM mutual coupling between UE transmitted elements 
to improve a WCDMA MIMO system performance
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The contributions from this proposal show that 1) electromagnetic (EM) mutual coupling effect between UE transmitted antennas can not be neglected either in outdoor or indoor conditions; 2) the EM mutual coupling for a 2×4 WCDMA MIMO system, with Space Time Orthogonal Block Codes (STOB) transmitting (UE side) and MMSE beam forming receiving (Node B side), has the positive contribution on the system SINR; 3) SINR gain about 1.2 dB can be obtained in our system by properly using the effect.

I.  BACKGROUND
WCDMA MIMO terminal means using antenna arrays with close inter-element spacing which inevitably leads to a high degree of mutual coupling between array elements[1][2]][3]. It was shown in[3] that there exists a true upper bound on system performance for system with mutual coupling，based on an exact scatter parameter network theory and an assumption that power constraint limits the actual radiated power when mutual coupling is present. However, WCDMA MIMO system performance under which the transmitted antenna’s mutual coupling exists in uplink is not considered so far with the author’s knowledge.
II.  Signal and system Modeling
A. Complex base-band EMF signal model

In this proposal, the complex base-band electromagnetic field (EMF) signal of 
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The relation of the
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In (2), 
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It can be seen from (1) that the transmission information of the 
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user in physical world is completely characterized by
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It is also known from the basic EM theory that at time of 
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[image: image28.wmf](

)

r

r

r

r

,

E

k

 in (1) can be described as a matrix form as: 
[image: image29.emf]r





r



t



t



o

r



r



o

t

x

t

y

t

z

r

x

r

y

r

z

UE

Node B

r





r



t



t



o

r



r



o

t

x

t

y

t

z

r

x

r

y

r

z

UE

Node B


Fig.1 EMF signal of the
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user described in spatial and 

polarized domain at 
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In (3), 
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B. Complex base-band EMF system model

When the signal
[image: image38.wmf])

,

,

(

E

t

r

k

r

r

r

k

of the
[image: image39.wmf]th

k

user is transmitted through the multi-path channel
[image: image40.wmf]k

h

r

, the received signal at the received antenna is given by
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And 
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In (4), 
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is a convolution operation,
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If 
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users is considered here, the resulting EMF signal is 
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From (5) and basic EM theory, the output voltage of 
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received antenna,
[image: image52.wmf](

)

l

k

m

X

,

, can be expressed as


[image: image53.wmf](

)

(

)

)

(

)

,

(

E

)

,

,

(

Ε

,

t

s

r

l

t

r

X

k

l

k,

m

r

e

t

l

k

m

×

=

¢

¢

×

=

H

r

r

r

r

r

r

k

k

                  （6）

[image: image54.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

m

l

r

r

jk

l

k

r

l

k

r

r

e

l

k

t

l

k

t

t

l

k

k

l

k

l

k

e

l

t

h

¢

×

×

×

-

=

r

r

r

ˆ

,

,

,

,

,

,

,

)

,

(

E

)

,

(

Ε

)

(

f

q

f

q

t

d

H

        （7）
In (6), 
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 is the antenna’s effective length. The transmitted and received spatial coordinate system is shown in Fig.1.

Consider above channel with 
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 receivers. The SISO model in (6) is now developed to set up a MIMO model as
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where in (10),
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is an additive noise and multi-access interfere (MAI) vector with 
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If the receivers move relative to the transmitters with the speed of 
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，the variable 
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We can see from the above derivation that it is complex base band EMF models that set up a foundation to express the completed information system model. This means that the system model in (6) and (8) can reflect the time spread, DOA/DOD angular spread and polarized angular spread of the multi-path channel at the same time. Our system model in this paper overcomes the disadvantage of present models which neglect the interactions among the EMF signal (vector), antennas and surroundings, and also leads to opportunities to find new transmission solutions.

A. Mutual coupling Characteristics 

Consider here an array in UE with two elements, each of which is driven by an outer voltage source. These sources will excite current distributions in element 1 with peak current value
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. Based on the EMF reaction theorem, the normalized mutual coupling between two elements 
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where in (10), 
[image: image79.wmf]1
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is distributed current in element 1 and
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 is surface of the element 1. 

On the other hand, by the basic circuit theory, the two elements each with one excited port can also be consist of a two port network as Fig.5 shown. When the network is described by Z parameters, the relation of the port voltages to currents with the Z parameters is given by
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where in (11), 
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is effective voltage of element 1 normalized to
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Where in (12), 
[image: image96.wmf]0
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is effective voltage of element 1 without mutual coupling and 
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 is that of element 2. From (14) and (15), we then have:
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III.  Evaluation of system performance with mutual coupling
Based on (13), the MIMO UE STOB transmitted signal with mutual coupling is given in the form of complex base-band as.
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Where in (14), 
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user transmitted by UE element 1 and element 2 respectively without mutual coupling before mapping into WCDMA channel. In this paper only mutual coupling effect is focused, so the processes of
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STOB data stream mapping into WCDMA channel and forming WCDMA signal including OVSF channelization, scrambling and modulation are neglected. 

Consider here a 4×2 MIMO system, 4 receiving antennas and 2 transmitting antennas, the information of the transmitting antenna elements is encoded in each DPCCH channel at the transmitters while the receivers estimate the channels by both the pilot symbols and the transmitting antenna element information contained in the DPCCH channels. Based on (8), the received signals at each receiving antenna output are given by
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where in (15), 
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From (15), we can see that channel for our system with transmitted EM mutual coupling can be defined as:
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It indicates clearly in (16) that the equivalent channel gain depend on mutual coupling. So we can say that 

IV. Numerical and experimental results
A. System configurations and channel parameters under consideration are as follows
Table 1 WCDMA MIMO system configuration 

	Tx
	OSTBC
	DPCCH pilot symbol number
	5

	Rx
	Beam-form＋MMSE
	Channel estimation
	Good

	Channel configuration
	Same to 3GPP
	Active user number
	4

	The number of Tx
	2
	The dimension of STOB matrix
	2×2

	The number of Rx
	4
	Spread factor
	DPDCH
	128

	Modulation
	QPSK
	
	DPCCH
	256


Table 2 Channel parameters
	path
user
	|h|
	arg (h)

degree
	Time delay

(samples)
	DOA1
degree
	DOA2
	Doppler shift （Hz）
	Doppler Shift 

(degree)
	DOD

	User1
	path1
	1
	70
	0
	60
	60
	-205.74
	160.09
	30

	
	path2
	0.2
	180
	40
	110
	110
	+70.93
	336.77
	50

	user2
	path1
	1
	10
	0
	10
	10
	-202.32
	3.55
	30

	
	path2
	1
	270
	0
	0
	0
	+197.11
	5.50
	50

	
	path3
	1
	190
	50
	90
	90
	-215.18
	189.05
	30

	
	path4
	1
	180
	0
	70
	70
	-209.85
	181.01
	50

	user3
	path1
	2
	20
	10
	150
	
	-209.85
	181.01
	30

	
	path2
	1
	10
	20
	40
	
	-131.63
	109.00
	50

	
	path3
	2
	0
	11
	125
	
	-70.40
	178.76
	70

	user4
	path1
	1
	20
	10
	150
	
	-70.40
	178.76
	30

	
	path2
	1
	10
	20
	45
	
	+149.10
	122.83
	50

	
	path3
	1
	4
	11
	130
	
	-205.74
	160.09
	70


B. Numerical and experimental results
Fig.2 shows that in our considered 2×4 system, Tx1 channel estimated gain with mutual coupling of 
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between UE OSTB transmitted elements is higher than that without mutual coupling. The result is same for Tx2. So in our considered system mutual coupling has a contribution for channel estimated gain.
Fig.3 shows that mutual coupling between considered UE OSTB transmitted elements has increased the system average SINR gain at Node B beam-form output about 1.2 dB.
V.  Conclusion
In this paper, electromagnetic field (EMF) analytical method combined with wireless system simulation method is used to develop a completed physical model including signal modeling named EMF complex base band signal model and channel modeling named EMF complex base band channel model. Based on these EMF models and practical WCDMA MIMO terminal EM characteristics, the effects of mutual coupling between MIMO UE transmitted antenna elements on the of WCDMA MIMO system performance with STOB transmitting and MMSE beam-form receiving, is firstly investigated. It is shown that for a 2×4 MIMO system, the mutual coupling increases the system average SINR about 1.2 dB.
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Fig.3 SINR gain characteristics at Node B beam-form output








Fig.2 Tx1 channel estimated within DPCCH pilot time
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