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Start of change
10.9.2	Spherical equal angle grids
[bookmark: _Toc515552248]10.9.2.1	General
With the spherical equal angle grid, the grid spacing is uniform in the  and  directions. The range of  angles from 0 to π is divided into  equally spaced subintervals and the range of  angles from 0 to 2π is divided into  equally spaced subintervals. The width of each subinterval in the - and -angle is given as
  and 
The total number of angular sampling points is equal to .
Let  and  be the indices used to denote the th  and th  angles, respectively. In pactice, discrete samples of EIRP are measured at each sample point () by measuring its two orthogonally polarized components,  and . The EIRP sample are then used to approximate the definite integral for TRPReference as       
.
The total number of angular sampling points is equal to .
Note TRPEstimate = TRPReference as  and  approach . 
There is a trade-off between the accuracy of the TRPEstimate and the total number of sampling points. A large number of sampling points leads to long measurement time. Thus, it is important to achieve short measurement time and fulfilling the minimum TRP systematic error. Subclauses 10.9.3.1 and 10.9.3.2 outline the criteria for determining the minimum number of sampling points to characterize. Other means for set the number of sampling points are not precluded.
For each emission frequency, the reference angular steps    and  in radians are calculated as:


, where D and Dcyl are defined in subclause 10.9.2.1.
According to [x] and [y] using a grid with reference angular step is enough for accurate error-free TRP estimation. The reference angular steps are dependent only on the electrical size of the radiation source (i.e., physical size and the emission frequency) and is not affected by the correlation level. When sampling with the reference angular step, fine details of the radiation pattern are not observed, but the TRP value is not affected.
Where due to practical reasons such as time constraints or turn-table precision, measurement with the reference steps is not practical, sparser grids can be used. Use of sparse grids can lead to errors in TRP assessment. In order to characterize these errors, the sparsity of the grid is defined as

Where  and  are the actual angular steps used in the measurement.
End of change

Start of new text proposal
Annex X Sparse sampling for spurious emissions
In the case of spurious emissions for electrically large Equipments Under Test (EUTs)  the following observations are made:
Observation 1: The emissions do not necessarily radiate through the antenna elements. To be on the conservative side, the entire EUT dimensions should be considered when calculating the reference angular steps (in case of considering the equal angle grid). 
Observation 2: The angular variation of the emissions is dominated by the array factor, i.e., the spatial distribution of the sources. Hence, emissions can be modelled by the array factor of a set of point sources, i.e., for simplicity the element pattern is isotropic.
Observation 3: The emission lobes will be narrow and hard to locate for some emissions, especially in the higher part of the spurious emissions domain. By studying random rotations of the sources of emissions, the need to align the measurement grid to the emission pattern can be removed.
Observation 4: In practice, the emissions are likely to have a low degree of correlation, except for harmonic emissions. For harmonic emissions a beam sweeping test signal is proposed FFS. For non-harmonic emissions, a correlation distributed uniformly in a given interval from 0 to [image: ] is used.
To quantify the degree of sparse sampling relative to the reference angular steps a Sparsity Factor (SF) is introduced. For a spherical equal angles grid 
[image: ]
Where 
[image: ]
The method to estimate ΔTRP for large antennas (D>4λ) is based on generating a set of statistical samples of TRP values calculated on a set of randomly generated emission sources of a given electrical size 
[image: ]
The final TRP values are then calculated by using a given angular grid and equation XXXX. The CDF of these TRP values are then created and the CDF is shifted so that the 5th percentile corresponds to 0 dB TRP error. This shift is used as ΔTRP, see Figure 1.
In this investigation each statistical sample is generated as follows:
1. Set up a quadratic uniform linear NxN array in the yz-plane, with horizontal and vertical element separation
[image: ]
Reduce the number of elements N to make sure that the element separation is larger or equal to a half wave length. 
2. Rotate the source points by an Euler zyz-rotation [3] with angles a, b, and c which are uniformly chosen on the intervals [0,360], [0,90] and [0,360] degrees, respectively. The rotated position of source n is denoted [image: ] 
3. Pick a random correlation value ρ from the uniform distribution between 0 and [image: ], and generate source weights as
[image: ]
Where [image: ] are picked from a normal distribution with zero mean and unit standard deviation.
4. Normalize the weights to TRP=1 by using a full sphere grid with sparsity factor 0.25.
5. Generate EIRP values on the desired grid by using an array factor
[image: ]
6.  Calculate the TRP value as an appropriate mean value of the EIRP values for two/three cut grids and using full sphere numerical integration for the full sphere case.
A publicly available Matlab code [1] is available. https://se.mathworks.com/matlabcentral/fileexchange/67143-sparse-sampling-analysis-tool?s_tid=srchtitle and more results can be found in Ref [2].
The resulting 5th percentile values of the empirical CDFs are used as a practical lower bound on the TRP calculated directly from the points in the actual grid. If the 5th percentile value is positive, there is no need for a systematic correction, that means ΔTRP=0. On the other hand, if the 5th percentile value is negative, a systematic correction is needed to guarantee TRP overestimation with 95% confidence. For this purpose, the absolute value of the 5th percentile is used as systematic correction factor, denoted ΔTRP (see Fig. 4). Some simulation results are found in Figures 2 (a) – (c) for two different choices of max correlation and the three grid types: full-sphere, three-cut, and two-cuts. 
[image: ]
Figure 1: Determination of ΔTRP based on the 5th percentile values. The dashed curve depicts the empirical CDF found from the statistical analysis, and the solid curve depicts the corrected CDF corresponding to over-estimation with 95% confidence.
[bookmark: _GoBack][image: ]
Figure 2: Correction factor [image: ] for 95% confidence overestimation of the TRP for three different electrical sizes [image: ] and correlation intervals.
[image: ]
Figure 3: Full sphere correction factors [image: ] for max correlation up to 0.75 and D/λ=10.
[image: ]
Figure 4: Three cuts correction factors [image: ] for max correlation up to 0.75 and D/λ=10.

[image: ]
Figure 5: Two cuts correction factors [image: ] for max correlation up to 0.75 and D/λ=10.
The following systematic correction factors can be used
	
	Full-sphere sparse grid
	Three cuts using reference steps
	Two cuts using reference steps

	Correction factor (dB)
	(SF-1)/(SFmax-1)[1.0]
	[1.5]
	[2.0]


Table 1: For a ful sphere sparse grid the proposed correction factor is zero for angular sampling below or equal to the reference steps (SF<1). The maximum Sparsity Factor (SF) is the SF at 15 degree angular sampling.
References
 [1] “Sparse Sampling Analysis” Matlab code: https://se.mathworks.com/matlabcentral/fileexchange/67143-sparse-sampling-analysis-tool?s_tid=srchtitle
[2] Fridén, J.; Razavi, A. & Stjernman, A. “Angular sampling, Test Signal, and Near Field Aspects for Over-the-Air Total Radiated Power Assessment in Anechoic Chambers” 2018. Available:  https://arxiv.org/abs/1803.10993
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