3GPP TSG-RAN WG4 Meeting #94-e	R4-2001730
Electronic Meeting, February 24 - March 6, 2020
Agenda Item:	6.8.3.3
Source:	FUTUREWEI
Title:	Scrambling and initialization for test models
Document for:	Approval
[bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
In RAN4#93, discussions about randomization of data were captured in WF [1]. At issue: the scrambling seed for the shared channel in LTE is a function of the subframe number while in NR, the scrambling seed is independent of the slot number. As a result of the seed initialization, there are 10 realizations within the 10 ms measurement interval in LTE vs. 1 realization in NR. The concern raised in [2] [3] is whether the one realization can bias measurements for BS conformance testing. This contribution examines options for increasing the number of realizations in the measurement interval and describes another implementation option.
Discussion
Background
For EVM measurements of test model 2 (TM2), only 1 RB of PDSCH is transmitted each slot. To ensure more samples are considered, power measurements across several symbols within the slot are averaged [3]. Although this averaging can reduce the bias in testing, it is not a general solution for this test and for other tests. In [2], a general solution was considered by “randomizing data”.
There are several issues to address [1]:
1. Impact of “all zero” data versus “random” data for all NR TMs
1. Impact due to PN sequence lengths. e.g. PN15, PN23
1. Impact due to cell-ID for following configuration for test with multiple cells:
 for the lowest configured carrier, for the 2nd lowest configured carrier,…, for the nth configured carrier
1. Requirement impacts due to ‘all zero’ data in NR TMs such as TX signal quality (EVM), emissions etc.
1. Impacts on 5 MHz and 20 MHz cases are prioritized.
These issues can be basically summarized as:
1. Does having more realizations improve measurement accuracy / reduce variance / reduce bias
a. EVM
b. PAPR
2. If yes, how to generate more realizations given implementation constraints
3. Does having more realizations improve testing with multiple cells
Scrambling background
The randomization process used in the test models is shown in Fig. 1. As seen, the scrambler itself (dashed box) is a cascade of two linear feedback shift registers (LFSRs) of length 31. The first LSFR is initialized with a first seed of ‘1’ while the second seed (for the second LFSR) is a function of several parameters as defined in 38.211. For the channels and signals used in the test models, Table 1 summarizes the formulas for computing the second seed.
[bookmark: _Ref30422053]Table 1. Scrambling seed initialization
	Channel / signal
	Formula for cinit
	Fields

	PDSCH
	
	; ;

	DMRS for PDSCH
	
	n: slot number;
l symbol number;
;

	PTRS for PDSCH
	Same as DMRS for PDSCH
	

	PDCCH
	
	;

	DMRS for PDSCH
	
	n: slot number;
l symbol number;
 is cell id

LFSR1
x1=1
0
x2
LFSR2
LFSR1
x1=1
0
x2
LFSR2
Scrambler
0
x2

Fig. 1. The randomization of data: (left) a zero sequence is added to the output of a scrambler that is initialized with a seed x2. (top right) Scrambler consists of two LFSRs with the first LSFR initialized to a seed of x1=‘1’. (bottom right) Equivalent operations
In comparing the seeds (x2) for NR and LTE PDSCH, there are several common fields:
· NR: the initialization is a function of the RNTI (), codeword number (q), and cell id () (see Table 1). Table 2 shows how the fields map to the 31-bit input seed.
[bookmark: _Ref30423152]Table 2. NR initialization: blue is the RNTI, orange is the codeword number, and purple is the cell id.
	0
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

· In LTE, the initialization is similar except for the additional field indicating the subframe number (= 0, …, 9). The occupied fields are shown in Table 3 and the formula is below.

[bookmark: _Ref29362271]Table 3. LTE initialization: red is the subframe number, blue is the RNTI, orange is the codeword number, and purple is the cell id.
	0
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Issues: more realizations
It is reasonable to conclude that more realizations in a measurement interval can improve the quality of the measurement and reduce the variation in the results. More realizations can be representative of typical traffic conditions. However, showing the improvement may be difficult because it is possible to have one realization perform better than the ensemble of realizations.
If the decision is to increase the number of realizations, the complexity of implementing the change should be considered. Additional modules may not be simple to insert in test model pipeline. Another factor is test equipment implementation and complexity.
The current implementation method to generate random data is to logically add the output of the scrambler to an appropriate length all “zero” sequence.
Dimensionality
In order to determine the number of bits needed in a measurement interval, the following calculation provides a loose upper bound:
· Number of downlink slots in a 10 ms measurement interval: 80 slots per frame (assume 120 kHz SCS)
· Number of RBs: (assume full bandwidth): 275 RBs/slot
· Number of REs per RB: 12×14 REs per RB (assume entire RB being used)
· Number of bits per RE: 10 bits per RE (assume 1024-QAM)
The number of bits for the product is 26 = . Note that the number of bits to represent each slot per measurement interval is 7 = .
This loose upper bound includes some unrealized combinations: 1024-QAM in FR2 and 80 slots in FR1. It can be argued that for FR2 that having 40 slots (slot number mod 40) yields 32 realizations for the test model TDD configuration for 120 kHz SCS. Note that 32 slots out of 40 have downlink symbols for 60 kHz SCS. It is possible to reduce the number of bits needed by 2 or 3.
Observation 1: it is possible to generate independent realizations over a measurement interval if an LFSR has length of at least 23 bits.
Implementation options
Cascade scramblers
Although not listed as an option in [1], an obvious solution is to cascade 2 scramblers. Scrambler (a) is the new scrambler while (b) is the current scrambler as shown in Fig. 2.
Scrambler (a)
0
Seed (a)
Scrambler (b)
Seed (b)

[bookmark: _Ref30425512]Fig. 2. Cascade of scramblers
This approach has technical problem in that the output of LFSR1 (the feedback shift register initialized with ‘1’) in each scrambler will cancel regardless of seeds used.
Observation 2: Cascading current scramblers initialized with different seeds may not improve the randomness of bits.
[bookmark: _Ref31891883]Replace all zero sequence with a PN generator
Instead of using a scrambler (a) in Fig. 2, a PN generator can be used, as shown in Fig. 3. A list of several possible polynomials is provided in Table 4 ([4], pg. 299).
PN
0
seed
Scrambler
seed

[bookmark: _Ref30425811]Fig. 3. Cascade of PN and scrambler
[bookmark: _Ref30425864][bookmark: _Ref30425860]Table 4. PN polynomials
	Degree
	Polynomial

	15
	

	23
	

	24
	

	28
	

	29
	

	30
	

Even if a PN generator were used, it would not solve the problem of an all-zeros initialization unless
· the seed varies over the measurement interval
· if a continuous output of the generator is used over the measurement interval (clarification of operation when dealing with special slots may be needed)
Observation 3: How the PN generator operates should be clarified (e.g., continuous, reinitialized with different seeds).
[bookmark: _Ref31891877]Modify the existing seeds
Another option not captured in the WF [1] is modification of the initial seed for the scrambler. Since is the RNTI only has 3 values (0, 1, 2) for the test model, it is possible to augment the 16-bit RNTI used in the scrambler initialization with a slot number. For example, for each slot, a modified RNTI can expressed as so that the seed for the PDSCH is computed as:

After examining the factors for the seeds in Table 1, the impact for changing the RNTI appears minimal as summarized in Table 5.
[bookmark: _Ref30427820]Table 5. Impact of RNTI on the seeds
	Channel / signal
	Impact

	DMRS for PDSCH
	Not a function of RNTI

	PDCCH
	Currently:
a) Change the value according the PDSCH modification
b) Keep the same because PDCCH is not used for EVM measurements. Except for TM2, symbols containing PDCCH also contain PDSCH and will vary in content each slot. Thus, it may not be necessary to use a modified RNTI for PDCCH scrambling

	DMRS for PDSCH
	Not a function of RNTI

An example of the modification is shown in the text proposal below (assuming PDCCH is not changed). The impact to the current implementation is minor.
Proposal 1: If more realizations are needed, consider augmenting the RNTI with the slot number in the calculation of the initialization of the scrambling seed for PDSCH.

******** Begin Text Proposal *******
[bookmark: _Toc21099871][bookmark: _Toc29809669]4.9.2.3.2	PDSCH
-	For each slot generate the required amount of bits for all PRBs according to 'all 0' data
-	NR-FR1-TMs utilize 1, 2 or 3 user PDSCH transmissions distinguished by . For each NR-FR1-TM, PRBs are mapped to user () as follows:
Table 4.9.2.3.2-1: Mapping of PRBs to [image:] for NR-FR1-TM
	Test model
	[image:]
	Number of users

	NR-FR1-TM1.1
	2 for PRBs located in PRB#0-2
0 for remaining PRBs
	2

	NR-FR1-TM1.2
	0 for boosted PRBs
1 for de-boosted PRBs
2 for PRBs located in PRB#0-2
	3

	NR-FR1-TM2
	2 for all PRBs
	1

	NR-FR1-TM2a
	2 for all PRBs
	1

	NR-FR1-TM3.1
	2 for PRBs located in PRB#0-2
0 for remaining PRBs
	2

	NR-FR1-TM3.1a
	2 for PRBs located in PRB#0-2
0 for remaining PRBs
	2

	NR-FR1-TM3.2
	0 for QPSK PRBs
1 for 16QAM PRBs
2 for PRBs located in PRB#0-2
	3

	NR-FR1-TM3.3
	0 for QPSK PRBs for which EVM is not measured
1 for QPSK PRBs for which EVM is measured
2 for PRBs located in PRB#0-2
	3

-	Perform user specific scrambling according to TS 38.211 [17], clause 7.3.1.1.
-	Perform modulation of the scrambled bits with the modulation scheme defined for each user according to TS 38.211 [17], clause 7.3.1.1
-	
-	, is the slot number and is used for the initialization of the scrambler.

-	Perform mapping of the complex-valued symbols to layer according to TS 38.211 [17], clause 7.3.1.3. Complex-valued modulation symbols for codeword shall be mapped onto the layers , where is equal to number of layers.
[bookmark: _Hlk525485814]-	Perform PDSCH mapping according to TS 38.211 [17] using parameters listed in table 4.9.2.2-3.
-	PDSCH resource allocation according to TS 38.214 [18] as following;
-	NR-FR1-TM1.1, NR-FR1-TM3.1, NR-FR1-TM3.1a: type 1 for PDSCH with nRNTI = 0 and nRNTI = 2,
-	NR-FR1-TM1.2, NR-FR1-TM3.2, NR-FR1-TM3.3: type 0 for PDSCH with nRNTI = 0 and nRNTI = 1, type 1 for PDSCH with nRNTI = 2,
-	NR-FR1-TM2, NR-FR1-TM2a: type 1 for PDSCH with nRNTI = 2.
-	DM-RS sequence generation according to TS 38.211 [17], clause 7.4.1.1.1 where l is the OFDM symbol number within the slot with the symbols indicated by table 4.9.2.2-3.
-	
-	
-	DM-RS mapping according to TS 38.211 [17], clause 7.4.1.1.2 using parameters listed in table 4.9.2.2-3.

******** End Text Proposal *********

Comparison
In Fig. 4, a comparison of the PAPR distribution is provided for (1) all zeros model, (2) RNTI modification as described in section 2.3.2.3, and (3) the PN generator as described in section 2.3.2.2. The degree 15 and degree 23 PN generators as listed in Table 4 were used. The seed for the PN generator is expressed as

and advancing the generator by 1600 (similar to NR).
Two different SCS/BW and PN generator combinations were compared: 15 kHz SCS with 5 MHz channel and 30 kHz SCS with a 20 MHz channel.
	[image:]
	[image:]

	5 MHz channel, 15 kHz SCS, 15-bit PN generator
	20 MHz channel, 30 kHz SCS, 15-bit PN generator

	[image:]
	[image:]

	5 MHz channel, 15 kHz SCS, 23-bit PN generator
	20 MHz channel, 30 kHz SCS, 23-bit PN generator

[bookmark: _Ref31892594]Fig. 4. Simulation results: Black: all zeros initialization; magenta: modification of seeds (section 2.3.2.3); cyan: 15 and 23-bit PN generator (section 2.3.2.2)
The results from this simulation show that the modified seed has a slight performance benefit compared to the PN generator regardless of degree. Based on this performance, the modified seed could be considered as an implementation option.
[bookmark: _Ref129681832]Conclusions
[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]This contribution examined the proposals regarding the randomness of the PDSCH. With regards to initialization seeds:
Observation 1: it is possible to generate independent realizations over a measurement interval if an LFSR has length of at least 23 bits.
Three designs were considered.
Observation 2: Cascading current scramblers initialized with different seeds may not improve the randomness of bits.
[bookmark: _GoBack]Observation 3: How the PN generator operates should be clarified (e.g., continuous, reinitialized with different seeds).
A modification of the RNTI used for the scrambling of the PDSCH will have minimal impact to the current test models.
Proposal 1: If more realizations are needed, consider augmenting the RNTI with the slot number in the calculation of the initialization of the scrambling seed for PDSCH.

References
[bookmark: _Ref23323183][bookmark: _Ref29298392]R4-1916052, “WF for random data content of physical channels for NR test modes”, Ericsson, RAN4#93, Nov. 18-22, 2019.
[bookmark: _Ref29298317]R4-1914558, “Further elaboration on NR Test Model”, Ericsson, RAN4#93, Nov. 18-22, 2019.
[bookmark: _Ref29298300]R4-1912332, “On Total power dynamic range conformance test for NR BS”, Nokia, RAN4#92B, Oct. 14-18, 2019.
[bookmark: _Ref29369535]W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C 2nd Ed.., Cambridge University Press, 1992.

oleObject1.bin

image3.wmf
)

0

(

symb

layer

symb

M

M

=

oleObject2.bin

image4.wmf
)

1

(

),...,

0

(

(q)

symb

)

(

)

(

-

M

d

d

q

q

oleObject3.bin

image5.wmf
[

]

T

i

x

i

x

i

x

)

(

...

)

(

)

(

)

1

(

)

0

(

-

=

u

oleObject4.bin

image6.wmf
1

,...,

1

,

0

layer

symb

-

=

M

i

oleObject5.bin

image7.png

image8.png
‘Ij

0

\

10°

10"
107
107

15

10*

image9.png
15

image10.png

image1.wmf
RNTI

n

image2.wmf
)

(

)

(

)

0

(

)

0

(

i

d

i

x

=

