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Introduction
As presented in previous contributions, different measurement grids have been studied in order to obtain the most suitable ones for each type of 5G-NR measurements [1]. The reached conclusion was that constant step size measurement grids were not feasible for measurements that require spherical surface integrations of EIRP or EIS, i.e., TRP or TRS, in NR, thus, yielding to the suitability of constant density measurement grids.
Even though advanced quadrature methodologies have been presented in order to overcome the inherent deficiencies of constant step size measurement grids [2-3], they still provide higher measurement uncertainty for a certain number of measurement grid points when compared to constant density measurement grids [4-5].
Moreover, even though both Golden Spiral Grid and Charged Particle Grid implementations for constant density grid types are referred in [5], some questions on how to realise these or other implementations may arise, as it may not be as simple as compared with the implementation of constant step size measurement grids.
Thus, it is necessary to standardise the optimal (i.e., charged particle grid) implementation of a constant density measurement grid.
In this sense, this paper shows how a constant density measurement grid can be generated in an optimal way, with any desired number of grid points, by studying several initial conditions for the Charged Particle Grid implementation, and by comparing them in terms of convergence and computational cost.
Random arrangement of uniformly distributed points on sphere surface as initial condition for Charged Particle Grid implementation
A simple way to uniformly distribute points on sphere is called the “hypercube rejection method”. This method, described in [6], has nothing to do with a 4-dimensional analogue of a 3-dimensional cube, but with the cube circumscribing the sphere. In brief, it consists on setting points with their Cartesian co-ordinates (x, y, z) independent and uniformly distributed inside the cube circumscribing the sphere; then, the points outside the sphere are rejected. The remaining points may be projected to the sphere surface (by dividing their Cartesian co-ordinates by their respective norm, , obtaining a uniform distribution of points on that sphere surface. However, the number of remaining points cannot be set in advance. An example of this hypercube rejection method, for 3130 remaining points of 6000 initial points, is depicted in figure below, along with the same points after being projected on the sphere surface:
	[image: untitled]	[image: untitled]
	(a)	(b) 
	Fig. 1. (a) Points obtained through “hypercube rejection method” (inside a sphere), and (b) after being projected on the sphere surface.
In order to uniformly distribute a fixed number of points on the surface of a unit sphere centred at the origin, inspired by this hypercube rejection method, we choose Gaussian distributed Cartesian co-ordinates (x, y, z) with zero mean and the same (e.g., unit) variance. Then, and in order to project the obtained (x, y, z) co-ordinates to the sphere surface, they shall just be normalized by its norm, . Thus, we call this “hypercube projection method”. Their associated (θ, φ) co-ordinates will then be:  (as for the unit sphere surface, r = 1), .
An example of this hypercube projection method, for 6000 points, is depicted in figure below:
	[image: 6000 initial points by hypercube projection]
	Fig. 2. Points obtained through “hypercube projection method” (on a sphere surface).
As we can see, these methods successfully avoid the concentration of points in the poles that would occur if (θ, φ) coordinates were erroneously set as independent, uniform random variables on [0, π], and [0, 2 π), respectively, as we can see in the following figure:
	[image: untitled]
	Fig. 3. Undesired concentration of points at the sphere poles when (θ, φ) coordinates are directly set to uniform random variables on [0, π], and [0, 2 π), respectively.
A maybe less obvious way of generating uniformly distributed points on a sphere surface would be taking (θ, φ) co-ordinates as: , , where u and v are independent uniform random variables on [0, 1].
The equation for θ-coordinate is just the inverse of the cumulative distribution function (CDF), F(θ), of the probability density function (PDF), f(θ), given by the determinant of the Jacobian matrix:

where the (x, y, z) Cartesian coordinates can be retrieved from the (r, θ, φ) spherical coordinates by:

Thus, the CDF, F(θ), is given by:

And finally, setting the CDF as a uniform random variable on [0, 1], , then the θ-coordinate can be retrieved as the inverse of the CDF: .
We call this the “inverse CDF method”, and it provides results similar to the hypercube projection method, as can be seen in the figure below:
	[image: Inverse CDF method]
	Fig. 4. Points obtained through “inverse CDF method”.
As we can see, both the “hypercube projection method” and the “inverse CDF method” provide a set of points uniformly distributed on a sphere surface. However, these points have obviously not a constant density distribution, as the distance between points is randomly distributed instead of being constant (or quasi-constant).
Thus, a later process is needed to improve its density uniformity. This process is known as Charged Particle Grid implementation for Constant Density Measurement Grid, and any of the uniform random distributed grids over a sphere surface shown above may serve as initial condition for this Charged Particle Grid implementation, which will be explained in detail in Section 4.
Deterministic arrangement of uniformly distributed points on sphere surface as initial condition for Charged Particle Grid implementation
Plants are naturally able to arrange equal-size seeds in ever-expanding patterns around a central point. In this way, regardless of the size of the arrangement, the seeds pack evenly. The sunflower is a well-known example of such a “spiral phyllotaxis” pattern, whose seed distribution keeps an almost constant density. Following Vogel’s method [7], this flat pattern can be reproduced mathematically in polar coordinates (r, φ) on a unit circle centred at the origin, with the i-th of N points coordinates given by: , , where  is the golden angle, and  is the golden ratio. An example is shown in the next figure for N = 6000 points:
[image: untitled]
Fig. 5. Spiral phyllotaxis flat pattern with (almost) constant density points in a unit circle (excluding its centre).
Note that the centre of the unit circle could have been included by just changing the polar coordinate r equation by . Additionally, the polar coordinate φ could have alternatively be defined as .
The same reasoning can be applied to the problem of distributing points evenly on the surface of a unit sphere centred at the origin. Adjusting the Rakhmanov, Saff, and Zhou´s spiral [8] with the golden angle, as in [9], the (x, y, z) Cartesian coordinates of the points evenly distributed on the sphere surface will be given by:
		
where w is a linearly and equally spaced parameter between 1 and -1 (standing then for the z-coordinate, and thus,  stands for the radius of the circle defined when a plane is cutting the sphere perpendicular to z-axis and at z = w), and φ is the cumulative sum of a golden angle for each point, as in the flat pattern above. This method is usually known as “Golden Section Spiral”.
Subtle differences on this implementation may arise when interpreting the definition of these w and φ variables. Thus, the Golden Section Spiral may include or exclude the sphere poles by defining it either as:
	or	,
respectively, where i refers to the i‑th of N points that conform the Golden Section Spiral. Likewise, φ can be defined either as:
	or	,

where γ = 2.4 rad is again the golden angle (already described at the beginning of this Section 3).
In this contribution we have studied the four resulting combinations as initial conditions for the Charged Particle Grid implementation. These are depicted in the pictures below for, e.g., N =6000 points:
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Fig. 6. Golden Spirals with 6000 points, including (left) or excluding (right) the sphere poles.
The differences are so subtle than it is difficult to see that there are no points at the poles on the pictures to the right. Thus, another example for N = 140 is plotted below to highlight these subtle differences between the four different definition interpretations:
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Fig. 7. Golden Section Spirals with N = 140 points, including (left) or excluding (right) the sphere poles.
As we can see, in this way the points are deterministically distributed on the unit sphere surface, with almost constant density. However, even the resulting grid is more uniform than when it is randomly generated, the points do not keep a constant distance with their neighbours. Thus, a Golden Section Spiral will serve as initial condition for, again, the Charged Particle Grid implementation in order to improve the uniformity of the grid, as explained in next Section 4.
Note that the last definition of this Golden Section Spiral, that is:
		,
		
provides, as in [9], the lowest minimum solid angle standard deviation of its corresponding Voronoi diagram, when compared to other deterministic grids. As an example, this standard deviation results to be of 8.7×10-5 approximately for N = 1000 points, as depicted in figure below:
	[image: ]	[image: ]
	(a) 	(b)
Fig. 8. (a) Top view (θ = 0) and (b) side view (θ = π/2, φ = 0) of the Voronoi diagram of the Golden Section Spiral defined as excluding the sphere poles and with φ = (i‑1) γ.
Charged Particle Grid implementation for Constant Density Grid
The Charged Particle Grid implementation will consider the grid points given as initial condition as particles charged with the same electrical charge, so that each i‑th point is repealed by any other j‑th point by the electrostatic force given by the Coulomb’s law:

where ke is Coulomb's constant (, where ε0 is the vacuum permittivity, c = 299792458 m/s is the speed of light and μ0 = 4 π 10-7 H/m is the vacuum permeability), qi and qj (identical in our case) are the signed magnitudes of the i‑th and j‑th charges, and  is the vectorial distance between the charges (from the j‑th to the i‑th charge, and  is the unit vector of ).
In this way, all grid points will tend to be as far from the rest as possible, and thus, equally distributed along the boundary they are confined (in our case, the sphere surface).
In order to simplify the electrostatic force equation, the particles charge has been set as:  ≅ ≅ 1.054822286479395×10-5 C, thus, ke qi qj = 1, and the electrostatic forces are directly obtained from the vectorial distances as: .
For simplicity, the electrostatic forces  are calculated in Cartesian coordinates, and then all j-th contributions are summed to obtain the electrostatic net force being experienced by each i‑th charge:

Once its Cartesian coordinates (Fix, Fiy, Fiz) are known, the corresponding components in spherical coordinates (Fir, Fiθ, Fiφ) can be simply retrieved as:



where θi and φi are the corresponding spherical coordinates of the i-th charge:
 (as for the unit sphere surface, r = 1)

As Fir stands for the radial component of the electrostatic net force, it is not necessary to calculate it, as we desire to constrain the grid points to the sphere surface, and any movement on the radial direction would relocate the grid points inside or outside this sphere surface.
θi and φi will therefore be updated by just using the Fiθ and Fiφ electrostatic net force spherical components, respectively, as:


where  and  are the new θi and φi, and:

Where, in turn, t and  stand for the old and new time instants, vi and mi stand for the speed and mass of the i‑th charged particle, respectively, and  stands for the distance of the i‑th charge to the sphere centre.
In fact, and in order to gain in stability and convergence, vi will always be taken as zero, like if all charged particles were stopped after each movement (i.e., after each coordinates update). Moreover, ri = 1 for the unit sphere surface. kF is therefore simplified to:

By taking a constant time interval  and a constant and identical mass for all charged particles, kF becomes a constant in direct variation with the rate of convergence, that is, when kF is small, the charged particle system is more likely to converge but it will require a greater amount of time, and vice versa (as the electrostatic net force affects the coordinates update in direct variation to kF).
In this contribution, the value of kF has been optimized heuristically, obtaining the fastest convergence for a value of kF = 5×10-4. Also, charged particles coordinates are updated after all electrostatic net forces Fi have been calculated, which is closer to reality and, thus, it eases the convergence of the system.
In this sense, the system is considered to have reached a state of convergence when all the charged particles stop moving, that is, when the coordinates of each charged particle are exactly the same at time instant  than at the immediately previous time instant t. The charged particles stop repealing each other when they are as far from the rest as possible, obtaining therefore the desired Constant Density Grid.
Evidently, the more time steps are required for the charged particle system to converge, the more amount of time will be required and, therefore, computational cost gets larger. Thus, in the next subsections, how the initial condition selection affects the speed of convergence is studied.
Convergence results when the hypercube projection method is used as initial condition for Charged Particle Grid implementation
Several studies have been performed using the hypercube projection method described in Section 2 as initial condition (i.e., as the starting position of the grid points) for the Charged Particle Grid implementation. A typical number of N = 140 grid points was chosen for this analysis.
The difference for the Cartesian z-coordinate (similar to the other Cartesian x- and y- coordinates) between one time step and the immediately previous one is shown in the figure below for all the N = 140 grid points and for the best realization (i.e., the random realization that provided the fastest convergence, among all that have been tested):
	[image: ]
	Fig. 9. z-coordinate difference (for the N = 140 grid points taken) along the latest time instants of the Charged Particle Grid implementation when the initial grid points are obtained through the hypercube projection method.
As we can see, the Charged Particle Grid implementation required a certain number of steps to reach the convergence criteria described in Section 4, which resulted always larger than 174.500 time steps for this initial condition type (which corresponds to several hours in a standard PC), and the best found value for kF = 5×10-4.
Convergence results when the Golden Section Spiral method, including the sphere poles, is used as initial condition for Charged Particle Grid implementation
When a Golden Section Spiral, defined as:
		,
		
(i.e., including the sphere poles) is selected as initial condition (i.e., as the starting position of the grid points) for the Charged Particle Grid implementation, the number of time steps the system needs to converge is reduced.
The difference for the Cartesian z-coordinate (similar to the other Cartesian x- and y- coordinates) between one time step and the immediately previous one is shown in the figure below for all the N = 140 grid points:
	[image: Convergence_modified_including]
	Fig. 10. z-coordinate difference (for the N = 140 grid points taken) along the latest time instants of the Charged Particle Grid implementation when the initial grid points are taken as a Golden Section Spiral, including the sphere poles.
As we can see, the Charged Particle Grid implementation required a minimum of 48935 time steps to reach the convergence criteria described in Section 4. This best case corresponds to a value of kF = 5×10-4.
In contrast, when a lower value of kF = 1×10-4 is selected, the Charged Particle Grid implementation required as much as 227516 time steps to converge. Even lower values, as kF = 5×10-5, required more than 442000 time steps to converge.
On the other hand, when a higher value of kF is used (e.g., kF = 7×10-4), the Charge Particle Grid implementation starts to experience problems to converge (the Cartesian z‑coordinate, or the spherical θ‑coordinate, converges, but the rest of coordinates continue oscillating indefinitely, even this oscillation is small). When an even higher value of kF is used (e.g., kF = 1×10-2), the Charged Particle Grid implementation do not converge at all.
Thus, we can conclude that selecting a Golden Section Spiral, including the sphere poles, as initial condition for the Charged Particle Grid implementation, improves convergence when compared to the hypercube projection method, and its optimal has been found for a value of kF = 5×10-4.
Convergence results when the Golden Section Spiral method, excluding the sphere poles, is used as initial condition for Charged Particle Grid implementation
Finally, Golden Section Spirals, defined so that the sphere poles are not included as grid points, have been selected as initial condition (i.e., starting position) for the Charged Particle Grid implementation.
As we saw in Section 3, the Golden Section Spiral, excluding the sphere poles, can be defined as:
			
where φ can be defined either as  or .
The difference for the Cartesian z-coordinate (similar to the other Cartesian x- and y- coordinates) between one time step and the immediately previous one is shown in the figure below for all the N = 140 grid points when a Golden Section Spiral, excluding the sphere poles, and defined with , is selected as initial condition for the Charged Particle Grid implementation:
	[image: Convergence_modified_excluding_t_e-5]
	Fig. 11. z-coordinate difference (for the N = 140 grid points taken) along the latest time instants of the Charged Particle Grid implementation when the initial grid points are taken as a Golden Section Spiral, excluding the sphere poles, and φ = i γ.
As we can see, the Charged Particle Grid implementation required a minimum of 48013 time steps to reach the convergence criteria described in Section 4. This best case corresponds to the best found value for kF = 5×10-4.
On the other hand, the difference for the Cartesian z-coordinate (similar to the other Cartesian x- and y- coordinates) between one time step and the immediately previous one is shown in the figure below for all the N = 140 grid points when a Golden Section Spiral, excluding the sphere poles, and defined with , is selected as initial condition for the Charged Particle Grid implementation:
	[image: Convergence_modified]
	Fig. 12. z-coordinate difference (for the N = 140 grid points taken) along the latest time instants of the Charged Particle Grid implementation when the initial grid points are taken as a Golden Section Spiral, excluding the sphere poles, and φ = (i‑1) γ.
As we can see, the Charged Particle Grid implementation required a minimum of 47798 time steps to reach the convergence criteria described in Section 4. This case is the overall best case, and also corresponds to the best found value for kF = 5×10-4.
As an example, the final Constant Density Grid of N = 140 points obtained through this overall best case is depicted in figures below:
	[image: C:\Users\Miguel García\Desktop\untitled.png]
	Fig. 12. Constant Density Grid (with N = 140 points) when the Charged Particle Grid implementation converges.
Its corresponding top and side views are depicted below:
	[image: C:\Users\Miguel García\Desktop\untitled.png]	[image: C:\Users\Miguel García\Desktop\untitled.png]
	(a) 	(b)
Fig. 13. (a) Top view (θ = 0) and (b) side view (θ = π/2, φ = 0) of the Constant Density Grid (with N = 140 points) when the Charged Particle Grid implementation converges.
The colour of the grid points corresponds to their index (from i =1 to N = 140), and it also corresponds to their initial z‑coordinate (from cyan for z = 1‑1/N to magenta for z = ‑1+1/N), as the initial condition selected for the Charged Particle Grid implementations was a Golden Section Spiral excluding the sphere poles. Their final θ‑ and φ–coordinates are given in Annex I.
As we can see, the points do not orbit with the Charged Particle Grid implementation described in Section 4. They are just relocated in order to minimize the vectorial distances standard deviation, and then maximizing the uniformity of the resulting Constant Density Grid.
Conclusions
In this contribution we have analysed several ways to implement a Constant Density Grid in order to guarantee the fastest convergence of the Charged Particle Grid implementation.
We can conclude that the best way to obtain a Constant Density Grid is by using the Charged Particle Grid implementation, after having selected as initial condition (i.e., as starting position of the corresponding charged particles) a Golden Section Spiral, with the following definition:
		,
		
and selecting a value for kF (described in Section 4) of kF = 5×10-4.
Proposal: Standardise the use of a Golden Section Spiral defined as:
		,
		
as initial condition (i.e., starting position of each i‑th particle) for the Charged Particle Grid implementation described in Section 4, with a value of kF = 5×10-4, when a Constant Density Grid of an arbitrary number of points N is desired.
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Annex I
The final values (after convergence is reached) of the θ‑ and φ–coordinates, for the above-mentioned overall best case of the Charged Particle Grid, for N = 140 grid points (as depicted in Fig. 12 and 13), is listed in table below:
	θ
	ϕ

	0.184129819041362
	0.221149731739428

	0.166040524352211
	2.384445803241510

	0.207488181592133
	-1.537002877140110

	0.374858712837584
	1.156230721140460

	0.342502605276069
	-2.731370626946160

	0.419029612139470
	-0.470240356746952

	0.455186867564278
	1.953464573064890

	0.481957803952051
	-1.925622989232230

	0.489316747938312
	0.368462183476927

	0.464862569964818
	2.747666410064730

	0.502639196844363
	-1.158846514627190

	0.648510760917477
	1.419842221445780

	0.630554989154157
	-2.474528901852220

	0.669537427911278
	-0.108398920914576

	0.691775799928134
	2.334265930434100

	0.717886684472205
	-1.561851890742530

	0.666289054534931
	0.840721324474016

	0.643841409720888
	-3.040926187050360

	0.706387136918213
	-0.683807204550535

	0.778929417308900
	1.838185599088790

	0.792174153475537
	-2.067640503468560

	0.802369180975652
	0.324268505954655

	0.793893668434763
	2.764868943741280

	0.828699016954286
	-1.144512816446450

	0.886855123123665
	1.161610692619430

	0.878199883315749
	-2.718383144195610

	0.910907889963441
	-0.345564065622189

	0.966869082101995
	2.145530299416250

	0.982105768727715
	-1.762613954022090

	0.949136216432554
	0.663287716769450

	0.945296929041393
	3.101382735629270

	0.995506099477414
	-0.824917018361802

	0.992925357208702
	1.539776046247850

	0.998410136499079
	-2.354761872838520

	1.010429277814490
	0.031156807100619

	1.033119929962120
	2.494783716080230

	1.059322372126980
	-1.416146087748660

	1.119388588576280
	0.948179284121625

	1.127484689681150
	-2.907480331981850

	1.153486485782890
	-0.535781708488773

	1.142093532652150
	1.856412082950760

	1.158670839080970
	-2.045012546337460

	1.142669765510420
	0.362732687550521

	1.147748962453520
	2.807085553142380

	1.187096549080110
	-1.110512514163700

	1.209089759722600
	1.285043950602020

	1.222998493910580
	-2.585067975425640

	1.236622623918750
	-0.201980910387079

	1.264851828882110
	2.203839226552070

	1.282214934833340
	-1.702613074203020

	1.288937273225140
	0.666668791309827

	1.296445535649030
	3.093362169886170

	1.331408948018000
	-0.812049935600019

	1.331232493684070
	1.598415590553990

	1.355415803146530
	-2.287232454689550

	1.345864513057330
	0.111854671044338

	1.353724925741450
	2.521602019545650

	1.382351919214800
	-1.386939958330190

	1.411294916410690
	1.003515233210640

	1.424495485247710
	-2.864599420195140

	1.443686333799250
	-0.471167808094201

	1.449047602929840
	1.928483494513710

	1.473298386629870
	-1.971451389039030

	1.475968737697080
	0.416110402228431

	1.475040989331670
	2.820498715452770

	1.508291698800690
	-1.079522604295020

	1.515062436706720
	1.331701352658540

	1.539634567464290
	-2.550847932509370

	1.545887066564340
	-0.144944718967454

	1.560797051131530
	2.245946894841360

	1.580795602458180
	-1.659879243076770

	1.595705587025670
	0.731012370732033

	1.601958086125260
	3.136915584273940

	1.626530216883180
	-0.745633700893966

	1.633300954789150
	1.665590256059630

	1.666551664257910
	-2.234431063688190

	1.665623915892940
	0.169957249536151

	1.668294266959770
	2.557519040803630

	1.692545050659950
	-1.342415842749140

	1.697906319790680
	1.057235459858790

	1.717097168341830
	-2.832518235219860

	1.730297737179250
	-0.417447581446086

	1.759240734374980
	1.973007610094810

	1.787867727848180
	-1.935534367781090

	1.795728140532700
	0.474212980720243

	1.786176850443050
	2.873300106454150

	1.810360159905790
	-1.012347938789440

	1.810183705571880
	1.398117587364650

	1.845147117940520
	-2.507294518121600

	1.852655380364870
	-0.080601139545254

	1.859377718756360
	2.288680725967660

	1.876740824707600
	-1.617771574787540

	1.904970029671250
	0.788048562151684

	1.918594159678960
	-3.112049679989330

	1.932502893867320
	-0.698976298837487

	1.954496104509730
	1.696580165928360

	1.993843691136060
	-2.221017901377830

	1.998922888079630
	0.223334964214057

	1.982921814508650
	2.631080198102100

	1.999499120937650
	-1.270344431186240

	1.988106167807010
	1.121849360253420

	2.014107963908390
	-2.789637323433140

	2.022204065013670
	-0.362111632357095

	2.082270281462790
	2.002213739513350

	2.108472723627510
	-1.908716064315730

	2.131163375775540
	0.554910844664006

	2.143182517090490
	2.940829524603190

	2.148667296381180
	-0.953708394483358

	2.146086554112480
	1.410984670126480
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