Page 4
Draft prETS 300 ???: Month YYYY
[bookmark: _Hlk491845607]3GPP TSG RAN WG4 Meeting #88	R4-1801427
Gothenburg, Sweden, August 20th – 24th, 2018
Source: 	ETS-Lindgren
Title: 					Analysis and Correction of the Spherical Integration Formulation
Agenda Item: 			10.1.1
Document for:	Information
1 		Introduction
Recent reports of problems with integration of directional radiation patterns giving different answers based on orientation point to a problem with the numerical integration formulation adopted within CTIA and 3GPP.  This document revisits the spherical integrals and their conversion to numerical sums and shows a corrected approach to the numerical integral with an associated analysis of the resulting errors.
2	Discussion
Refer to the following attachment for the detailed presentation on this issue.


    
3	Conclusion and Recommendations
[bookmark: _GoBack]The attached paper demonstrates that the numerical integration formulation currently used for TRP/TRS testing is fundamentally flawed.  The new spherical surface area weighted formulation presented here provides a much more accurate approximation to the continuous integral using the same rectangular grid data points.  Since this method still allows for separate integration of phi cuts, it also still supports the use of theta dependent phi optimization.  It’s apparent that with a proper integration of the spherical surface, it is not necessary to switch to a more complicated data acquisition scheme, as accurate results can be obtained from a uniform grid measurement.  An analysis similar to this may also be used to evaluate the expected uncertainty for a given beamwidth/gain and grid resolution.
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Introduction

Recent reports of problems with integration of directional radiation patterns giving different answers based on orientation point to a problem with the numerical integration formulation adopted within CTIA and 3GPP.  This document revisits the spherical integrals and their conversion to numerical sums.

Background

TRP and (indirectly) TIS are given by the closed surface integral of the radiation power density:



For a spherical surface, this becomes:



in terms of the solid angle, .  This starts to look more like something we’re familiar with if we substitute for the solid angle in terms of spherical coordinates,  and .



We can also define the power density, , in terms of EIRP divided by the surface area of a sphere of radius r:



to obtain the familiar spherical integral:



This in turn is commonly represented as the discrete double sum of measured EIRP points found in CTIA and 3GPP OTA test plans:



where 



Since EIRP is a single valued function of two independent variables, it’s common to think of these as two independent sums (linear integrals):



where the inner sum is just the average of the data for each phi cut, and the outer sum is then the sin() weighted average of the phi cuts.  In fact, we make that distinction for the theta dependent phi weighting and for the partial surface integrals.  Thus, we commonly think of the surface integral as a collection of phi cuts as shown in Figure 1 and since the “cut” at the poles are only single points, they get zero weight, even though there is a physical data point there that should have meaning. 
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[bookmark: _Ref521600973]Figure 1.  Illustration of phi cuts on a uniform (,) grid on a spherical surface.

Note however, that the sum we’ve created is just an approximation of the integrals they replace, and more importantly, the integral is a surface integral, not two linear integrals.  Once converted to a sum, the fact that sin() goes to zero at the poles has been used to ignore the top and bottom points/cuts at the poles, but it also hides the fact that there are actually N + 1 points and only N steps that we are averaging.  The line integral in  is along the arc from 0 to , and includes those endpoints.  The sin() weighting, however, is part of the solid angle d and thus as part of the average should apply to the N line segments between points, not to the points themselves.  In other words, the points each must have an area associated with them.  The CTIA/3GPP formulation is simply wrong.

For illustration going forward, we will look at a moderately directional pattern (~8 dBi Directivity) plotted with the peak facing  = 90° and again with the peak facing  = 0°  (See Figure 2).  For this pattern on a 15° grid, the  = 90° case gives a 0.075 dB higher TRP.  Figure 3 illustrates the average of the phi cuts for each of these patterns, with and without sin() weighting.
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[bookmark: _Ref521600356]Figure 2.  Graphs of the same radiation pattern plotted in two different orientations in spherical coordinates.
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[bookmark: _Ref521600379]Figure 3.  Graphs of the average phi cuts, with and without sin() weighting, for each orientation of the same radiation pattern.

Trapezoidal Center Point Weighting

Using the averaging approach, it’s relatively straightforward to re-formulate the previous equation into a trapezoidal integral (similar to the partial surface integral formulation in CTIA) and then weight each trapezoid by sin() instead of weighting each point.  So, simplifying notation a bit:



where  is the average of the phi cut. Note that the above sum now sums across a total of N elements that we’re averaging.  It’s easy enough to see that this converges to the integral and the previous version of the sum in the infinitesimal limit where  goes to zero (N goes to infinity) such that the fractions in the two sums just approach the single point value and the two versions of the sum become the same.  One additional end point in the sum, more or less, doesn’t matter as N approaches infinity.

For comparison Figure 4 graphs these trapezoids against the sin() weighted curves shown previously.  Note that a unique property of these trapezoids is that if the top lines intersect in the middle, the area underneath is equivalent.  Conversely, if the center point of one line segment is higher than that of another, the volume of the trapezoid underneath is larger as well.  Thus it is clear that for the pattern pointed towards the pole, the trapezoidal weighting is producing a higher value near the poles.   
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[bookmark: _Ref521599468]Figure 4.  Graphs of the sin() weighed trapezoids for each orientation of the same radiation pattern.

Spherical Surface Weighting

Alternately, we can go back to the original surface integral and attempt to weight each point by their associated surface segment as shown in Figure 5.  This gets a bit uglier since the two poles now get half-weights on a linear (planar) scale. We’ll continue to assume that the phi axis points are evenly spaced and thus get equal weight so that we can continue to deal with the average for each phi cut.  
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[bookmark: _Ref521599396]Figure 5.  Illustration of phi bands on a uniform (,) grid on a spherical surface.  Note that the polar point now has a surface area associated with it.



The surface area of a zone of height h between two cuts on a sphere of radius R, or a cut and the closest end of a sphere (a cap) is given by S = 2Rh.  (See Figure 6.)  
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[bookmark: _Ref521599186]Figure 6.  Illustration of height and radius dimensions associated with segments of a spherical surface (zones).  

For a unit sphere (R=1), h = cos(A) – cos(B), where B > A.  Interestingly, this can be rewritten as:



which has some similarity to the sin() weighting of the previous formulation.  The difference, however, is that the theta values here are the midpoints between measured data positions.  With the exception of the poles, the formulation then becomes:



which gets us nicely back to sin() weighting of each “band”.  The weighting of the pole caps becomes:





The spherical integral then becomes:



where the factor of 2 in the spherical surface area has already been accounted for in the average EIRP calculation.  Figure 7 shows the impact of the spherical segment weighting, normalized for comparison with the previous graphs.
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[bookmark: _Ref521598976][bookmark: _Ref521598971]Figure 7.  Graphs of the spherical surface segment weighted data points for each orientation of the same radiation pattern.

Note that  



so that in the infinitesimal limit of N approaching infinity and   approaching zero, where sin(x)  x, 



and the above equation again converges to the original sum representation of the integral equation.  At 15° (N=12) this approximation is already getting very close to equivalent, which is why there is barely any difference visible in h the exception of the endpoints.  Unfortunately, while the sine and cosine  /2 terms in the TRP equation are constants for a given  or N, it is not possible to eliminate the sine and cosine functions for any typical value of N.  This leaves us with:



as the correctly weighted spherical surface integral for points on an even angular (,) grid, where:





Practical Considerations

Now that it’s apparent that the data point at the poles does actually have meaning and contributes to the spherical surface integral, it is necessary to consider test system limitations that typically prevent measurement of the data point at  = 180°.  There are a couple of ways to handle this.  The easiest is to estimate or extrapolate the pole point, typically by just using the average of the surrounding data points, e.g. .  

Alternately, one could change the range of the surface integral to simply eliminate the portion of the surface that is missing.  That involves addressing the normalization factor of 1/2 at the front of the TRP equation above.  This comes about because the integral of sin() equals two:



Thus, to correct for the sin() weighting of the average EIRP integral, we have to divide by two.  Note that the 2 weighting associated with the phi cut integrals was already canceled out early in the conversion of the integral to the average EIRP summation.  The reader can easily confirm that the previous TRP summation with a constant EIRP of one will also sum to a value of 2:





In order to account for the missing pole at  = 180°, we need simply subtract that portion of the normalization factor so that we’re only averaging over the portion of the surface that was actually measured.  Thus we need to subtract a single value of



from the divisor of 2 in the TRP equation to give:



This neglects the impact of the missing point rather than assuming it has a value similar to its neighbors.  In other words, it’s the equivalent of replacing the missing point by the average of ALL the other points.

This could of course be done to address both the missing top and bottom points in the current CTIA allowance to give:





Note again that this converges to the CTIA formula as N approaches infinity since



More importantly, this lets us evaluate the current error in the existing OTA test plan formula by evaluating the difference between these two values for the given step size.  For TRP (N = 12), the ratio of these two numbers is only -0.025 dB, so the under-estimate of the TRP is negligible.  For TIS (N = 6), however, the error becomes -0.101 dB, which, though still small, is not insignificant.  Note that these are the error solely due to the scaling factor related to the missing surface sections.  This has nothing to do with the measured data itself.  For example, in the directional pattern data used above, the delta between the two orientations was 0.075 dB on the 15° grid, which is more than just the error given above.  So as far as the impact of giving zero weight to the poles, that really depends on the pattern, but can be determined by taking the ratio of the two different implementations and simplifying.  







After simplification, it’s apparent that the error is related to the same partial surface area plus a value that is a function of the ratio of the missing data points to the total.  For a dipole oriented along the phi axis, where the missing points are in the null, the additional error is negligible, while for a highly directional antenna pointing at the poles, the error could be quite significant.    



Convergence Analysis

To determine the effectiveness of these new formulae, a high gain (Directivity 22.6 dBi) pattern was evaluated as a function of beam orientation in spherical coordinates for several different grid resolutions.  Figure 8 shows an animation of this pattern on a 5° resolution spherical grid.  Figure 9 compares the three different numeric integration methods and shows that while the current TRP/TIS formulation underestimates the total near the poles, the weighted trapezoid integration over-estimates the result near the poles.  The surface weighted integral also overestimates slightly near the pole, but is considerably better than either other method and converges faster away from the pole.   





[bookmark: _Ref521660535]Figure 8.  Narrow beam pattern on a 5° resolution spherical grid.  Double-click to animate.  Note the variation in null depth.
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[bookmark: _Ref521686598]Figure 9.  Comparison of the three numerical integration methods for a narrow beam pattern on a 5° resolution spherical grid.  Note that near  = 90° they stabilize, but do not converge on the same exact value.  The spherically weighted integral starts out closer and converges faster.  

Switching to a massively undersampled pattern at 15° resolution (Figure 10), the benefits of the new surface weighted formulation becomes quite apparent.  While in this case the integral result oscillates as a function of orientation due to the poor sampling, the surface weighted formulation produces the same range of values, regardless of theta angle, while the other two methods deviate drastically near the pole.





[bookmark: _Ref521687013]Figure 10.  Narrow beam pattern on a 15° resolution spherical grid.  Double-click to animate.  
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Figure 11.  Comparison of the three numerical integration methods for a narrow beam pattern on a 15° resolution spherical grid.  At this far undersampled resolution, the results oscillate, but the surface weighted integral maintains a similar error contribution at all angles.

Conclusion

This paper demonstrates that the numerical integration formulation currently used for TRP/TIS/TRS testing is fundamentally flawed.  It presents a new spherical surface area weighted formulation that provides a much more accurate approximation to the continuous integral using the same rectangular grid data points.  Since this method still allows for separate integration of phi cuts, it also still supports the use of theta dependent phi optimization.  Finally, the analysis of the angular dependence of narrow beam patterns provides some insight as to the uncertainty associated with grid sample size.
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Average Phi Cuts for Pattern With Maximum at Theta = 0°
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Average Phi Cuts for Pattern With Maximum at Theta = 90°
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Average Phi Cuts for Pattern With Maximum at Theta = 0°
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TRP Integral Error on 5° Grid
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TRP Integral Error on 5° Grid
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TRP Integral Error on 15° Grid
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Total Power Pattern With Maximum at Theta = 90°
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Total Power Pattern With Maximum at Theta = 0°
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Average Phi Cuts for Pattern With Maximum at Theta = 90°
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Average Phi Cuts for Pattern With Maximum at Theta = 0°
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Average Phi Cuts for Pattern With Maximum at Theta = 90°
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