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1	Introduction
This contribution is a companion paper to [1], which uses the metrics described here for quantifying differences between candidate reduced complexity OTA channel models. The metrics described here are
· Ergodic capacity
· Matrix condition number:
· Rank 2
· Rank 4
· Rank 8

2	Metrics for Comparing Models
Other work [3] has discussed metrics for evaluating the properties of a specific OTA methodology. For the work in [1], a different approach is taken. We assume that the mathematical representation of candidate models can be implemented perfectly and compute statistical properties of the models under various simplifications [2]. Once we understand these aspects, then a physical implementation can be discussed. The two metrics of interest are ergodic capacity and condition number.
2.1	Ergodic Capacity Metric

The capacity of a  MIMO channel H with perfect channel knowledge at the receiver and no knowledge at the transmitter is define below [4]:
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where the number of transmitters is NTx and number of receivers is NRx . In 5G systems using hybrid beamforming, the number of transmitters or receivers may be different from the actual number of radiating or receiving elements in an antenna array. For the purposes of this paper however, when computing capacity, we assume that there is a transmitter or receiver for each radiating element. This allows us to compute the maximum capacity supported by the arrays.
For any given channel, the capacity is evaluated by Eq. . Because the channel is time-varying and random, it is customary to talk about the average or ergodic capacity. This is simply the mean value of the capacity at a given SNR.
There are several definitions of capacity, depending on the kind of knowledge the transmitter and receiver is assume to have [4]. For simplicity, we assume the channel is unknown to the transmitter but is known perfectly to the receiver. All capacity comparisons are made on this basis.
It can be tricky comparing capacity curves from different sources. In this document, all capacity curves are plotted alongside of the capacity curve produced by the IID (independent, identically-distributed) channel – that is, the channel samples are taken as samples complex white noise with unity variance. The IID channel curves were validated with curves from [4]. Note that the IID channel curves are not a bound – the capacity of a real channel can be worse or better than the IID curve. The curve is presented only to provide a means for comparison with a known reference.
Channel capacity depends strongly on SNR, as is obvious from Eq. . Differences in the norm of the channel matrix also have a strong impact, making it impossible to make fair comparisons between candidate channel models unless dealt with. For this reason, a fixed normalization is applied to channel realizations so they have a variance of 1 averaged over all excess delays and MIMO paths, using the computations shown in Eq. :
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In other words, the channel samples are scaled such that Pchannel = 1 over all time. Normalization is especially important when cross-polarized antennas are simulated, as the average power of each MIMO path can differ significantly from others depending on the relative polarization angles at each endpoint.
2.2	Capacity CDF at an SNR
Another kind of capacity plot is presented in [1]. It is not so much a metric but a different presentation of the capacity metric. For this plot, we accumulate capacity statistics at a specified SNR, then plot this information as a cumulative distribution. The derivative of the CDF is the probability density function, but the CDF is more customary to show. This plot is useful to see how capacity varies around the mean and gives more information than ergodic capacity graphs alone.
2.3	Condition Number
The condition number of a MIMO channel gives an indication about its suitability for carrying multiple spatial streams. For those who are rusty on their linear algebra, we first review the idea with a simple example using a 2x2 MIMO channel.
Consider the MIMO transmission system depicted in Figure 1, in which a data signal, represented by vector s is transmitted using two antennas to a receiver, also with two antennas, which receives it as vector r, through a 2x2 MIMO channel, H.
[image: ]
[bookmark: _Ref489865447]Figure 1. Model of a 2x2 MIMO transmission scenario.
This is mathematically described by:

	.	
Here, s is the transmitted signal vector (assume 2x1 and carrying two data streams), r is the received signal vector (also 2x1) and H is the channel matrix (2x2). A simple (non-optimal) receiver to recover the two transmitted streams would be

	.	
Let the channel matrix be a constant defined by

	 	
Using a well-known formula for the inverse of a 2x2 matrix, we find:
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When  is zero, the channel is the identity matrix, which is rank 2. It would be the ideal channel to encounter in reality for several reasons, but in this discussion, it is good because its matrix inverse is numerically stable (it is also the identity matrix). When  is one, the elements of the channel matrix are all the same. Looking at H-1 in , we see that the scale factor in front of the matrix is undefined, due to the denominator being zero. The channel matrix H may have two rows, but they are linearly dependent, hence H is rank 1 and it is impossible to recover both streams.
The common definition of condition number for a square matrix is

	,	


where  is the Frobenius norm [5]. From this it is easy to compute the condition number of the example channel matrix; it is the factor . This is simple to show for a 2x2 matrix; the next section defines the condition number for a general matrix.
This gives us a measure of the numerical sensitivity of the channel. When  is zero, the channel is easily invertible (condition number = 1). But when  is 0.99, for example, the rows of the channel matrix are very close to each other. The channel is still technically invertible, but the condition number is 199. This large value indicates the sensitivity of the channel to noise, and tells us that recovering the transmitted signal under these conditions is not at all practical. In rough terms, the larger the condition number, the higher the SNR required to recover the two streams The condition number idea extends to any matrix, regardless of dimensions.
2.3.1	Condition Number Definitions
Condition number is not influenced by SNR or the norm of the channel, since we assume perfect channel knowledge. It is also unaffected by multipath. But it does have a big impact on the SNR required to support a specific number of spatial streams. The condition number can be defined as the ratio of the largest to the smallest singular value of a matrix [5]:

	,	




where , vectors  and  are the left and right singular vectors of H, and the singular values  are defined to be sorted from largest (1) to smallest. However, there are good reasons to consider different kinds of condition number metrics.
With the large number of antennas in NR, channels can have quite high rank. For instance [6] shows a gNodeB with a 4x8x2 panel array and a UE with 2x2x2 elements; the rank is as high as 8, although an actual implementation may not support eight TXRUs. In [7] Section 6.1.6.2 indicates up to 8-layer SU-MIMO support, and a recent WF [8] indicates agreement that the UE architecture should support a minimum of 2 layers, with support for higher order DL layers being optional.
In addition, the singular value spectrum contains a lot of information about the suitability of a given channel for multi-layer transmission. If all the singular values in an Nx8 channel are about equal, then rank 8 transmission could be supported. However, a channel that isn’t suitable for 8 layer transmission might be suitable for 4 or 2 layer transmission, and a single condition number based on the maximum rank does not give us that sort of information.
It is therefore interesting to quantify the channel condition number at lower ranks where the UE receiver could operate as well, rather than just the highest possible rank. For this we define three condition number measures, for 2, 4 and 8-layer MIMO:

	 	
The assumption is that for 2-layer MIMO, the transmitter will use precoding or beamforming to “steer into” the 2-dimensional subspace corresponding to singular values 1 and 2. Similarly for 4-layer MIMO, a 4-dimensional subspace corresponding to singular values 1 through 4 will be used. A real MIMO transmitter and receiver may use a different algorithm; the explanation here is meant to support the definition of the three condition number metrics. These three metrics will serve to characterize and compare the properties of all channel models considered in this contribution. Data will be presented using a cumulative distribution function plot.
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