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Background

The PA models for NR have been extensively discussed in previous RAN4 meeting. 
In addition to overview of some common model, advanced parameterized model for Generalized Memory Polynomial (GMP) for 2 GHz and 30 GHz for various PA technologies which captures the memory effects has been presented. As the PA models could serve an essential tool for evaluation studies as well as specification work for NR, the models should be properly documented in the NR technical report.
We also encourage other companies to contribute to PA model as other parameterized models have also been discussed in RAN4 [3] and [4] and might also be included in the TR.
Proposal

It is proposed that the attached text proposal is included in the study item TR 38.803.
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TEXT PROPOSAL:
6.3.1

General

6.3.2

BS Transmitter characteristic
PA models are quite essential investigating the transmitter characteristics. A general overview of a few PA models as well as fully parameterized General Memory Polynomial models which capture the memory effects is described in detail in Annex B. The annex captures some models provided as a starting point for the Study Item; the use of different models during the SI or WI is not precluded. It is noted that the PA model should be applied in conjunction with appropriate RF requirements. CFR and DPD algorithms should also be considered when use the PA model for BS  transmitter.
6.3.3

BS Receiver characteristic

*********************End of change*****************
*********************Next changed section*****************
Annex B:
PA models 

There are a few simple models for basic amplifier non-linear behaviour. A more rigorous model would include the Volterra series expansion which can model complex non-linearities such as memory effects. Among the more simple models one can count the Rapp model, Saleh model and the Ghorbani model. Combinations of pure polynomial models and filter models are also often referred to as fairly simple models, of which the Hammerstein model could be mentioned.

The advantage of the simpler models is usually in connection to for a need of very few parameters to model the non-linear behaviour. The drawback is that such a model only can be used in conjunction with simple architecture amplifiers such as the basic Class A, AB and C amplifiers. Amplifiers such as the high efficiency Doherty amplifier can in general not be modelled by one of these simple models.

In addition, to properly capture the PA behaviour for the envisaged large NR bandwidths, it is essential to use PA models capturing the memory effects. Such models would require an extensive set of empirical measurements for proper parameterization.

Rapp Model

The Rapp model has basically 2 parameters by which the general envelop distortion may be described. It mimics the general saturation behaviour of an amplifier and lets the designer set a smoothness of the transition by a P-factor. By extending this also to model phase distortion, one has in total 6 parameters available. The basic simple model may be found as: 
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This model produces a smooth transition for the envelope characteristic as the input amplitude approaches saturation. In the more general model, both AM-AM and AM-PM distortion can be modelled. In general terms, the model describes the saturation behaviour of a radio amplifier in a good way. 
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“x” is the envelop of the complex input signal. If signal measurements are at hand of the input/output relationship, the parameters of the model may be readily found for a particular amplifier by for example regression techniques. 

The strength of the Rapp model is lies in its simple and compact formulation, and that it gives an estimation of the saturation characteristics of an amplifier. The drawback of this simple model is of course that it cannot model higher order classes of amplifiers such as the Doherty amplifier. It also lacks the ability to model memory effects of an amplifier.

In conclusion, RAPP model similar to other memory less models would capture some aspects in relation to waveform design but could not serve as a complete and comprehensive PA model covering all the effect possibly affecting the waveform design.

Saleh Model

The Saleh model [3] is a similar model to the Rapp model. It also gives an approximation to the AM-AM and AM-PM characteristics of an amplifier. It offers slightly less number of parameters (4) that one can use to mimic the input/output relationship of the amplifier.

The AM-AM distortion relation and AM-PM distortion relation are found to be as:
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“r” is the envelop of the complex signal fed into the amplifier, and (/( are real-valued parameters that can be used to tune the model to fit a particular amplifier.

Ghorbani Model

The Ghorbani model [4] also gives expressions similar to the Saleh model, where AM-AM and AM-PM distortion is modeled. Following Gharbani, the xepressions are symmetrically presented as rephrased below.
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In the expressions above, g(r) corresponds to AM-AM distortion, while f(r) corresponds to AM-PM distortion. The actual scalars x1-4 and y1-4 have to be extracted from measurements by curve fitting or some sort of regression analysis. 

Taylor (Polynomial) series

The next step in the more complex description of the non-linear behaviour of an amplifier is to view the characterization as being subject to a simple polynomial expansion [5]. This model has the advantage that it is mathematically pleasing in that it for each coefficient reflects higher order of inter-modulations. Not only can it model third order intermodulation, but also fifth/seventh/ninth etc. Mathematically it can also model the even order intermodulation products as well, it merely is a matter of discussion whether these actually occur in a real RF application or not.
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Coefficients may be readily be expressed in terms of Third Order Intercept point IP3 and gain, as described above. This feature makes this model specially suitable in low level signal simulations, since it relates to quantities that usually are readily available and easily understood amongst RF engineers. 
Hammerstein model

The Hammerstein model [6] consists of a combination of a Linear + Non-Linear block that is capable of mimicking a limited set of a Volterra Series. As the general Volterra series models a nested series of memory and polynomial representations, the Hammerstein model separates these two defining blocks that can in theory be separately be identified with limited effort.
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The linear part is often modelled as a linear filter in the form of a FIR-filter. The non-linear part is then on the other hand simply modelled as polynomial in the envelop domain. 

Non-linear
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The advantage of using a Hammerstein model in favour of the simpler models like Rapp/Saleh or Ghorbani is that it can in a fairly simple way also model memory effects to a certain degree. Although, the model does not benefit from a clear relationship to for example IIP3/Gain but one has to employ some sort of regression technique to derive polynomial coefficients and FIR filter tap coefficients.

Wiener model
The Wiener model describes like the Hammerstein model a combination of  Non-linear + Linear parts that are cascaded after each other. The difference to the Hammerstein model lies in the reverse order of non-linear to linear blocks.
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In the first block in the figure above, the non-linear block is preferably modelled as a polynomial in the envelope of the complex input signal. This block is the last one in the Hammerstein model as described above. The polynomial coefficients may themselves be complex, depending on what fits measured data best. See expressions for non-linear and linear parts under the Hammerstein section.

The second block which is linear may be modelled as an FIR filter with a number of taps that describes the memory depth of the amplifier.

Volterra series expansion model

The state-of-the-art approaches lean on a fundament of the so called Volterra series, [7]. The Volterra series is in common words described as a kind of “Taylor series with memory” and is able to model all weak non-linearity with fading memory. Common models like for example the memory polynomial can also be seen as a subset of the full Volterra series and can be very flexible in designing the model by simply adding or subtracting kernels from the full series.

The discrete-time Volterra series, limited to causal systems with symmetrical kernels (which is most commonly used for power amplifier modelling) is written as
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in which P is the non-linear order and M is the memory-depth.

Further on, there are benefits which the Volterra series hold over other modelling approaches. These are as follows.

· It is linear in parameters, meaning that the optimal parameters may be found through simple linear regression analysis from measured data. It further captures frequency dependencies through the inclusion of memory effects which is a necessity for wideband communication.

· The set of kernels, or basis functions, best suited for modelling a particular power amplifier may be selected using methods which rely on physical insight, [8]. This makes the model scalable for any device technology and amplifier operation class.

· It can be extended into a multivariate series expansion in order to include the effects of mutual coupling through antenna arrays, [9]. This enables the studies on more advanced algorithms for distortion mitigation and pre-coding.

It may be observed that other models such as static polynomials, memory polynomials and combinations of the Wiener and Hammerstein models are all subsets of the full Volterra description. 

As previously stated, empirical measurements are needed to parameterized PA model based on Volterra series expansion.
Memory Polynomials

A subset of the Volterra Series is the memory polynomial [8, 9] with polynomial representations in several delay levels. This is a simpler form of the general Volterra series. The advantage of this amplifier model is its simple form still taking account of memory effects. The disadvantage is that the parameters have to be empirically solved for the specific amplifier in use.
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The equation above shows an expression for a memory polynomial representation of an amplifier involving two memory depth layers. Each delayed version of the signal is associated with its own polynomial expressing the non-linear behaviour..

B.1

Detailed Generalized Memory Polynomial (GMP) models

The purpose of a PA behavioural model is to describe the input-to-output relationship as accurately as possible. State-of-the-art approaches lean on a fundament of the so called Volterra series consisting of a sum of multidimensional convolutions. Volterra series are able to model all weak nonlinearities with fading memory and thus are feasible to model conventional PAs aimed for linear modulation schemes. 
The GMP model used here is a slightly modified version of equation 24 in [1] and is given by
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where [image: image18.png]Yemp(N)
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 represent the complex baseband equivalent output and input, respectively, of the model. The first term represents the double sum of so called diagonal terms where the input signal at time shift [image: image22.png]
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, is multiplied by different orders of the time aligned input signal envelope [image: image28.png][x(n —1)|**



; [image: image30.png]k €K,



. The triple sum represents cross terms, i.e. the input signal at each time shifts is multiplied by different orders of the input signal envelope at different time shifts. 

The GMP is linear in the coefficients, [image: image32.png]Qi
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, which caters for robust estimation based on input and output signal waveforms of the PAs to be characterized.

As a complement to the above, also memoryless polynomial models have been derived based on:

[image: image35.png])= Y axmlx(n)l

=,




In this paper, proposals for realistic parameterized PA models based on GMP are given where the parameterization is based on empirical measurements or advanced circuit simulations of designed PAs. The pre-conditions for the presented parameterization are as following:

The PA models aim to fulfil RAN4 requirements on unwanted emission (spectrum emission masks and ACLR) as well as signal quality. Although the models have been derived for a particular operating point, the same parameterized models apply at operating points of the PA as long as the expected performance criterion stated above is fulfilled. Thus the model can be used for waveform evaluations when considering both BS side and UE side ACLR requirements. (Of course, it is the UE PA behaviour that is likely to have the largest impact on waveform selection).

Note that it is a reasonable assumption that for PA models below 6 GHz, the requirements in current specifications (in particular the MSR specification) should apply. For mm-wave frequencies, as there is no 3GPP specification today, the requirements might differ compared to below 6 GHz. However an ACLR in the range of 35 dB seems to be sufficient for the mm-wave frequencies. If needed, the operating point can be adapted to achieve the desired ACLR
None of the models capture the impacts of DPD; this would need to be modelled separately.
Examples Memory polynomial PA model
A) Generalized Memory Polynomial
Due to possible difference in requirement levels for frequency bands below 6 GHz compared to mm-wave frequencies and availability of different PA technologies, the following GMP models are captured as examples for the SI (further models may be developed if/when needed):

1. 2.1 GHz PA model with and without memory (based on measurements of commercially available GaAs PA).

2. 2GHz PA model with and without memory (based on measurement of GaN PA).

3. 28GHz CMOS PA model with and without memory (based on circuit simulations of designed PA).

4. 28GHz GaN PA model with and without memory (based on circuit simulations).

The 2 GHz PA models as well as 28 GHz PA models discussed in this paper are representative for frequency bands below 6 GHz and mm-wave frequencies respectively. 


The memoryless polynomial models are defined by coefficients [image: image37.png]Qx



 and will be presented in MATLAB notation as column vector [image: image39.png]


. 

The GMP models are defined by the set of coefficients [image: image41.png]Qi
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 and will be represented as follows:
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 is specified as one column vector for each value of [image: image47.png]
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 is specified as one column vector for each value of [image: image53.png]
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: [image: image57.png]



All models have been normalized with respect to input such that the valid input range is given by [image: image59.png]


 while the small signal gain is unity (0dB). The accuracy of each model is specified as Normalised Mean Square Error (NMSE) between the modelled PA output and the measured/simulated PA output. The presented NMSE indicate very good agreement between the models and measurements.

PA model for ~2 GHz commercially available GaAs with 40MHz signal bandwidth

The first model is based on a commercially available GaAs PA designed for operation at 2.1GHz (band 1). The model has been derived from measurements with input and output data at a sample rate of 307.2 MHz and an input signal bandwidth of 40 MHz. 

The memoryless model has -31.5dB NMSE and is defined by:
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[-0.618347-0.785905i; 2.0831-1.69506i; -14.7229+16.8335i; 61.6423-76.9171i;
-145.139+184.765i; 190.61-239.371i; -130.184+158.957i; 36.0047-42.5192i]

The corresponding GMP model has -38.1dB NMSE and is defined by:
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:
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[0.0145707+0.00223568i; 0.0166021+0.0884597i; -0.170987-0.889998i; 0.398012+4.25717i;
-0.922915-11.5296i; 1.51648+16.8822i; -1.31708-12.4992i; 0.443603+3.66282i]
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-35.9884+25.271i; 49.5323-38.9777i; -34.8388+30.1032i; 9.83576-9.12289i]
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Figure 1 and Figure 2 show the gain and phase characteristics of the GMP and static model using the same OFDM signal that was used for model estimation.
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Figure 1 Gain characteristics of 2.1GHz GaAs PA, (blue) GMP model (red) static model. 
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Figure 2 Phase characteristics of 2.1GHz GaAs PA, (blue) model (red) static model.
PA model for ~2 GHz, GaN 

The second model is based on a GaN PA designed for operation at 2.1GHz (band 1). The model has been derived from measurements with input and output data at a sample rate of 200 MHz and a signal bandwidth of 40 MHz. 

The memoryless model has -34.5dB NMSE and is defined by:
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[0.999952-0.00981788i; -0.0618171+0.118845i; -1.69917-0.464933i;
3.27962+0.829737i; -1.80821-0.454331i]

The corresponding GMP model has -40.6dB NMSE and is defined by:
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-0.904609-0.134671i; 0.364885+0.0256412i]

[image: image91.png]


:

[0.930707-0.0506493i; -0.134627+0.195504i; -1.4589-0.410569i;
2.97014+0.552334i; -1.66244-0.229841i]

[image: image93.png]


:

[-0.000408452+0.0188736i; 0.573671-0.0891485i; -1.43878-0.0446107i;
1.88831+0.11494i; -0.898231-0.0576903i]

[image: image95.png]


:

[-0.114268+0.0207177i; -0.163861-0.0420654i; 0.454916+0.223106i;
-0.606208-0.294749i; 0.279233+0.126344i]

[image: image97.png]bum: k € 10,1, ...,4]



:

[image: image99.png]—3m=0



:

[0.0946171-0.0134503i; -0.22721+0.102407i; 0.825701-0.485074i;
-1.35047+0.945727i; 0.754396-0.612916i]

[image: image101.png]


:

[-0.0238986+0.00753547i; 0.224223-0.0511775i; -0.811315+0.176395i;
1.31147-0.269401i; -0.699496+0.152096i]

Figure 3 and Figure 4 show the gain and phase characteristics of the GMP and static model using the same OFDM signal that was used for model estimation.
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Figure 3 Gain characteristics of 2.1GHz GaN PA, (blue) GMP model (red) static model. 
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Figure 4 Phase characteristics of 2.1GHz GaN PA, (blue) GMP model (red) static model. 
PA model for ~28 GHz, CMOS 

The third model is based on advanced circuit simulation of a CMOS PA research prototype. The model has been derived with input and output data at a sample rate of 2.281 GHz and a signal bandwidth of 400 MHz.

The memoryless model has -32.1 dB NMSE and is defined by:
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[0.491576+0.870835i; -1.26213+0.242689i; 7.11693+5.14105i; -30.7048-53.4924i;
73.8814+169.146i; -96.7955-253.635i; 65.0665+185.434i; -17.5838-53.1786i]

The corresponding GMP model has -41.7dB NMSE and is defined by:
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Figure 3 and Figure 4 show the gain and phase characteristics of the GMP and static model using the same OFDM signal that was used for model estimation.
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Figure 5 Gain characteristics of 28GHz CMOS PA, (blue) GMP model (red) static model.
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Figure 6 Phase characteristics of 28GHz CMOS PA, (blue) GMP model (red) static model.
PA model for ~28GHz, GaN 

The fourth model is based on advanced circuit simulation of a GaN PA research prototype. The model has been derived with input and output data at a sample rate of 2.281 GHz and a signal bandwidth of 400 MHz.

The memoryless model has -33.4dB NMSE and is defined by:
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[-0.334697-0.942326i; 0.89015-0.72633i; -2.58056+4.81215i;
4.81548-9.54837i; -4.41452+8.63164i; 1.54271-2.94034i]

The corresponding GMP model has -41.1dB NMSE and is defined by:
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0.841832-0.395568i; -1.02048+0.442096i; 0.463711-0.197228i]
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:

[-0.0138413-0.0283711i; 0.0103081-0.0570896i; -0.0723643+0.440087i;
0.399287-1.24045i; -0.712003+1.50792i; 0.402778-0.661505i]

Figure 7 and Figure 8 show the gain and phase characteristics of the GMP and static model using the same OFDM signal that was used for model estimation.

 [image: image142.png]Gain [dB]

-20 -15 -10
Normalized input power [dB]





Figure 9 Gain characteristics of 28GHz GaN PA, (blue) GMP model (red) static model. 
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Figure 10 Phase characteristics of 28GHz GaN PA, (blue) GMP model (red) static model.

B) Memory Polynomial
Volterra series version that reduces the number of parameters to be determined. MP decreases the overall system complexity while still maintaining the accuracy of the memory effects description. Before modelling, input and output samples must be aligned. Signal correlation is the most common method to synchronize time series. After alignment and normalization, a part of the samples is used to calculate the coefficients of matrix A in equation below
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The coefficients can be extracted using the LMS algorithm, which is explained in further detail in [4]. Memory effects and nonlinear distortion can significantly reduce the output signal quality and therefore, degrade the overall system performance. Depending on the frequency range of the signal transmission, the inclusion of memory effects can be crucial for developing a useable and realistic model. Therefore, the models of a PA operating below 6 GHz and another PA operating above 6 GHz will be shown.

PA model below 6 GHz
The PA model was simulated in Matlab using the measurement results from an Intel PA. An OFDM signal with a carrier frequency of 2.44 GHz was fed to the amplifier. Both the I(t) and Q(t) from the input and output signals PA were used to develop a model based on a memory polynomial implementation. The terms used for the evaluation of this model were polynomial degree K with a value of 5 and the polynomial memory depth M with a value of 5. The low value of both terms enabled a fast computational time and ensured good adaptive performance of the algorithm, which resulted in a very near approximation of the modelled output signal to the original output signal. 
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Figure 1. Power Spectral Density at 2.44 GHz
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Figure 2. Input Signal VS Output Signal at 2.44 GHz
This can be perceived in Figure 1 and Figure 2 where the Power Spectral Density (PSD) and the input versus the output signal have been plotted based on the number of samples of the measured PA fitted to the simulation model. In both figures the red curves represent the model estimated data and the blue curve the original measurement data. We can find the two traces of PSD fit very well in pass band and adjacent channel. The average error in dB between value of PSD of measured data and that of model output is less than 0.3 dB.

To evaluate the performance of the MP model, the average normalized mean square error (NMSE) has been calculated, which is the most common metric to evaluate models performance. The NMSE is calculated with following equation, where [image: image149.png]


 represents the measured data and [image: image151.png]Vest



 represents the model data.
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The calculated value for the NMSE is -67 dB which is much better than the traditional NMSE values of around -38 dB. In Figure 2 it can be seen that the memory effects generate diffusion region and based on these results we propose the use of a memory polynomial model to implement the PA model below 6 GHz considering the memory effects.
The memory parameter calculated with the model are the following:
M = 5, K = 5, 
akm = [ 20.0875 + 0.4240i,  -6.3792 - 0.5507i, 0.5809 + 0.0644i, 1.6619 + 0.1040i, -0.3561 - 0.1033i, -59.8327 -34.7815i,  -2.4805 + 0.9344i,  4.2741 + 0.7696i,  -2.0014 - 2.3785i, -1.2566 + 1.0495i, 3.2738e+02 + 8.4121e+02i, 4.4019e+02 - 3.0714e+01i, -3.5935e+02 - 9.9152e+00i, 1.6961e+02 + 7.3829e+01i, -4.1661 -21.1090i,  -1.6352e+03 - 5.5757e+03i,  -2.5782e+03 + 3.3332e+02i,  1.9915e+03 - 1.4479e+02i, -9.0167e+02 - 5.4617e+02i, -93.1907 +14.2774i,   2.3022e+03 + 1.2348e+04i,   4.6476e+03 - 1.4477e+03i, -2.9998e+03 + 1.6071e+03i, 9.1856e+02 + 9.8066e+02i, 8.2544e+02 + 6.1424e+02i]
PA model for above 6 GHz 

[image: image1.png]


The memory polynomial has been utilized as well for above 6 GHz. The PA model for above 6 GHz was implemented by using the 28nm CMOS PA at 31 GHz designed by the Katholieke Universiteit Leuven (KUL) [2]. A 16-QAM Single Carrier signal was fed to the amplifier. Since we consider that a PA operated in mmWave bands shall support a wider bandwidth compared to a PA below 6 GHz, the memory effects are expected to be more crucial. By this, we see an increase of the complexity to model the nonlinearities. In other words, the calculation effort will be more costly than in the case of the PA below 6 GHz, where the memory effects are not so dominant.
[image: image153.jpg]3 sigin Vs Sig out
4 sigin Vs sig out |

-40
-25 -20 -15 -10 -5 0

[dBm]




Figure 4. Input Signal VS Output Signal at 31 GHz.
The polynomial degree K used for this PA was 8 and polynomial memory depth M value was 5. The memory polynomial allows the use of high K and M terms for calculating the matrix coefficients but with a less computer complexity compared to Volterra series.

In Figure 3 and Figure 4 the Power Spectral Density (PSD) and the input versus the output signal have been plotted for the 31 GHz PA. The PSD shows more spectral regrowth compared to the PA below 6 GHz. In both figures the red curves represent the model estimated data and the blue curve the original measurement data. We can find the two traces of PSD fit also very well in pass band and adjacent channel. The average error in dB between value of PSD of measured data and that of model output is less than 1 dB. The calculated value of NMSE for this PA model is – 39 dB.

In Figure 4 it can be seen when including the memory effects that the characteristic of the PA behave no longer as a curve but rather as a diffusion region. These memory effects increase the calculation time to estimate the matrix coefficients of the memory polynomial and accurately model the PA. 
The memory parameter calculated with the model are the following:

M = 5, K = 8, 
akm = [-10.0624 +14.6485i,  24.6983 -25.5192i, -28.6702 +24.4684i, 18.9709 -12.0500i,  -5.3080 + 2.4235i, -63.1123 + 9.4912i, -18.2854 - 9.0971i, -33.6220 - 0.1089i, 28.2194 -25.5253i, -16.7754 +26.7834i, 1.2797e+03 -1.9632e+02i, 5.6546e+02 +1.4583e+02i, 6.7368e+02 -6.4518e+01i, -1.0422e+03 +7.0243e+02i, 5.1510e+02 -6.8161e+02i, -1.1576e+04 +9.9815e+02i, -8.6173e+03 -6.5709e+02i, -5.8579e+03 +1.7786e+02i,  1.4834e+04 -8.9848e+03i, -7.2260e+03 +8.4931e+03i,  5.7725e+04 -1.6098e+03i, 6.1271e+04 +2.1093e+03i, 3.0381e+04 +1.1418e+03i, -1.1167e+05 +6.4821e+04i, 5.6209e+04 -5.9278e+04i, -1.5194e+05 -5.1975e+03i, -2.3711e+05 -1.8474e+03i,  -8.7976e+04 -1.4443e+04i, 4.5408e+05 -2.5881e+05i, -2.4165e+05 +2.3195e+05i, 1.8482e+05 +2.2474e+04i, 4.7763e+05 -9.1215e+03i, 1.3200e+05 +5.0018e+04i, -9.4830e+05 +5.3597e+05i, 5.3878e+05 -4.7644e+05i, -6.4854e+04 -2.2706e+04i, -3.9248e+05 +1.9477e+04i, -7.9196e+04 -5.8301e+04i, 7.9804e+05 -4.4917e+05i, -4.8561e+05 +4.0015e+05i]
-------------------- End of text proposal  ------------------------------------
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