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1 Introduction

HeNB interference management is an important issue. A number of contributions have dealt with co-channel interference between HeNB and macro eNB [1]-[5], and between HeNBs [6]-[7]. Interference management schemes in [6] and [7] are based on colouring of a jamming graph, that is, they allocate orthogonal resources between neighbouring HeNBs. In this contribution, we discuss problems of the jamming graph based approaches, and propose a HeNB interference management scheme, which can be effective in handling interference between HeNB and macro eNB in addition to between HeNBs. The proposed scheme provides a unified tool applicable to various kinds of HeNB interference scenarios.
2 Problems for colouring of jamming graph

The problems of the interference management schemes based on colouring of jamming graph are described below;
Difficulty in jamming graph construction
Graph colouring requires construction of a jamming graph, i.e., local RF neighbour information. This neighbour list can be obtained by HeNB measurement and/or UE reporting. The interference management schemes based on colouring of jamming graph heavily relies on accurate local RF neighbour information. The jamming graph construction by HeNB measurement can lead to a hidden node problem. Althrough UE suffers from interference from a neighbouring HeNB, the serving HeNB may not detect this interfering HeNB, which causes performance degradation.
Frequent reallocation of orthogonal resources

In areas with a high density of HeNBs, there may be a lot of activation and deactivation of HeNBs, which brings about a change in jamming graph topology, and reallocation of orthogonal resources to ensure no collision of orthogonal resources between neighbouring HeNBs. Another source of a change in jamming graph topology is UE movement, when HeNB obtains neighbour information through UE reporting. The list of neighbouring HeNBs reported by UE varies with the UE location.
These sources of the change in jamming graph topology can cause very frequent reallocation of orthogonal resources, thus requires a high complexity of signalling and makes the network very unstable. The longer time we need to reallocate resource, the more the performance degrades.
Need for X2 interface between HeNBs

Some interference management schemes based on colouring of jamming graph require exchange of resource allocation information between HeNBs through X2 interface. In Rel-8 TS 36.300, it is concluded that X2 interface is not supported between HeNBs [8]. But, no decision has been made on whether or not the X2 interface shall be provided between HeNBs in Rel-9. 
3 Proposed intercell interference management for HeNBs
The proposed scheme predefines a number of orthogonal resource allocation patterns. Fig 3.1 shows an example of two orthogonal resource allocation patterns. These patterns show a profile of maximum Tx power for each PRB or group of PRBs. The orthogonal resource allocation patterns are mapped to physical layer cell IDs (PCIs). HeNB uses the orthogonal resource allocation pattern corresponding to its PCI. Assuming that PCI x corresponds to pattern A in Fig.3.1, HeNBs with PCI x can use a high Tx power for the first PRB (or PRB group), and a low Tx power for the second PRB (or PRB group) respectively. Note that all cells share the information of the predefined orthogonal resource allocation patterns and the mapping between the patterns and PCIs.
Intercell interference management is done as follows:
Macro UE Tx to HeNB Rx

If a UE connected to a macro eNB is close to a HeNB, the uplink of HeNB can be severely degraded due to high interference from the macro UE, especially when the macro UE is far from the macro eNB. The proposed scheme can help to mitigate the interference as follows. The macro UE detects the PCI and measures the RSRP of the neighbouring HeNB, and reports these to the macro eNB. Because of the sharing of the information of the predefined orthogonal resource allocation patterns and the mapping between these patterns and PCI, the macro eNB knows the orthogonal resource allocation patterns of the HeNB that the macro UE is close to. This makes it possible for the macro eNB to allocate uplink resource such that macro UE do not severely interfere the nearby HeNB on its uplink. For example, if a macro UE is close to HeNB that has pattern A in Fig 3.1 as the corresponding resource allocation pattern, the macro eNB does not allocate, for the macro UE, the first PRBs (or PRB groups) which can be used to serve an UE by the HeNB.

HeNB Tx to Macro UE Rx

If a UE connected to a macro eNB is close to a HeNB, the downlink of the macro UE can be severely degraded due to high interference from the HeNB. In this case, the macro eNB can allocate downlink resource such that the macro UE is not severely interfered by the nearby HeNB on its downlink. For example, if a macro UE is close to HeNB that has pattern A in Fig 3.1 as the corresponding resource allocation pattern, the macro eNB does not allocate, for the macro UE, the first PRBs (or PRB groups) which can be used with high Tx power by the HeNB.
The proposed method is similar to the scheme in [3], but the proposed scheme does not require signalling between HeNB and eNB.
Interference between HeNBs

With a similar way to the cases of the Macro UE Tx to HeNB Rx and HeNB Tx to Macro UE Rx, interference between HeNBs in both uplink and downlink can be handled. 
This scheme requires none of jamming graph construction, frequent reallocation of orthogonal resources, and X2 interface between HeNBs.
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Fig. 3.1 Example of two orthogonal resource allocation patterns
4 Resource allocation patterns based on mutually orthogonal Latin square matrix

In this section, we introduce a method for designing a number of orthogonal resource allocation patterns based on the mutually orthogonal Latin square matrix.
The followings are assumed;

· The number of PRBs (or groups of PRBs) is
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· G is a prime number p or the n-th power of the prime number b and thus may be represented by 
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using the prime number b and natural number n.
· 
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 is the maximum transmission power of PRB g (or PRB group g).

· The maximum transmission power of PRBs (or groups of PRBs) is either 
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 is an orthogonal resource allocation pattern.

· 
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 is a set of orthogonal resource allocation patterns.

· 
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 are G-1 mutually orthogonal G-dimensional Latin square matrices.
· 
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 is the k-th column of the g-th mutually orthogonal Latin square matrix,
Note that mutually orthogonal G-dimensional Latin square matrices have the following properties;

· The number of mutually orthogonal G-dimensional Latin square matrices is G-1.
· Values from '0' to 'G-1' may not be duplicated in each row and column of the G-dimensional Latin square matrix, 
· The number of cases where an identical number exists at an identical location of two vectors 
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The matrices in the below are mutually orthogonal Latin square matrices in the case of G = 5.
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Let us define 
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 vectors with a dimension of 
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 is generated from 
[image: image19.wmf]g

k

L

. 
[image: image20.wmf](

)

,

gk

q

v

, the q-th row of vector 
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, is defined by Equation (1) below.
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In this equation, 
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(j) is the j-th row of vector 
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The proposed scheme generates the resource allocation patterns using vectors, 
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In the case of F=1, the resource allocation pattern, 
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where 
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We assign a low transmission power 
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 is '1', and also assign a high transmission power 
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 is '0'. Fig. 4.1 illustrates resource allocation patterns 0, 3, 6, and 12 in the case of G=5 and F=1.
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Fig. 4.1 Example of orthogonal resource allocation patterns in a case of G=5 and F=1
In the case of F≠1, we set an arbitrary permutation 
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where 
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The resource allocation pattern 
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We assign a low transmission power 
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 to a q-th radio resource group when a value of a q-th row of some vectors among 
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 is '1', and also assign a high transmission power 
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 to the q-th radio resource group when a value of all of the F vectors is '0'. Fig. 4.2 shows an example of resource allocation patterns in a case of F≠1. The blue and red block means allocation of high and low transmission power respectively.
This proposed method generates 
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 resource allocation patterns, and the ratio of the number of PRBs with a high transmission power to the number of whole PRBs is F/G.
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Fig. 4.2 Example of orthogonal resource allocation patterns in a case of F≠1
For a pair of resource allocation patterns 
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 to be the number of PRBs (or groups of PRBs) that the two pattern 
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 assign high maximum Tx power simultaneously. It is desirable for resource allocation patterns to have the following properties;
· Each resource allocation pattern should have the same number of PRBs (or groups of PRBs) that have high maximum Tx power.

· 
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It is no wonder that the first constraint is necessary to provide fairness. The second property is also closely related to fairness. Assume the followings;

· UE A is connected HeNB X which use pattern 
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· UE B is connected HeNB Y which use pattern 
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, and is close to a neighbouring HeNB which use pattern 
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When considering interference between HeNB, the CDF of SINR of the resources that can be assigned to UE X should be worse than UE B. As a result, the second constraint is also important to provide fairness.
The proposed method based on mutually orthogonal Latin square generates very good resource allocation patterns from the view point of the two properties.
5 Simulation results
The simulation parameters mostly follow the evaluation methodology document in [9] with the following specific parameters listed in Table 5.1
Table 5.1 System simulation parameters
	Parameter
	HeNB

	Cellular Layout
	5x5 grid model

	Path loss model
	PL(dB) = 127+30log10(R/1000)

	Shadowing standard deviation
	10 dB

	Exterior wall penetration loss 
	10 dB

	Antenna pattern
	Omni-directional

	Maximum BS TX power
	20 dBm

	Carrier bandwidth
	10 MHz

	Number of active HUEs per HeNB
	1

	Traffic model
	Full buffer

	Overhead
	30% (including reference signal, and DL control channel)


We have evaluated two interference management schemes, i.e., Rel-8 with frequency reuse 1 and the proposed scheme. In this evaluation, 
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 is set to 0. The proposed scheme can have different level of interference orthogonalization. With the smaller ratio of F/G, we have the higher level of interference orthogonalization. Fig. 5.1 shows CDF curves of SIR and mean capacity of the schemes in the area of downlink interference between HeNBs. . With the smaller ratio of F/G, the system has the better SIR performance and the better fairness. 
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Fig. 5.1 CDFs of SINR and capacity

6 Conclusion
In this contribution, we have proposed a unified tool to manage various HeNB interference scenarios such as interference between HeNB and macro eNB, and between HeNBs. The proposed scheme is not jamming-graph based and does not have problems such as jamming graph construction, frequent reallocation of orthogonal resources, and X2 interface between HeNBs. In addition, the proposed scheme can effectively manage interference between HeNB and macro eNB without X2 signaling between HeNB and macro eNB.
We have also introduced a method to design a number of orthogonal resource allocation patterns based on the mutually orthogonal Latin square matrix. The proposed method based on mutually orthogonal Latin square generates very good resource allocation patterns from the view point of fairness
Finally the proposed algorithm is evaluated through simulations. From the simulation results we can conclude that the proposed scheme improves the cell edge performance and provides a better fairness.
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