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[bookmark: _Toc116995841][bookmark: _Ref163246756]Introduction
At RAN4#110, the study of AI/ML-based CSI feedback continued in terms for Rel-19 WI based on the outcomes of the Rel-18 SI. Several important agreements were achieved that are summarized in the WF [1] and are listed below:
· For CSI prediction throughput should be used as the metric for inference.
· The approaches to the design of test decoder in two-sided models (CSI compression) were limited to Option 3 (fully specified test decoder) and Option 4 (partially specified test decoder)
· A thorough discussion of the parameters that need to be aligned for the derivation of the test decoder in Option 3 took place.
However, there are still many open issues even based on the agreements above, as follows:
· How exactly to define throughput metric for the inference in CSI prediction use-case: “TBD whether we use relative or absolute throughput.”
· Additionally, a need for additional metrics for “Monitoring will be discussed separately.”
· Even though some parameters for test decoder in Option 3 were introduced, it is still necessary to discuss which parameters/configurations still might be added and which specific values should be used to derive the test decoder.
· The details of the test decoder derivation in Option 4 requires further clarification.
· Regarding generalization/scalability, it was agreed that RAN4 should discuss it and decide the requirements/tests for each AI feature in the case-by-case manner.
· LCM aspects/requirements for AI/ML-based CSI reporting
In the paper, we elaborate on the open issues listed above.


[bookmark: _Toc116995842]Discussion

Metrics/KPIs for AI/ML-based CSI feedback
TR 38.843 lists the following metrics considered for AI/ML-based CSI feedback:
	7.3.3
…

PMI reporting framework (follow PMI vs. random PMI test, use of γ as criteria, etc.) is taken as starting point for CSI related tests. Other metrics/framework is not precluded. 
For metrics for CSI requirements/tests, the following test metrics are identified:
-	Option 1: Throughput/relative throughput
-	Option 2: SGCS, NMSE
-	Option 3: CSI prediction accuracy
Option 1 should be used as baseline. For option 3, further discuss is needed on the feasibility to define the CSI prediction accuracy in WI. For metrics for CSI monitoring, further discussion is needed in WI.



Additionally, at the previous RAN4#110 meeting it was agreed to use throughput as the metric for inference in CSI prediction use-case:
	Before meeting: Issue 4-1: CSI Prediction Accuracy metrics
· Proposals
· Option 1: Prediction accuracy can be used as KPI/metric
· Option 2: Prediction accuracy cannot be used because the “correct” value is not available
· Option 3: Throughput should be the default metric, others should be discussed only if throughput is not feasible
· Option 4: Others
· Recommended WF
· Option 3
Agreements:
· Agree option 3 for inference only. TBD whether we use relative or absolute throughput.
· Monitoring will be discussed separately. 



As per TS 38.101-4, the performance requirements are expressed as relative throughput gain:
	[bookmark: _Toc107477076][bookmark: _Toc114565925][bookmark: _Toc123936233][bookmark: _Toc124377248]6.3	Reporting of Precoding Matrix Indicator (PMI)
[bookmark: _Hlk37069531]The minimum performance requirements of PMI reporting are defined based on the precoding gain, expressed as the relative increase in throughput when the transmitter is configured according to the UE reported PMI compared to the case when the transmitter is using random precoding, respectively. When the transmitter uses random precoding, for each PDSCH allocation a precoder is randomly generated with equal probability of each applicable i1 and i2 combination and applied to the PDSCH. A fixed transport format (FRC) is configured for all requirements.
The requirements for transmission scheme 1 with higher layer parameter codebookType set to 'typeI-SinglePanel' are specified in terms of the ratio:





In the definition of γ, for 4TX,  8TX, 16TX, and 32TX PMI requirements,  is 90 % of the maximum throughput obtained at  using the precoders configured according to the UE reports, and is the throughput measured at with random precoding.
The requirements for transmission scheme 1 with higher layer parameter codebookType set to 'typeII' or 'typeII-r16' are specified in terms of the ratio:






In the definition of γ, for 16TX PMI requirements, is 90 %  of the maximum throughput obtained at  using the precoders configured according to the UE reports, and is the throughput measured at with random precoding.




Further understanding of the test can be grasped from RAN5 TS 38.521-4, Section 6.3 “Reporting of Precoding Matrix Indicator (PMI)”. For example, test procedures include the following main steps (e.g., as in Clause 6.3.3.1.3 “4Rx FDD FR1 Multiple PMI with 16Tx Type I – SinglePanel Codebook for both SA and NSA”):
	1.	Set the parameters of bandwidth, the propagation condition, antenna configuration and measurement channel according to Table 6.3.3.1.3.3-1 as appropriate.


2.	The SS shall transmit PDSCH via PDCCH DCI format [1_1] for C_RNTI to transmit the DL RMC with precoding matrix according to PMI report from the UE. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission with an UL RMC for CP-OFDM QPSK with 5 RBs allocated according to A.2.2.6 of TS 38.521-1 [21] to carry the PUSCH CQI feedback via PDCCH DCI format [0_1] with aperiodic CSI request triggered. No transport block is sent in parallel to the CQI feedback. Establish and  according to Annex G.3.2.


3.	Set SNR to. The SS shall transmit PDSCH with randomly selected precoding matrix from codebook (Table 5.2.2.2.1-6 in TS 38.214 [12]) every slot regardless of PMI reports from the UE. Note that each precoding matrix shall be selected in equal probabilities. The SS sends downlink MAC padding bits on the DL RMC. SS schedules the UL transmission to carry the PUSCH CSI feedback via PDCCH DCI format [0_1] with aperiodic CSI request triggered. Measure according to Annex G.3.3.

4.	Calculate. If the ratio ³ g which is specified in table 6.3.3.1.3.5-1, then the test is pass. Otherwise, the test is fail. 



Note that the SNR values used in the test are not specified and shall be defined to achieve 90% of maximum throughput:
	G.3.2 Establishing SNR 

Adjust SNR such that the measured throughput is within 2% of target value (TBD% depending on test case). The approach, leading to target throughput and reference SNR is not specified.
The resulting SNR is the reference SNR to use when measuring throughput in the other factor (numerator or 
denominator) of γ.
To achieve statistical significance the final throughput measurement must be done with MNS samples, given table 
G.3.4-1.



Statistical significance of the final throughput measurement must be done with Minimum Number of Subframes (MNS) samples, specified in the appendix G.3.4 of TS 38.521-4.
As we can observe from the existing PMI reporting test cases, even when PMI is reported for the Enhanced TypeII codebook, for reference the SS shall transmit PDSCH with randomly selected precoding matrix from Type I Single-Panel Codebook (e.g. defined in the Table 5.2.2.2.1-6 in TS 38.214). The main reason is that it is easier to use Type I codebook to select the precoding matrices with random probabilities from the limited number of options. Whereas randomisation of Type II codebook is more complicated because it includes more indices and a linear combination of vectors. Hence, it is harder to guarantee that the resulting random precoding matrix makes sense. The same problem is expected with AI/ML-based compressed CSI feedback because randomization of the feedback (e.g. of eigenvectors) while keeping it realistic is not that straightforward like with Type I feedback.
Type I single-panel codebook is easier to randomize to establish the reference PDSCH throughput (in the denominator of relative throughput γ) in comparison with Type II codebook or AI/ML-based compressed feedback.
Hence, it seems to us reasonable to use the same approach as in the existing requirements, i.e., to use randomized Type I single-panel codebook in the definition of relative throughput:
Random precoding matrices from Type I single-panel codebook (mode 1 with appropriate number of layers) can be used by SS for evaluation of PDSCH throughput  in the denominator of relative throughput .
Regarding the definition of the numerator in the relative throughput , the approach will depend on the type of AI/ML-based CSI feedback:
· In the case of AI/ML-based feedback compression, the most typical feedback format is expected to be the eigenvectors of the channel matrix. Even though the actual precoding used by the gNB is up to implementation, for performance evaluation purpose, the eigenvectors reported by the UE (after decoding) can be used as the precoding matrix directly. Correspondingly, UE throughput 
· In the case of AI/ML-based CSI prediction, it is expected that the format of UE reporting stays without changed, e.g., Type II CSI feedback format will be still used even in the case when the CSI is predicted for a certain horizon in the future. In this case, the CSI predicted by the UE can be used directly to precode PDSCH like in legacy CSI feedback performance requirements.
For AI/ML-based compressed CSI feedback, decoded eigenvectors of the channel matrix reported by the UE can be used for PDSCH precoding at SS for the evaluation of throughput  in the numerator of relative throughput γ. Details can be further clarified when the feedback is fully specified in the other WGs.

We are expecting that in CSI prediction use-case legacy CSI reporting format will be used.
For AI/ML-based CSI prediction, CSI feedback predicted and reported by the UE in legacy format (e.g., Type II) can be used by SS for PDSCH precoding for the evaluation throughput  in the numerator of relative throughput γ, i.e., like in legacy requirements.
If we can assume that the same/comparable metric (i.e., relative to the PDSCH throughput with random precoding matrices from Type I single-panel codebook) is used both for AI/ML-based and legacy requirements, it becomes possible not only to derive new requirements but also to compare those to the legacy ones. That, of course, implies that the parameters of the tests are kept the same. It does not mean that all the tests should replicate existing ones, but introduction of comparable tests with the same metrics should be used to demonstrate the gains on AI/ML implementations, especially when the level of overhear is the same or higher than with the legacy solutions.
The use of the same/comparable metric (relative throughput γ) for AI/ML based and existing legacy requirements with the same parameters gives the way to compare the minimal level of performance.
RAN4 to ensure that relative throughput based on AI/ML CSI feedback with the same overhead is at least not worse than in legacy tests with the same parameters.

Testability of CSI Prediction Accuracy for performance monitoring
The agreement on the use of throughput as the metric that was achieved at the previous meeting is applied to inference, but the metric for monitoring is still open and depends on the RAN1 design of this procedure.
KPIs and evaluation metrics for CSI prediction at RAN1 from the TR 38.843, Clause 7.1.2 are noted as below:
	7.1.2	CSI feedback enhancement 

Performance monitoring: 
For CSI prediction using UE side model use case, at least the following aspects have been proposed by companies on performance monitoring for functionality-based LCM:
…
-	Type 2: 
-	UE reports predicted CSI and/or the corresponding ground-truth  
-	NW calculates the performance metrics. 
-	NW makes decision(s) of functionality fallback operation (fallback mechanism to legacy CSI reporting).



As seen from above, for NW side performance monitoring Type 2, for functionality-based LCM, predicted CSI and its corresponding ground truth is being sent to the network. The same mechanism can be used to test the CSI prediction accuracy, where instead of the network, the TE can calculate the performance metric.
[bookmark: _Toc158988443][bookmark: _Hlk159265336]For CSI prediction performance monitoring, RAN1 is discussing NW-side mechanism based on UE-reported ground truth. This approach can be applied to test the CSI prediction accuracy as a performance KPI in RAN4.
A possible way to test the CSI prediction accuracy is to compare the predicted CSI with the measured CSI. The latter one can be used as the ground truth.
In the following we are discussing 2 different approaches to derive accuracy metric in the CSI-prediction use-case:
1) CSI prediction and corresponding measurements (used as ground truth) are reported by UE and compared at TE
In the first approach, as illustrated in Figure 1, UE reports both the measured CSI (used as a ground truth) as well as the predicted CSI to the Test Equipment. The Test Equipment (TE) then calculate the performance accuracy metrics by comparing the predicted and measured CSIs.


[bookmark: _Ref141462658]Figure 1: Test Method for CSI Prediction Accuracy

2) Compare measured CSI and predicted CSI reported in different time intervals in the same channel conditions
In the second approach, the ground truth CSI can be reported separately (in different time intervals) and then later compared with the predicted CSI under similar/repeatable channel condition. 
For example, the test may consist of 2 phases. 
· Phase I (Collecting Measured CSI as ground truth) – In this phase the TE configures the DUT to use the legacy CSI feedback functionality. And configure the channel parameters in the channel emulator to simulate a given channel condition. 
· Phase II (Evaluation by comparing the predicted CSI with ground truth CSI) – In this phase the TE configures the DUT to use the AIML enabled CSI prediction functionality. The channel parameters for the test similar to the one configured in Phase I for which the ground truth is available. 
The output of the DUT is then compared with the ground truth from Phase I to calculate the performance metrics.
Using the above approach, we can gather the ground truth CSI feedback for a given channel condition as well as use that to compare against the predicted CSI feedback from the AI/ML enabled functionality. This approach re-uses the existing test interfaces, and the minimum change is required is the derivation of performance metrics at the TE.
RAN4 to consider CSI prediction accuracy metric based on measured CSI in testing of performance monitoring mechanism considering the RAN1 specification.

Alignment of test decoder parameters for Option 3
At the previous RAN4#110 meeting, the companies were actively discussing what assumptions and parameters need to be introduced to derive a single AI/ML-based test decoder for AI/ML compressed CSI feedback [1]:
	Category
	Parameter
	Description/Examples

	Model architecture parametersa
	Model type
	Transformer, CNN, RNN, MLP

	
	Model depth
	Number of layers

	
	Layer type
	Fully connected, convolutional, activation layer, etc.

	
	Layer size
	Neuron count and configuration

	
	Quantization method for the encoder output
	Scalar, vector (with codebook)

	
	Encoder-decoder interface
	Number of bits of latent message

	
	Fixed point representation
	Int8, int16, floating point etc

	
	Format of input to encoder/output of decoder
	

	Model Training related parameters
	Training procedure
	FFS (e.g Initialization method, training duration, training completion criteria, collaboration type, encoder assumption, etc)

	
	Loss function
	SGCS, NMSE, etc.

	
	Training datasets
	Channel model, number of Tx/Rx ports
Other parameters FFS (e.g. rank)

	
	Hyperparameters
	Learning rate, batch size, regularization techniques and strength, optimization algorithm, etc.

	
	Cross-validation details
	Dataset splits for training/testing/validation

	Generalization (may be applicable to all four options)
	Performance requirements on test dataset(s)
	Mean SGCS, etc.

	Scalability (may be applicable to all four options)
	Supported antenna port configurations
	(2,8,2), (2,4,2), etc.

	
	Supported feedback payloads
	Low, medium, high overhead (with specified number of bits)



If such fixed decoder can be derived, then it could be specified in RAN4. In this case, the parameters discussed below does not need to be specified, but could be just listed for information, e.g., in the TR 38.834. However, at the current stage, before the parameters and assumptions are aligned, it still hard to draw a derive the conclusion how close the models and performance provided by different companies will be.

Legacy requirements and parameters
The new AI/ML based CSI feedback is an alternative to the legacy CSI/PMI feedback based on algorithmic/close-form codebook presentation. MIMO operation does not change as such due to the introduction of new AI/ML feedback, except that the different precoding matrices can be used, e.g., based on decoded eigenvectors. Since the existing CSI reporting requirements are based on the precoder PDSCH throughput, we can expect that the same or at least very similar requirement configurations and parameters will be used for AI/ML CSI feedback. Therefore, they should be taken into account when agreeing about the typical parameters and training data for AI/ML CSI feedback.
Legacy CSI reporting requirements (Conducted, since FR1 is more relevant use-case due to the digital precoding and larger size of the feedback) are specified in Clause 6.3 of TS 38.101-4. The following groups of requirements are considered:
· Number of RX: 1RX (RedCap only), 2RX, 4RX
· Duplex: FDD, TDD
· Number of TX: 4TX, 8TX, 16 TX, 32TX
· Type of feedback: TypeI-SinglePanel Codebook, TypeII Codebook, TypeI-SinglePanel Codebook for Single-DCI based transmission scheme.
· Number of PMI: Single PMI, Multiple PMI (referred to Wideband/sub-band reporting)
Additionally, the following test parameters/configurations are specified:
· Propagation channel: e.g., TDLA30-5, etc.
· Antenna configuration: e.g., 32x2, (N1,N2)+(4,4) (based on number of TX and RX)
· ZP CSI-RS configuration
· NZP CSI-RS for CSI acquisition
· CSI-IM configuration
· Sub-band Size and csi-Reporting Band, e.g., 8RBs
· Codebook configuration, depending on the type of feedback.

In the current RAN4 requirements on CSI/PMI feedback (TS 38.101-4), the tests are separated based on the following parameters: duplexing (FDD/TDD), number of RX&TX (i.e., antenna configuration), type of CSI, and number of PMI.
RAN4 to use configurations based on one of the existing PMI reporting tests from TS 38.101-4 to evaluate the convergence of AI/ML based reporting performance provided by different companies, e.g., 6.3.3.2.4 Single PMI with 32TX TypeI-SinglePanel Codebook or 6.3.3.2.6 Multiple PMI with 16Tx Enhanced Type II Codebook.

Parameters for test decoder alignment in RAN4
As part of the process in crafting an Option-3 Test Decoder, we are outlining our preferred specifications for the design in Table 1 below. Our preference leans towards a Transformer architecture, given its widespread usage by RAN1 for assessing performance and analysing CSI enhancement aspects. Based on TR 38.843, this architecture has demonstrated superior performance compared to convolutional neural network (CNN) based models. An illustrative architecture is depicted in Figure 2, with further details available in [2].

[image: A diagram of a multi-head self-attention block

Description automatically generated]
Figure 2: An example of transformer Based Model Architecture for CSI Compression.

Table 1 below is based on the Option 3 table from RNA4#110 meeting and includes one additional column with exemplary/preferred by us parameter values.

	Category
	Parameter
	Description/Examples
	Nokia preferred parameter values

	Model architecture parameters
	Model type
	Transformer, CNN, RNN, MLP
	Transformer

	
	Model depth
	Number of layers
	Several multi-head attention layers (min: [3], max: [7])

	
	Layer type
	Fully connected, convolutional, activation layer, etc.
	Fully connected layers with activation function for each attention layer/block.
Note that output layer can be different.

	
	Layer size
	Neuron count and configuration
	Specify embedding and feedforward dimensions, number of attention heads per attention layer/block.

	
	Quantization method for the encoder output
	Scalar, vector (with codebook)
	Scalar quantization 

	
	Encoder-decoder interface
	Number of latent variables and formatting of bits.
	FFS, e.g.,
64 latent dimensions with two-bit quantization, i.e., 128 overhead bits.

	
	Fixed point representation
	Int8, int16, floating point etc
	FFS,
Decision to be made during/after model design, or may be left for implementation.

	
	Format of input to encoder/output of decoder
	Eigenvectors, channel matrix, Type II reporting.
	Eigen vectors,
Sub-band reporting (e.g., [13] sub-bands for 10 MHz CBW, 15kHz SCS.).

	Model Training related parameters
	Training procedure
	FFS (e.g Initialization method, training duration, training completion criteria, collaboration type, encoder assumption, etc)
	Collaboration type: Type-3 Network first training

	
	Loss function
	SGCS, NMSE, etc.
	SGCS

	
	Training datasets
	Channel model, number of Tx/Rx ports
Other parameters FFS (e.g. rank)
	Channel model for training: UMa
Note that in the performance test TDL or CDL (if available) model to be used.
Number of Tx/Rx ports:
4 RX,
16 or 32 TX,
Note that other options should not be precluded but better to agree on a single scenario as a starting point.
Rank: 1.
Channel estimates:
Channel eigenvectors derived from [ideal, non-ideal] channel estimates, magnitude normalized to unit length.
Dataset size:
Sufficient number of samples to achieve minimum performance and prevent underfitting are needed.

	
	Hyperparameters
	Learning rate, batch size, regularization techniques and strength, optimization algorithm, etc.
	FFS
since these details depend on selected architecture.

	
	Cross-validation details
	Dataset splits for training/testing 
	80%/20%,
where training data is also used for validation.

	Generalization (may be applicable to all four options)
	Parameters for Generalization Scenarios
	UE speed, SINR, Indoor/outdoor, LOS/NLOS, Propagation model, etc.
	FFS
depending on the training assumptions.

	
	Performance requirements on test dataset(s)
	Mean SGCS, throughput, etc.
	FFS, on how to compare performance in identified and other scenarios.

	Scalability (may be applicable to all four options)
	Scalability parameters
Supported antenna port configurations
	Supported antenna port configurations (e.g., (2,8,2), (2,4,2),
carrier frequency,
bandwidth, etc.
	FFS depending on the training assumptions.

	
	Supported feedback payloads
	Low, medium, high overhead (with specified number of bits)
	FFS depending on RAN-1 agreements.



[bookmark: _Ref163476983][bookmark: _Ref163248061]Table 1: Preferred Parameters Values for Test Decoder Option-3

RAN4 to consider the preferred values of parameters as described in the Table 1 above for the feasibility checking of Option -3 for AI/ML test decoder design. 

Parameters for Option 4
Based on our comprehension, Option-3 entails specifying complete/exact model in the standard. Consequently, if multiple test encoder vendors adhere to the Option-3 specifications when designing their respective test decoders, all resulting test decoders would demonstrate identical expected performance. Thus, there's no necessity for verification tests to ensure the similarity of the test decoders. Additionally, Option-3 does not allow for freedom of implementation. 

Option-4 provides both freedom of implementation and interoperability, as also captured in the TR 38.843:
	For option 4, the following aspects should be considered
· TE vendor should be able to develop the decoder based on the specifications
· Test repeatability should be ensured (variation among TE vendor implementations should be bound)
· Other vendors should also be able to develop such a decoder and which can deliver similar performance
· Interoperability should be ensured based on the parameters that need to be specified
· Parameters that need to be specified are FFS
· Candidate parameters/conditions that may be considered for defining test decoder include
· Training data set for TE decoder training
· Model structure (Activation function is included in the model structure)
· Performance parameters for the TE decoder (e.g. cosine similarity, loss function, etc)
· Maximum FLOPs allowed for the test decoder
· Maximum number/size of model parameters
· Compression ratio of decoder (output size/input size)
· Quantization level
· Other parameters are not precluded and to be further discussed. 
· Note: Feasibility of definition of parameters needs further investigated.



As the parameters used for the partial specification of the test decoder for Option-4 are down-selected from the parameters for Option-3, we expect that the parameters will retain the values used in Option-3 unless there is a clear justification for changing the value to achieve the partial specification goals of Option-4. We especially expect that parameters affecting interoperability will retain their values in order to be consistent with the agreement from the TR above. On the other hand, certain parameters could be relaxed in terms of the permissible values to provide greater flexibility in the test decoder design, while still maintaining interoperability. For example, the details of the model architecture (number and type of layers in the model) may be relaxed to allow different implementations.
Parameters used to specify Option-3 which affect interoperability of the test decoder are likely to affect interoperability if they are used to specify Option-4.
Parameters specified for Option-3 which affect interoperability, and which are also used to specify Option-4 should use the same values, unless there is clear justification for a change.

A training dataset that is partially specified would contain the essential samples needed to ensure that the encoder being tested demonstrates satisfactory performance in real-world scenarios. Test Equipment (TE) vendors have the flexibility to supplement the specified dataset according to their needs. However, the inclusion of partial datasets may result in conflicting scenarios. For instance, additions from different vendors could lead to situations where two distinct input patterns from training data additions map to the same output pattern, or a single input pattern may correspond to multiple output patterns. To address such ambiguity, some sort of identification or provisions such as flags or additional bits in the pattern are required. Furthermore, since a part of training data set is added by TE vendor hence performance verification tests are essential when implementing this option.
[bookmark: _Hlk161736779]A partially specified dataset is an appropriate choice for defining the training dataset for Test decoder Option-4.
Eliminating ambiguity in training data samples can be achieved by fully specifying the training dataset. With the implementation of this option, there is no need for performance verification tests. This approach is well-suited for Option-3 of the Test decoder.
A complete data set dataset is an appropriate choice for defining the training dataset for Test decoder Option-3.
One of the following approaches can be adopted for freezing a set of parameters for Option-4 from Option-3:
· [bookmark: _Hlk162460131]Option 1 (Model architecture-based):
· [bookmark: _Hlk162459567]Option-1a: Freeze a complete model architecture while leaving training data for implementation.
· [bookmark: _Hlk162460649]Option-1b: Freeze a backbone of model architecture while leaving complete training data and model architectural details for implementation.
· [bookmark: _Hlk162459858]Option 2 (Dataset based):
· Option-2a: Freeze complete training data while leaving model architecture for implementation.
· Option-2b: Freeze the important characteristics of training data, e.g., number of bits of latent message while leaving actual data samples and model architecture for implementation.
· Option 3: Freeze the important characteristics of training data, e.g., number of bits of latent message, and a backbone of model architecture while leaving actual data samples and architectural details for implementation.

Encoder and decoder for requirements
We would like to touch upon the issue of derivation not only of the test decoder but also of RAN4 performance requirements. Even if the test decoder is fixed like in Option 3, companies might have different encoder implementations. We might face a situation when the performance results from different might be rather different. Hence, it will be necessary to align to some extend the assumptions that are made by the companies on the underlining models that are used to derive the simulation results that are used to define the requirements, i.e., on the encoder parameters as well. Such assumptions might be formulated as requirements parameters or directly as the assumption/conditions on the AI/ML models.

Even when fixed decoder (like Option-3 of test decoder design) is used for the derivation of requirements a large difference in the performance results might be expected when this decoder is used with company-specific encoders.
RAN4 to discuss how to ensure alignment of CSI reporting performance and whether to introduce some additional assumptions on the AI/ML encoder-decoder pair parameters for the derivation of the requirements.

Generalization and Scalability
In the RAN4#110 meeting, the agreements for Generalization are noted as below.
	Issue 1-1: Generalization update 
Agreement:
· For AI/ML generalization [tests/requirements]
· RAN4 should discuss it and decide the requirements/tests for each AI feature in the case-by-case manner


In this section we discuss about the different aspects of testing the generalization and scalability of the AIML enabled functionality.
Tests and Parameters that should be considered for the definition of different generalization/scalability scenarios:
1. Generalization Scenarios
Generalization parameters like the overall scenario (LOS, NLOS, indoor, outdoor, etc.), SINR, UE speed, etc. are generally not known at the UE nor the gNB. And this must be configured at the TE.

	Parameters
	Description

	UE Speed
	Slow / Medium / Fast

	SINR
	Good / Bad Radio conditions

	Outdoor / Indoor
	Position of the UE

	LOS/NLOS
	

	Propagation Model
	UMa / Umi


Table 2: Parameters for Generalization Scenarios

2. Scalability Scenarios
Scalable parameters such as the number of antenna ports, bandwidth, or carrier frequency are typically known at the UE and the gNB side, e.g., by exchange of configuration messages. Therefore, one possible option is to select or configure the UE sided ML models to the given scalability parameters. In such a case, one would have to specify a set of ML models covering the predefined scalability parameter values. This option generates some extra overhead, for example, with respect to the memory size for the multiple ML models, but otherwise might ensure best possible performance per configuration.
Scalability parameters are generally known at the UE and the gNB and, typically, do not change during the active time of a UE in a certain cell.

	Parameters
	Description

	Number of Antenna ports
	(N1/N2/P) and/or antenna port numbers (e.g., 32 ports, 16 ports)

	Carrier Frequency
	FDD, TDD at sub-band level

	Bandwidth
	E.g., 10MHz, 20MHz


Table 3: Parameters for Scalability Scenarios

For the verification/testing of generalization related aspects in RAN4 for AI/ML enabled CSI feedback enhancement, RAN4 should define different scenarios based on parameters listed in Table 2 above.
For the verification/testing of scalability related aspects in RAN4 for AI/ML enabled CSI feedback enhancement, RAN4 should define different scenarios based on parameters listed in Table 3 above.

After the identification of different scenarios, RAN4 should further study the following aspects.
1. Minimum performance for identified scenarios.
Minimum performance for identified scenarios should be comparable to the minimum RAN4 performance requirements. The functionality should be able to achieve this as baseline performance.
2. Tolerance margin for other scenarios.
Tolerance margin is the margin by which the performance of the functionality is degraded with respect to the performance of the identified scenarios. The tolerance margin can be defined based on the simulation results and can be adapted for in field performance of the functionality.
As a next step RAN4 should study performance degradation in other scenarios based on simulations and define tolerance margins with respect to identified ones.

LCM for CSI-feedback
One of the factors that influence the performance of the AIML enabled functionality is the latency of the LCM actions. 
If performance monitoring detects a performance degradation to a point where a decision to either switch this model/functionality with another model/functionality is taken or a fallback decision is taken, it means that the AI/ML functionality is degrading the system performance and if this functionality, with detected performance degradation, keeps running then the impact on system performance may result in catastrophic consequences. 
Therefore, it is crucial to stop this model/functionality, either by falling back to legacy method or by switching to another model/functionality, within a specified time. For a use case like AIML enabled CSI feedback, it would be very urgent to stop/switch functionality because a wrong channel information would lead to wrong link adaptation and scheduling decisions impacting the throughput.  
[bookmark: _Hlk159265435]For UE-assisted or NW-based performance monitoring, if required LCM action is not taken in a timely manner, the performance of AI/ML-based CSI feedback may be degraded to undesirable levels.
[bookmark: _Toc158988450][bookmark: _Hlk159265451]Core requirements should be considered to limit latency of LCM actions (e.g. activation, deactivation, fallback, switching etc.) typical for the CSI feedback enhancement use case.


[bookmark: _Toc116995848]Conclusion
The paper we have discussed various open issues related to the AI/ML based CSI feedback, including the definition of test metrics, Options to design test decoder, definition of requirements, Generalization and Performance requirements.
The following Observations and Proposals were made:
On Metrics/KPIS for CSI feedback:
[bookmark: _Toc116995849]Observation 1: Type I single-panel codebook is easier to randomize to establish the reference PDSCH throughput (in the denominator of relative throughput γ) in comparison with Type II codebook or AI/ML-based compressed feedback.
Proposal 1: Random precoding matrices from Type I single-panel codebook (mode 1 with appropriate number of layers) can be used by SS for evaluation of PDSCH throughput t_rnd in the denominator of relative throughput γ.
Proposal 2: For AI/ML-based compressed CSI feedback, decoded eigenvectors of the channel matrix reported by the UE can be used for PDSCH precoding at SS for the evaluation of throughput t_ue in the numerator of relative throughput γ. Details can be further clarified when the feedback is fully specified in the other WGs.

Observation 2: We are expecting that in CSI prediction use-case legacy CSI reporting format will be used.
Proposal 3: For AI/ML-based CSI prediction, CSI feedback predicted and reported by the UE in legacy format (e.g., Type II) can be used by SS for PDSCH precoding for the evaluation throughput t_ue in the numerator of relative throughput γ, i.e., like in legacy requirements.
Observation 3: The use of the same/comparable metric (relative throughput γ) for AI/ML based and existing legacy requirements with the same parameters gives the way to compare the minimal level of performance.
Proposal 4: RAN4 to ensure that relative throughput based on AI/ML CSI feedback with the same overhead is at least not worse than in legacy tests with the same parameters.
Observation 4: For CSI prediction performance monitoring, RAN1 is discussing NW-side mechanism based on UE-reported ground truth. This approach can be applied to test the CSI prediction accuracy as a performance KPI in RAN4.
Proposal 5: RAN4 to consider CSI prediction accuracy metric based on measured CSI in testing of performance monitoring mechanism considering the RAN1 specification.

On alignment of test decoder parameters for Option 3
Observation 5: In the current RAN4 requirements on CSI/PMI feedback (TS 38.101-4), the tests are separated based on the following parameters: duplexing (FDD/TDD), number of RX&TX (i.e., antenna configuration), type of CSI, and number of PMI.
Proposal 6: RAN4 to use configurations based on one of the existing PMI reporting tests from TS 38.101-4 to evaluate the convergence of AI/ML based reporting performance provided by different companies, e.g., 6.3.3.2.4 Single PMI with 32TX TypeI-SinglePanel Codebook or 6.3.3.2.6 Multiple PMI with 16Tx Enhanced Type II Codebook.

	Category
	Parameter
	Description/Examples
	Nokia preferred parameter values

	Model architecture parameters
	Model type
	Transformer, CNN, RNN, MLP
	Transformer

	
	Model depth
	Number of layers
	Several multi-head attention layers (min: [3], max: [7])

	
	Layer type
	Fully connected, convolutional, activation layer, etc.
	Fully connected layers with activation function for each attention layer/block.
Note that output layer can be different.

	
	Layer size
	Neuron count and configuration
	Specify embedding and feedforward dimensions, number of attention heads per attention layer/block.

	
	Quantization method for the encoder output
	Scalar, vector (with codebook)
	Scalar quantization 

	
	Encoder-decoder interface
	Number of latent variables and formatting of bits.
	FFS, e.g.,
64 latent dimensions with two-bit quantization, i.e., 128 overhead bits.

	
	Fixed point representation
	Int8, int16, floating point etc
	FFS,
Decision to be made during/after model design, or may be left for implementation.

	
	Format of input to encoder/output of decoder
	Eigenvectors, channel matrix, Type II reporting.
	Eigen vectors,
Sub-band reporting (e.g., [13] sub-bands for 10 MHz CBW, 15kHz SCS.).

	Model Training related parameters
	Training procedure
	FFS (e.g Initialization method, training duration, training completion criteria, collaboration type, encoder assumption, etc)
	Collaboration type: Type-3 Network first training

	
	Loss function
	SGCS, NMSE, etc.
	SGCS

	
	Training datasets
	Channel model, number of Tx/Rx ports
Other parameters FFS (e.g. rank)
	Channel model for training: UMa
Note that in the performance test TDL or CDL (if available) model to be used.
Number of Tx/Rx ports:
4 RX,
16 or 32 TX,
Note that other options should not be precluded but better to agree on a single scenario as a starting point.
Rank: 1.
Channel estimates:
Channel eigenvectors derived from [ideal, non-ideal] channel estimates, magnitude normalized to unit length.
Dataset size:
Sufficient number of samples to achieve minimum performance and prevent underfitting are needed.

	
	Hyperparameters
	Learning rate, batch size, regularization techniques and strength, optimization algorithm, etc.
	FFS
since these details depend on selected architecture.

	
	Cross-validation details
	Dataset splits for training/testing 
	80%/20%,
where training data is also used for validation.

	Generalization (may be applicable to all four options)
	Parameters for Generalization Scenarios
	UE speed, SINR, Indoor/outdoor, LOS/NLOS, Propagation model, etc.
	FFS
depending on the training assumptions.

	
	Performance requirements on test dataset(s)
	Mean SGCS, throughput, etc.
	FFS, on how to compare performance in identified and other scenarios.

	Scalability (may be applicable to all four options)
	Scalability parameters
Supported antenna port configurations
	Supported antenna port configurations (e.g., (2,8,2), (2,4,2),
carrier frequency,
bandwidth, etc.
	FFS depending on the training assumptions.

	
	Supported feedback payloads
	Low, medium, high overhead (with specified number of bits)
	FFS depending on RAN-1 agreements.



Table 1: Preferred Parameters Values for Test Decoder Option-3
Proposal 7: RAN4 to consider the preferred values of parameters as described in the Table 1 above for the feasibility checking of Option -3 for AI/ML test decoder design.

On parameters for Option 4:
Observation 6: Parameters used to specify Option-3 which affect interoperability of the test decoder are likely to affect interoperability if they are used to specify Option-4.
Proposal 8: Parameters specified for Option-3 which affect interoperability, and which are also used to specify Option-4 should use the same values, unless there is clear justification for a change.
Proposal 9: A partially specified dataset is an appropriate choice for defining the training dataset for Test decoder Option-4.
Observation 7: Eliminating ambiguity in training data samples can be achieved by fully specifying the training dataset. With the implementation of this option, there is no need for performance verification tests. This approach is well-suited for Option-3 of the Test decoder.
Proposal 10: A complete data set dataset is an appropriate choice for defining the training dataset for Test decoder Option-3.
Proposal 11: One of the following approaches can be adopted for freezing a set of parameters for Option-4 from Option-3:
· Option 1 (Model architecture-based):
· Option-1a: Freeze a complete model architecture while leaving training data for implementation.
· Option-1b: Freeze a backbone of model architecture while leaving complete training data and model architectural details for implementation.
· Option 2 (Dataset based):
· Option-2a: Freeze complete training data while leaving model architecture for implementation.
· Option-2b: Freeze the important characteristics of training data, e.g., number of bits of latent message while leaving actual data samples and model architecture for implementation.
· Option 3: Freeze the important characteristics of training data, e.g., number of bits of latent message, and a backbone of model architecture while leaving actual data samples and architectural details for implementation.

On encoder and decoder for requirements:
Observation 8: Even when fixed decoder (like Option-3 of test decoder design) is used for the derivation of requirements a large difference in the performance results might be expected when this decoder is used with company-specific encoders.
Proposal 12: RAN4 to discuss how to ensure alignment of CSI reporting performance and whether to introduce some additional assumptions on the AI/ML encoder-decoder pair parameters for the derivation of the requirements.

On Generalization and Scalability:
Observation 9: Generalization parameters like the overall scenario (LOS, NLOS, indoor, outdoor, etc.), SINR, UE speed, etc. are generally not known at the UE nor the gNB. And this must be configured at the TE.
Observation 10: Scalability parameters are generally known at the UE and the gNB and, typically, do not change during the active time of a UE in a certain cell.
	Parameters
	Description

	UE Speed
	Slow / Medium / Fast

	SINR
	Good / Bad Radio conditions

	Outdoor / Indoor
	Position of the UE

	LOS/NLOS
	

	Propagation Model
	UMa / Umi


Table 2: Parameters for Generalization Scenarios
Proposal 13: For the verification/testing of generalization related aspects in RAN4 for AI/ML enabled CSI feedback enhancement, RAN4 should define different scenarios based on parameters listed in Table 2 above.

	Parameters
	Description

	Number of Antenna ports
	(N1/N2/P) and/or antenna port numbers (e.g., 32 ports, 16 ports)

	Carrier Frequency
	FDD, TDD at sub-band level

	Bandwidth
	E.g., 10MHz, 20MHz


Table 3: Parameters for Scalability Scenarios
Proposal 14: For the verification/testing of scalability related aspects in RAN4 for AI/ML enabled CSI feedback enhancement, RAN4 should define different scenarios based on parameters listed in Table 3 above.
Proposal 15: As a next step RAN4 should study performance degradation in other scenarios based on simulations and define tolerance margins with respect to identified ones.

On LCM for CSI-feedback:
Observation 11: For UE-assisted or NW-based performance monitoring, if required LCM action is not taken in a timely manner, the performance of AI/ML-based CSI feedback may be degraded to undesirable levels.
Proposal 16: Core requirements should be considered to limit latency of LCM actions (e.g. activation, deactivation, fallback, switching etc.) typical for the CSI feedback enhancement use case.
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