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1. Introduction
[bookmark: _Hlk130824939]Rel-19 Work Item (WI) was approved on the Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface (WID in [1]). The application of AI/ML techniques to NR air interface has been studied in FS_NR_AIML_Air.
This work item provides normative support for the general framework of AI/ML concerning air interfaces. It also enables the implementation of recommended use cases outlined in the previous study. Furthermore, several study objectives within this project aim to address outstanding issues identified during the study, with the goal of enhancing understanding in preparation for future normative effort.
The current agreements on how to perform the RAN4 study on general issues for AI/ML, and issues related to interoperability/testing have been captured in the latest TR [2]
In this contribution, we provide our viewpoints on General Aspects on AI/ML for NR Air Interface. 
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]2.1 Framework for Defining Requirements in Tests for AI/ML 
In previous meetings the various options for providing the test encoder/decoder for CSI compression and implementation at the TE side have been discussed [2]
Traditionally, for meeting legacy demodulation requirements under RAN4 work, a reference receiver, such as the MMSE or advanced receiver is first established. Introducing a reference encoder and decoder could play analogous roles in shaping the requirements for the UE side model. 
From RAN1 evaluation results there are many implementation factors that could influence the AI/ML model performance. Diverse company-specific assumptions and implementations regarding model structure and parameters often lead to significant performance variations. To ensure consistency across companies' results, incorporating a reference AI/ML decoder model becomes critical in defining performance benchmarks for the UE side encoder. Likewise for two sided models, for deriving gNB decoder performance, introducing a UE side reference encoder might be necessary. Absence of a reference model could hinder result alignment and requirement derivation. Establishing requirements for the UE encoder mandates defining both the reference encoder and decoder. Relying solely on one side's reference model might pose challenges in deriving requirements due to the complexity in aligning different company results.
To define the requirements for the DUT testing framework for a 2-sided model we will need to introduce the reference encoder/decoder which could be different than the test encoder/decoder. Specifying a reference model for a 1-sided model will also be needed. 
The same principles for defining a reference AI/ML model apply for the one-sided models for the BM and CSI prediction and AI/ML positioning uses cases.
From a UE processing capability limitation perspective, RAN4 will need to find a measure to access and evaluate complexity. There should be some limitations and complexity considerations when RAN4 decides on the requirements. 
As an example, from RAN1 performance evaluations for the single sided BM use case, the complexity of AI/ML models reported across the companies can vary drastically as it is shown in the figure below from TR: 

Fig 1: Complexity of AI/ML models from evaluation results 
in terms of FLOPs and number of parameters for BM cases
Accordingly, the performance variations across companies as outlined in Section 6.3.2.1.1 from the TR can vary from 60% accuracy to 90% accuracy where most of the performance variation could be attributed to model complexity and other differences in simulation assumptions (training procedures, training data, etc)  
Proposal 1: RAN4 should study the specification of reference AI/ML models, training procedure, and training data for defining performance requirements for 1 and 2-sided models while considering limitations on model complexity. 

For two sided models the options available for determining the test encoder can also serve in specifying the reference encoder. The purpose of defining requirements aims to align outcomes across different companies as closely as possible.

When defining specifications for the reference AI/ML models to determine the requirements, a question arises regarding the granularity and details of specifying the model architecture.

As an example of providing specifications for implementing a reference AI/ML decoder, In RAN4#110, discussions took place to specify the appropriate parameters for implementing the test decoder for option 3. A set of parameters needed in the process of designing the test decoder were given in the following table. Entries in green color are the agreed parameters. Moreover, since the performance of the AI model is dependent on the training data a standardized data set will be required to develop the reference AI/ML models for achieving similar performances. 

	Category
	Parameter
	Description/Examples

	Model architecture parametersa
	Model type
	Transformer, CNN, RNN, MLP

	
	Model depth
	Number of layers

	
	Layer type
	Fully connected, convolutional, activation layer, etc.

	
	Layer size
	Neuron count and configuration

	
	Quantization method for the encoder output
	Scalar, vector (with codebook)

	
	Encoder-decoder interface
	Number of bits of latent message

	
	Fixed point representation
	Int8, int16, floating point etc

	
	Format of input to encoder/output of decoder
	

	Model Training related parameters
	Training procedure
	FFS (e.g Initialization method, training duration, training completion criteria, collaboration type, encoder assumption, etc)

	
	Loss function
	SGCS, NMSE, etc.

	
	Training datasets
	Channel model, number of Tx/Rx ports
Other parameters FFS (e.g. rank)

	
	Hyperparameters
	Learning rate, batch size, regularization techniques and strength, optimization algorithm, etc.

	
	Cross-validation details
	Dataset splits for training/testing/validation

	Generalization (may be applicable to all four options)
	Performance requirements on test dataset(s)
	Mean SGCS, etc.

	Scalability (may be applicable to all four options)
	Supported antenna port configurations
	(2,8,2), (2,4,2), etc.

	
	Supported feedback payloads
	Low, medium, high overhead (with specified number of bits)



One question that arises is: What should be the granularity for defining the parameters to specify the reference AI/ML model for each use case? In addition to model parameters, other factors that could affect performance include the model output type and the associated types of training data. For example, significant performance variations across companies are reported for the BM use case in section 6.3.2.3 of the TR. These variations depend on the output type, such as labels (classifier network) or L1-RSRP (CNN or MLP). For training input types for BM we could also differentiate between wide beams (SSB based, wide Tx beams) vs narrow beams (CSI-RS based, narrow Tx beams) types of set B of beams. 
Similarly to the list of parameters specified for the two-sided model in CSI use case, RAN4 should investigate the set of parameters and granularity for the other use cases. (BM and positioning) 
For example, for the BM case we could start with the following parameters: 
· General Complexity 
· Number of parameters 
· Memory Size
· FLOPS 
· Training output type (labels vs L1-RSRP, Classifier vs MLP)
· Training Input type (narrow beams (CSI-RS) vs wide beams (SSB) Tx beams)

Proposal 2: RAN4 should investigate the granularity of providing model specification parameters, as well as training procedures and training data, to define the reference AI/ML model for all use cases, ensuring consistency and alignment in performance results.
2.2 RAN4 performance testing goals
As discussed in previous RAN4 meetings and captured in TR 38.843, the testing goals are described with the following options:
Requirements/tests for training will not be studied unless training procedures are defined. The design of test should ensure performance is guaranteed and avoid that a UE can pass the test but perform poorly in the field. 
For testing goals, Option 1 and/or Option 2 below will be selected depending on the test
-	Option 1: The testing goal is to verify whether a specific AI/ML model (if model identification is possible)/functionality can be conducted in a proper way.
-	FFS how to define the specific AI/ML model (e.g., a model captured in RAN4 spec as baseline) 
-	FFS how to define that the model is properly conducted (e.g., by defining AI/ML dedicated performance/core requirements associated with model outputs)
-	Option 2: The testing goal is to verify whether the minimum performance gain of AI/ML model (if model identification is possible) /functionality/feature can be achieved for a static scenario/configuration. 
-	FFS how to define a static scenario/configuration (e.g., by defining a related testing dataset based on channel models in TR 38.901)
-	FFS whether and how to define non-static specific scenarios/configurations
For the definition of AI/ML requirements, the following cases related to legacy performance should be considered 
-	For the cases with the existing legacy performance 
-	Take the legacy performance as baseline for existing use cases/procedures/functionalities /measurements that are to be enhanced by AI/ML based methods
-	Further study may be needed on what is baseline performance in conditions different to the requirement condition but within the expected range of operation.
-	New or enhanced performance requirements/tests could be considered for existing use cases/procedures/functionalities/measurements that are to be enhanced by AI/ML based methods
-	For the cases without the existing legacy performance
-	New performance requirements/tests could be considered for the use cases/procedures/functionalities/measurements that are carried out or are to be enhanced by AI/ML based methods
According to our understanding, Option 1 primarily focuses on testing the DUT's capability to load and execute AI/ML models. Trained AI/ML models can be defined in RAN4 spec and are provided to DUT to implement the tests. RAN4 specifies baseline AI/ML models and performance requirements by using the model in the specification for each test case. If the DUT can choose the test AI/ML model and meet the performance requirements for each case, it can be considered as "conducted in a proper way".
A "model as baseline" may not necessarily need to be explicitly stated in RAN4 specifications. Instead, it can be communicated as a RAN4 agreement for companies' information before providing performance results for alignment.
Observation 1: "Model as a baseline" can either be explicitly captured in RAN4 specifications or agreed upon for aligning performance results. 
Observation 2: For Option 1 and for verifying DUT’s AI/ML capability to load and execute the models, trained AI/ML models can be defined in RAN4 spec for different use case tests 
Given that the AI/ML models are specified and trained within the RAN4 specifications, RAN4 can establish performance requirements for various use cases using these AI/ML models as benchmarks (reference models). The DUT is deemed successful if it meets the specified performance requirements during testing.
Observation 3: For Option 1 and for ensuring the model is properly conducted, performance requirements can be established for RAN4-defined AI/ML models across various use cases. The DUT is considered to have successfully passed the tests if it meets the specified performance requirements.
However, the UE vendor will implement its own AI/ML model which will be different that the baseline reference model. We suggest focusing on option 2 testing goals to meet performance requirements for the actual devices used in deployment.
Proposal 3: Deprioritize Option 1 and focus on Option 2 for performance requirements as a testing goal 
Option 2 mainly focuses on verifying the performance gain of AI/ML models/functionalities. Moreover, the methods in handling of generalization test can be related to these functionalities/configurations:
	TR 38.843 Clause 7.3.2.6
The goals of generalization test are to verify whether the minimum level of performance of AI/ML functionality/model can be achieved/maintain under the identified scenarios and/or configurations, while the performance won’t be significantly degraded in other scenarios and/or configurations. The following aspects should be considered for generalization/scalability related testing:
· details about the scenarios and/or configurations for test and the corresponding AI/ML models/functionality
· what the minimum level performance for each identified scenario and/or configuration is
· what the significant degradation for other scenarios and/or configurations is
As for the handling of generalization tests, the following option is considered as baseline:
Signaling based LCM procedures and performance monitoring are considered in dedicated test cases and are excluded in tests verifying generalization. RAN4 may define multiple tests with different conditions. In each of the test, TE configures the same specified UE configuration, and therefore the same specified UE configuration is tested under different conditions to verify its generalizability. (environment differs in each test but not changing dynamically during the test)
-	Specified UE configuration includes functionality and/or model ID if defined


How to define the identified scenarios and/or configurations will depend on how to specify an AI/ML functionality/model by other WGs. There are two kinds of LCM procedures that have been studied according to the newly updated TR 38.843, one is the model-ID based LCM and another is the functionality-based LCM. 
For functionality-based LCM, according to TR 38.843, functionality refers to an AI/ML-enabled Feature/FG enabled by configuration(s), where configuration(s) is(are) supported based on conditions indicated by UE capability. Therefore, the identified scenarios and/or configurations can be initially interpreted as the scenarios and/or configurations that UE report by capability signaling. However, there is currently no definition provided for scenarios, except one sentence in the TR as follows: Scenario/configuration specific (incl. site-specific configuration/channel conditions) Models
Our views on the two FFS in Option 2 are as follows: 
For Option RAN4 can define multiple independent test cases with different scenarios and configurations. The scenarios and conditions can be related to UE capability signaling and may include the following contents: 
-	Propagation conditions, e.g., channel modes defined for different scenarios (CDL, AWGN, etc.) in TR38.901, Doppler conditions, SNR levels etc. 
-	Configurations, e.g., number of set A/B beams, input types (wide SSB vs narrow CSI-RS beams), output types (classifier vs L1-RSRP prediction network), performance metrics (for example Option 1 or Option 2 KPI metrics for BM use case), carrier frequency, etc  
Proposal 4: For verifying performance gain of AI/ML models/functionalities, RAN4 can define multiple independent test cases with different scenarios and configurations/conditions as reported through UE capability signaling, which could include: 
-  Propagation conditions, e.g., channel modes defined for different scenarios (CDL, AWGN, etc.) in TR38.901, Doppler conditions, SNR levels etc.
-  Configurations, e.g., number of set A/B beams, input types (wide SSB vs narrow CSI-RS beams), output types (classifier vs L1-RSRP prediction network), performance metrics (for example Option 1 or Option 2 KPI metrics for BM use case), carrier frequency, etc   
2.2.1 Static/non-static scenarios/conditions and propagation conditions for testing
Discussions surrounding the utilization of static and non-static scenarios or configurations in AI/ML use cases have taken place within the framework of testing goals during the SI phase. Although there is consensus on employing testing for a static scenario or configuration as a baseline approach, there remains some ambiguity due to the absence of an explicit definition for static or non-static scenarios or configurations. For instance, a channel experiencing multipath fading and Doppler effects exhibits time-varying channel realizations, rendering it technically a non-static channel. 
When considering whether and how to define non-static specific scenarios/configurations, it's crucial to recognize the frequent changes in wireless environments during real deployments. Therefore, it's important to identify the use cases where it would be beneficial to define test cases incorporating non-static scenarios/configurations to verify DUT performance as realistically as possible. This may involve considering gradually changing scenario-related parameters and configurations could be considered. 
Various aspects of what could constitute a non-static scenarios/configurations are listed below: 
· Varying Channel models parameters: Large scale parameters of the channel model type (Uma,Umi, Indoor) including delay spread, doppler spread, AoA and AoD spread, etc. 
· Varying SNR conditions: In legacy system, variation of SNR settings may be needed to meet specific test scenarios for CRI reporting and some RRM test cases. With respect to AI/ML features testing the use of non-static SNR may be potentially considered depending on the use case.
· Varying Tx configurations: Other parameters, such as Tx configurations, are typically assumed to be pre-defined and remain unchanged over the tests. 


The usage of static and non-static scenarios or configurations in AI/ML applications can differ based on the specific use case. Static scenarios provide a stable and controlled testing environment for deploying AI/ML models, ensuring dependable and consistent outcomes. However, certain AI/ML functionalities may necessitate the utilization of non-static scenarios and propagation conditions.

For instance, CSI and beam management temporal prediction features entail forecasting future states using historical measurements. Therefore, they may necessitate a more dynamic (non-static) environment that evolves over time to accurately simulate real-world conditions. Moreover, for BM use case spatial prediction we need to introduce enough randomness in terms of AoAs and AoDs to capture the spatial mapping from set B to set A. If the testing setup doesn’t support multiple probes for AoAs, a UE dynamic rotation will be needed. 

Therefore, in some cases, non-static propagation conditions, including varying channel models, SNR, and trajectory movement modeling that simulate the movement patterns of users, may be required.

In summary, while static scenarios are generally suitable for most AI/ML use cases, the CSI and beam management temporal prediction use cases may necessitate non-static scenarios and may warrant further investigation. We suggest considering non-static conditions only if static conditions cannot fulfill the test objectives.  
Examples of static versus non static channels are shown in Table 1. 
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Table 1. Examples of Static versus Non-static Conditions  

Proposal 5: If non-static scenarios/configurations are supported for certain use cases, they should be included as part of generalization tests. 
Proposal 6: Non-static scenarios/configurations should be considered for test cases only if static scenario/configuration testing fails to fulfill the testing objectives. CSI and beam management temporal prediction use cases are particularly suitable for introducing non-static environments during testing. Feasibility of supporting more complex non static scenarios should also be studied.

2.3 Generalization/scalability aspects
The performance of generalization is of importance for a successful AI/ML feature deployment and the necessity and feasibility of defining requirements or test to verify the generalization of AI/ML has been studied. The content below from the TR discusses achieving minimum performance under certain conditions while ensuring that performance is not significantly degraded under other conditions Accordingly for the generalization verification aspects, the following contents are agreed to be captured in TR 38.843 [1]: 
	The goals of generalization test are to verify whether the minimum level of performance of AI/ML functionality/model can be achieved/maintain under the identified scenarios and/or configurations, while the performance won’t be significantly degraded in other scenarios and/or configurations. The following aspects should be considered for generalization/scalability related testing:
· details about the scenarios and/or configurations for test and the corresponding AI/ML models/functionality
· what the minimum level performance for each identified scenario and/or configuration is
· what the significant degradation for other scenarios and/or configurations is
It should also be considered that generalization and/or scalability related requirements for different scenarios/ configurations can be implicitly handled in the test case definition.
As for the handling of generalization tests, the following option is considered as baseline:
Signaling based LCM procedures and performance monitoring are considered in dedicated test cases and are excluded in tests verifying generalization. RAN4 may define multiple tests with different conditions. In each of the test, TE configures the same specified UE configuration, and therefore the same specified UE configuration is tested under different conditions to verify its generalizability. (environment differs in each test but not changing dynamically during the test)
1. Specified UE configuration includes functionality and/or model ID if defined


 For achieving a better understanding it is beneficial to distinguish between three specific sets of scenarios/conditions:
1. All possible Deployment Scenarios/Conditions: These include the entirety of scenarios in which the AI functionality is intended for deployment. These conditions encapsulate the comprehensive real-world scenarios in which the AI system will operate, with the aim of meeting the specified RAN4 requirements within this context.  The requirements could in general be met with either AI/ML or legacy procedures. 
2. RAN4 Specified Test Conditions: These conditions encompass the specific scenarios for which RAN4 tests will be defined, ensuring that the requirements for these tests are met. These conditions should include the identified scenario as well as the other scenarios for generalization tests.
3. Non-Tested Conditions that are part of possible Deployment scenarios/conditions: This category includes additional conditions that are part of the possible deployment conditions but are not explicitly addressed during RAN4 testing. These additional conditions could be met with either AI/ML or legacy operation through LCM procedures
As an example of the diverse set of possible deployment scenarios/conditions that could influence the generalization of CSI compression as outlined in TR 38.843, we provide the list below:

1. Deployment Scenarios: Various deployment scenarios, which likely include different network architectures, environments, and usage patterns, are considered to understand how CSI compression performs across diverse deployment settings.
2. UE Distributions: The distribution patterns of UE across the network, including factors like density and mobility, are analyzed to gauge the impact on CSI compression under different load conditions/distributions.
3. Carrier Frequency: The frequency bands used for communication, including considerations such as sub-6 GHz or mmWave, are taken into consideration to assess how CSI compression behaves across different frequency ranges.
4. TxRU Mappings: The mappings of Transmission Resource Units (TxRU) within the network infrastructure are examined to understand how CSI compression adapts to different antenna port layouts.
Additionally, specific factors are considered for scalability evaluations related to CSI compression, including:
1. CSI Payload Sizes: The sizes of Channel State Information (CSI) payloads, are analyzed to determine how CSI compression scales with varying payload sizes.
2. Tx Port Numbers: The number of transmission ports utilized in the communication process is evaluated to understand the impact on scalability when different numbers of ports are employed.
These considerations provide valuable insights into the performance and scalability of CSI compression techniques in diverse network environments and usage scenarios.
For beam management, the performance is impacted by deployment scenarios, UE mobility, set A, set B patterns, set A/B association mapping, antenna spacings, carrier frequency etc. Similar situation for positioning.
The primary objective when defining the test scope is to ensure reasonable confidence in achieving performance in the other applicable non-tested conditions. One possible approach might be to incorporate the full range of deployment conditions as test scenarios. However, this approach is often impractical for the majority, if not all, use cases. The complexity of requirements, test definitions within the 3GPP framework, and the constraints of time and resources needed for testing make such a broad approach infeasible.
The challenge AI faces lies in the current lack of understanding regarding how model performance may vary across different conditions. Setting requirements and defining a test scope necessitates an examination of performance variations across diverse conditions and scenarios.
Proposal 7: To determine the granularity of additional scenarios/conditions for defining generalization tests for each use case, it's essential to study how the AI model's behavior changes with different scenarios and conditions. 
Proposal 8: To improve the generalization behavior of the model, training with a diverse dataset should be investigated. 

For example, considering a TXRU antenna implementation variation involving the antenna element spacing and layout specifics (like 4x8 or 8x4), we could outline several generalization tests as follows:

Test 1:   Port layout 4 x 8, antenna spacing = 0.6 
2. Port layout 4 x 8, antenna spacing =0.8 
3. Port layout 4 x 8, antenna spacing =0.9 
4. Port layout 8 x 4, antenna spacing =0.7 
5. Etc

We could significantly reduce the number of generalization tests by training with a mixed dataset containing samples from different configurations, such as configuration 1 and configuration 2,etc Subsequently, we can conduct a single generalization test where the testing data consist of a random mixture of these configurations. If the performance degradation between the model trained on the mixed dataset and tested with random mixture configurations and the model trained and tested specifically for each configuration meets a predefined performance margin criterion, the test could pass.
Proposal 9: Investigate the reduction of generalization tests by training with a mixed dataset containing samples from different configurations. Investigate the definition of a single generalization test where the testing data consist of a random mixture of these configurations. If the performance degradation between the model trained on the mixed dataset and tested with random mixture configurations and the model trained and tested specifically for each configuration meets a predefined performance margin criterion, the test could pass.

Ensuring performance across all other possible but non-tested deployment scenarios/conditions could prove infeasible given reasonable test complexity. In such cases, we propose that the post-deployment procedures described in Section 2.7 can be utilized.
Proposal 10: Consider utilizing post-deployment procedures to augment conformance testing for effectively managing performance across all possible deployment conditions/scenarios (which are not tested)
How to define the identified scenarios and/or configurations will depend on how to specify an AI/ML functionality/model by other WGs. We notice that there are two kinds of LCM procedures that have been studied according to the newly updated TR 38.843, one is the model-ID based LCM and another is the functionality-based LCM.
For the discussion on “details about the scenarios and/or configurations for test and the corresponding AI/ML models/functionality”, it is closely related to the RAN1 agreement for AI/ML functionality and AI/ML model, which are proposed for AI/ML functionality/model identification respectively, as provided in the following content from agreed RAN1 part of TR 38.843: 
	<RAN1 Agreement, captured from TR38.843 v1.3.0>
For AI/ML functionality identification and functionality-based LCM of UE-side models and/or UE-part of two-sided models, functionality refers to an AI/ML-enabled Feature/FG enabled by configuration(s), where configuration(s) is(are) supported based on conditions indicated by UE capability. Correspondingly, functionality-based LCM operates based on, at least, one configuration of AI/ML-enabled Feature/FG or specific configurations of an AI/ML-enabled Feature/FG. 
...
For AI/ML model identification and model-ID-based LCM of UE-side models and/or UE-part of two-sided models, model-ID-based LCM operates based on identified models, where a model may be associated with specific configurations/conditions associated with UE capability of an AI/ML-enabled Feature/FG and additional conditions (e.g., scenarios, sites, and datasets) as determined/identified between UE-side and NW-side.



Based on the paragraph from TR, it can be seen that a UE will report its supported configurations as part of capability signaling for a certain model or functionality. The other scenarios and/or configurations for generalization can be decided based on the supported configuration reported by UE.

Observation 4: The identified scenarios and configurations can be initially understood as those reported by UE through capability signaling as part of functionality identification.
Observation 5: Different scenarios that will be part of generalization test could act as the additional conditions for the AI/ML model training but do not constitute a part of UE capability for the AI/ML-enabled feature/FG
Observation 6: Configurations utilized for generalization test should be associated with UE capability of an AI/ML-enabled Feature/FG (set the configuration and vary the conditions under the configuration)
Proposal 11: For UE-side models and/or UE-part of two-sided models it is suggested that the scenarios and configurations utilized for generalization tests can be determined based on the supported configuration reported by the UE as part of capability signaling.
The following paragraph from the TR defines the term of additional conditions: 
For an AI/ML-enabled feature/FG, additional conditions refer to any aspects that are assumed for the training of the model but are not a part of UE capability for the AI/ML-enabled feature/FG. It does not imply that additional conditions are necessarily specified. Additional conditions can be divided into two categories: NW-side additional conditions and UE-side additional conditions.
 Note: whether specification impact is needed is a separate discussion. 

The concept of additional conditions was introduced during the latter stages of the study item when the necessity for these conditions became apparent due to the presence of AI/ML training variables that may lack standardization. For example, in AI/ML-based beam management use cases, elements of network topology such as cell layout or antenna configuration, or internal variables of user equipment (UE) such as UE speed, can influence the selection of the AI/ML model to be utilized during AI/ML operations.
We provide an example to illustrate our understanding on additional conditions: Assuming a scenario where a NW employs a configuration with a set B of beams and each beam has a beamwidth Tx of 30 degrees. Thus, ideally a model would be trained with training data from those set of beams with the exact beam shapes (Additional conditions). This additional condition is not part of UE capability. However, it is possible that UE had a model ID stored in its device that is identified with these exact additional conditions. (through model transfer, or based on a training ID associated with the additional conditions).   
A model associated with configurations based on conditions associated with UE capability and additional conditions is shown in Fig 4
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Fig. 4: Model associated with configurations based on conditions associated with UE capability and additional conditions  

Our view on "details about the scenarios and/or configurations for testing and the corresponding AI/ML models/functionality" is shown in Fig 5 for the use case of beam prediction for example. For the AI/ML functionality the UE capability report involves grouping of AI/ML models into buckets corresponding to non-overlapping sets of supporting conditions/configurations (conditions associated with Model A, Model B, etc). These conditions are associated with the UE capability. For each of these models there are sub-models that can be associated with additional conditions. 
There are two types of additional conditions. The first type is the additional conditions that can be specified (and they can be signaled as assistance information to the UE to select the proper model). These NW side additional conditions should be aligned between training and inference for the UE sided model as well as during test procedures. According to this assistance information, UE can select the most suitable model to improve performance and pass the test. 

For defining generalization tests, their configurations shall be associated with the UE capability of an AI/ML-enabled Feature FG. For example, we could define a generalization test associated with model B with a particular functionality (conditions/configurations) as part of UEs capability as it is shown in Fig 5. Model B is associated with some specific conditions/configurations, and under those conditions there are sub-models associated with some additional conditions as part of model identification. The various additional conditions can serve the purpose of defining generalization tests. Some of the additional conditions can be shared as assistance information, while other additional conditions that can’t be shared due to proprietary concerns or they can’t be standardized.  
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Fig. 5: Scenarios and/or configurations for testing and the corresponding AI/ML models/functionality  

From RAN 4 perspective and concerning the testing implications, we must ensure the consistency between training and inference in the testing procedures. The following paragraph in TR describes the issue:
TS 38.843 UE capabilities for the functionality definition and additional conditions.
	For an AI/ML-enabled feature/FG, additional conditions refer to any aspects that are assumed for the training of the model but are not a part of UE capability for the AI/ML-enabled feature/FG. Additional conditions can be divided into two categories: NW-side additional conditions and UE-side additional conditions. Note: whether specification impact is needed is a separate discussion. 
For inference for UE-side models, to ensure consistency between training and inference regarding NW-side additional conditions (if identified), the following options can be taken as potential approaches (when feasible and necessary): 
· Model-identification to achieve alignment on the NW-side additional condition between NW-side and UE-side
· Model training at NW and transfer to UE, where the model has been trained under the additional condition
· Information and/or indication on NW-side additional conditions is provided to UE 
· Consistency assisted by monitoring (by UE and/or NW, the performance of UE-side candidate models/functionalities to select a model/functionality)
· Other approaches are not precluded
· Note: The possibility that different approaches can achieve the same function is not denied




For example, in the BM use case, the association of Set B beams and Set A beams throughout training and inference should be guaranteed in the RAN4 core requirements. This consistency serves as additional assistance information for inference at the UE from the network side. For example, in BM use case, simulation results have confirmed that the consistency / association of Set B beams and Set A beams across training and inference is “beneficial” from performance perspective from as it is captured in the TR: 
	For BM-Case1 and BM-Case2 with a UE-side AI/ML model, consistency / association of Set B beams and Set A beams across training and inference is beneficial from performance perspective.
Note: Whether specification impact is needed is a separate discussion.


Proposal 12: In the RAN4 core requirement, it is mandated that the consistency or association between of additional conditions during both training and inference is guaranteed. This serves as additional assistance information from the network side for testing UE-sided models during inference and monitoring
TR does not address whether or how to define UE supported site-specific configuration or channel conditions in UE capability. Although it's possible that future releases may specify reporting of UE supported site-specific configuration/channel conditions via UE capability signaling, handling a scenario where a wide range of diverse UE capabilities are involved in defining requirements could be a challenge for RAN4.
The granularity of the scenario and configuration is also not clear. For example, as it shown in Fig 5, UE-1 may report that it supports models A,B,C with different condition/configurations. Each of the models A,B,C can be associated with additional conditions for generalization tests. For examples, these models can be identified as A{1,3,4}, B{2,4,6}, C{3,7} with the additional conditions inside the brackets. While UE-2 may report that it supports models D,F with the corresponding additional conditions D{3,5,7}, F{6}. Therefore, we suggest discussing how to specify the identified scenarios and/or configurations per use case, if other WGs can specify the granularity and the capability signaling.
Observation 7: The existence of a wide range of diverse UE capabilities poses a challenge for RAN4 in identifying a typical configuration or scenario for specifying test cases.
Proposal 13: RAN4 will explore methods to specify the identified scenarios and/or configurations per use case in future release, contingent upon other WGs can specify the granularity and the capability signaling.

Proposal 14: For defining generalization tests, RAN4 should define identified scenarios associated with the UE capability report of an AI/ML-enabled Feature FG. RAN4 should also define minimum level of performance for the identified scenarios and/or conditions.  
Proposal 15: Other scenarios and/or configurations can be interpreted as the scenarios and/or configurations that are not reported by UE capability signaling for an AI/ML-specific functionality or the set of additional conditions.

2.3.1 Scenario/configuration specific Models (Fine-tuning)

Scenario/configuration specific (including site-specific configuration/channel conditions) models may provide performance benefits in some studied use cases (i.e., when a single model cannot generalize well to multiple scenarios/configurations/sites).
-	At least, when UE has limitation to store all related models, model delivery/transfer, if feasible, to UE may be beneficial, at the cost of overhead/latency associated with model delivery/transfer.
-	Note: On-device Finetuning/retraining, if feasible, of a single model may be an alternative to model delivery/transfer.
-	Note: a single model may generalize well in some studied use cases. 
-	Note: Model transfer/delivery to UE may also face challenges, e.g., proprietary issues /burdens in some scenarios
Various approaches for achieving good performance across different scenarios/configurations/sites are studied, including
-	Model generalization, i.e., using one model that is generalizable to different scenarios/configurations/sites
-	Model switching, i.e., switching among a group of models where each model is for a particular scenario/configuration/site
-	Models in a group of models may have varying model structures, share a common model structure, or partially share a common sub-structure. Models in a group of models may have different input/output format and/or different pre-/post-processing.
-	Model update, i.e., using one model whose parameters are flexibly updated as the scenario/configuration/site that the device experiences changes over time. Fine-tuning is one example.

Observation 8: On device fine-tuning based on retraining could be beneficial to model delivery/transfer to reduce overhead/latency

If a UE has a model that partially meets the conditions/additional conditions as signalled by the NW, it can initiate a data collection procedure for training and on device fine-tuning. During fine-tuning it can perform performance monitoring and the model can be deployed after fine-tuning and performance monitoring completion. Subsequently, the UE can update its lists of models with the updated and finetuned model. After fine-tuning UE can update its stored AI/ML models with the new model ID, where this ID can be associated with the training data (which implicitly have the additional conditions) used to fine tune the model.  

Proposal 16: RAN4 to discuss the practicality of formulating a framework that facilitates on-device fine-tuning. The focus will be on exploring the feasibility of creating a dynamic and site-specific approach to online training and fine-tuning (e.g reinforcement learning) 

Proposal 17: After fine-tuning UE can update its stored AI/ML models with the new model ID, where this ID can be associated with the training data (which implicitly have the additional conditions) used to fine tune the model. 

Observation 9: Having a separate AI/ML model for each unique scenario, configuration, and additional condition could significantly increase the complexity and storage requirements of the User Equipment (UE). Additionally, it may introduce overhead in terms of model delivery, transfers, and associated latency

Regarding this sentence from TR “Model generalization, i.e., using one model that is generalizable to different scenarios/configurations/sites ” we would like to introduce the concept of AI/ML super model:

Employing a smaller set of "super models" with enhanced generalization capabilities would be more advantageous. This approach would allow these models to handle a wider range of additional conditions. To enhance the generalization aspects of an AI/ML model, the following options could be considered:
· Train the AI/ML model with a diverse dataset that covers multiple Scenario/configurations 
· Increase the number of AI/ML input signals with assistance/side information which will become integral part of its inference engine. The assistance/side information could indicate some information on the radio conditions (high/low SNR, LOS/NLOS conditions, delay spread, etc) or on the specific configuration (the physical angles of set B in BM, the configuration of the grid of beams in terms of wide/narrow beams, information of antenna spacing, antenna layout etc)

Currently, the support of additional conditions through assistance information only serves the purpose of selecting the appropriate AI/ML model. We propose introducing assistance information in the form of an auxiliary signal that participates in the inference propagation through the Neural Network. The concept of the AI/ML super model is shown in Fig 6. The AI/ML super model with assistance/side information could ideally alleviate the need of having multiple AI/ML models because it can self-generalize with the provision of side information as supplementary input signal. Of course, the generalization ability of the super model could not be assumed universal, so the objective would be to minimize the number of models required to address most of scenarios/configurations compared to the number of "simple" AI/ML models needed for that purpose.
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	Fig. 6: AI/ML Super Model with assistance/side signal information

The notion of a "super-model" can be likened to a collection of models, where each model within the group possesses a shared structure but varies in terms of input/output configurations or utilizes different pre/post-processing techniques.
Proposal 18: RAN4 should investigate the options for enhancing the generalizability of AI/ML models by providing the appropriate assistance/side information as input signal to the inference engine of the AI/ML model and discuss the feasibility of training with diverse datasets across different additional conditions
2.4 Principles on the definition of requirements
For the definition of AI/ML requirements, the following cases related to legacy performance should be considered 
-	For the cases with the existing legacy performance 
-	Take the legacy performance as baseline for existing use cases/procedures/functionalities /measurements that are to be enhanced by AI/ML based methods
[bookmark: _Hlk149569778]-	Further study may be needed on what is baseline performance in conditions different to the requirement condition but within the expected range of operation.
-	New or enhanced performance requirements/tests could be considered for existing use cases/procedures/functionalities/measurements that are to be enhanced by AI/ML based methods
-	For the cases without the existing legacy performance
-	New performance requirements/tests could be considered for the use cases/procedures/functionalities/measurements that are carried out or are to be enhanced by AI/ML based methods
For the legacy performance baseline we would need to clarify/agree that the side conditions of the testing procedures (e.g. range) should remain the same for legacy and AI/ML methods. 
Proposal 19: RAN4 should clarify/agree that the side conditions of the testing procedures should remain the same for legacy and AI/ML methods.
2.5 Requirements for LCM (Performance Monitoring)
As agreed in RAN4#107, RAN4 should study how/whether RAN4 core requirements could be defined for model monitoring in LCM. For the model monitoring (in which the performance of AI/ML model inference and/or the other environment conditions are under monitoring), it is similar to radio link monitoring (RLM, in which the downlink radio link quality on the RLM-RS resources). 
In the CSI compression sub-use case, model monitoring can occur at the UE side. This approach allows for more accessible perception of CSI and other conditions, aiding the purpose of model monitoring. Metrics derived from this monitoring may include model inference accuracy, system performance, data distribution, and more. Additionally, it's feasible to derive monitoring metrics using the pairing of Encoder/Decoder, albeit with potential added complexity for the UE. These various model monitoring schemes are listed as possible performance monitoring methods outlined in TR38.843
	 Performance monitoring
The following metrics/methods for AI/ML model monitoring in lifecycle management per use case are considered:
· Monitoring based on inference accuracy, including metrics related to intermediate KPIs
· Monitoring based on system performance, including metrics related to system performance KPIs
· Other monitoring solutions, at least the following 2 options.
· Monitoring based on data distribution
· Input-based: e.g., Monitoring the validity of the AI/ML input, e.g., out-of-distribution detection, drift detection of input data, or SNR, delay spread, etc.
· Output-based: e.g., drift detection of output data
· Monitoring based on applicable condition
Note: Model monitoring metric calculation may be done at NW or UE
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The inference output becomes part of the input for model monitoring. Using this data, the monitoring operation evaluates KPIs (e.g., SGCS) between the monitoring data and the inference output to assess the model's performance. This is shown in Fig 3 for CSI compression and BM sub-use cases. This evaluation will influence subsequent processes like model retraining or transfer/delivery requests.
The computations of the model monitoring metrics in UE will result in additional complexity. Therefore, the frequency of performing monitoring metric computations should be kept low. Therefore, RAN4 should investigate the requirements about the frequency of invoking the monitoring procedure per use case. Moreover, the inputs of the model monitoring consist of model monitoring input and inference output may not be available at the same time. For example, as shown in Fig 3 for BM sub use case, the inference output (RSRPs of the best beam (pairs) is available at time t1. The top K beams (pairs) will need to be signalled from UE to the NW. Following this, the network transmits these specified beams to the UE, where measurements are conducted, without the involvement of AI/ML techniques. The RSRP of those measurements will serve as the model monitoring inputs and become available at time t2. For model monitoring metric computations there should be an investigation on the latency requirements regarding the availability of model monitoring input data (setting a bound on the timing difference t2-t1)  
Model monitoring plays a pivotal role in ensuring the performance of AI/ML model inference. This is particularly crucial because the generalization aspect is commonly acknowledged as a significant challenge in AI/ML operations. Defining thresholds for abstracting system performance will be crucial for model monitoring to ensure consistent performance. If, for example, a threshold such as SGCS above 0.8 or a specific dB RSRP prediction accuracy (in BM) is indicative of better performance, introducing a tolerance margin to this criterion proves beneficial. This approach assists in the assessment of KPIs and aids in the accurate determination of model performance tailored to specific use cases. Moreover, the size of the measurement (number of samples) may need to be specified for obtaining a reliable monitoring result. 
Proposal 20: RAN4 shall define RAN4 core requirement for performance monitoring tests based on RAN1/2 defined monitoring metrics/methods for particular (sub-)use case 
Proposal 21: RAN4 shall consider the latency requirements for model monitoring input data as well as the establishment of tolerance margin requirements for the specified KPIs for performance monitoring per use case
In the scenario where the model monitoring functionality is located within the NW, the NW calculates monitoring metrics using RSRP values reported by numerous UEs. This setup can be considered as cell-level Beam Management (BM) model performance. The AI/ML model located at the NW may detect failures for a portion of UEs.
Proposal 22: FFS on how to perform cell level BM performance monitoring when the AI/ML model resides at NW
2.6 Post Deployment validation and Fine tuning 
The WF from RAN4# 110 captured the following issues regarding post deployment handling and on device training and fine tuning.
Issue 1-2: Post deployment handling
Agreement: 
· To ensure the AI performance after device deployment, discuss the following options further
· Option 1: Conduct the conformance testing for AI model/functionality before deployment
· FFS on the feasibility
· Option 2: Design the test to verify the performance monitoring 
· Depend on the other WG progress
· Monitoring can be used for managing fallback, model update/model switching/model transfer, if applicable
· Other options are not precluded
Issue 1-5: On device training/fine-tuning
Agreement: 
· Come back to this issue after the other WG finalizes the corresponding procedure.

In the late phase of Rel-18 study item, the post-deployment validation for model change/drift are proposed to be considered, and in corresponding contribution [R4-2319824], the following non-mutually exclusive options are proposed: 
Issue  Post deployment testing 
· Proposals
· Option 1: RAN4 should study a framework to enable post deployment tests for model updates and/or drift validation(and possible other use cases)
· Following options can be taken for reference in further discussion:
· Option 1- a: The changes/updates to the ML-enabled Functionality/Feature are tested and declared by the device vendor against RAN4 requirements before any deployment to the UE is performed.
· Option 1- b: After deployment to the UE and before changed/updated ML-enabled Functionality/Feature is activated in the UE, a post-deployment validation is performed, e.g., a sanity check test loop is run, e.g., using the functionality performance monitoring and LCM activation/deactivation/switching procedures,
· Option 1- c: At least one fallback/default Functionality/Feature that passed conformance testing must always be present in the device.
· Other options can also be discussed
· Option 2: RAN4 does not need to study such framework
· Option 3: others, please provide some proposals
· Recommended WF
Option 2
UE vendor shall be responsible to guarantee the changes/updates to the ML-based functionality/feature (just like any legacy feature), therefore it is normal practice that enough in-house validation has already been conducted before any deployment to the UE is performed. However, the number of scenarios/configurations, conditions and additional conditions that could be encountered in practice could impose a large burden for the number of tests to de defined and it could complicate the testing procedures. Additionally, the additional conditions required by a particular scenario couldn’t be supported by the UE, therefore solution (Option 1-a) wouldn’t work. 
Regarding Option 1-b: If LCM procedures indicate that the model performance has drifted, a question arises as to which model should be deployed next. If we rely on model monitoring, this will imply that a number of inactive models should be activated for monitoring procedures in order to select the next most appropriate model. This solution would impose a burden on signaling, management complexity, and overhead.
Observation 10: Options 1-a and 1-b for post deployment testing would impose a large burden for testing, signal overhead and complexity. 
Here is our proposal:
The UE capability report can be dynamic, in the sense than new models can be updated and added/transferred to the UE.  NW can associate the training data used to train this model along with the NW-additional conditions assumed for the training and assign a label ID to this model trained with this dataset. 
For post deployment validation, if the additional conditions change, the NW could signal the ID to the UE. If UE has the model supporting the additional conditions, then the UE switches to the identified model. It is up to the server of UE to verify the model trained with the dataset identified by the ID. 
Proposal 23: For post-deployment validation, if the model drifts due to misalignment of network-side additional conditions, the alignment could be achieved through an ID assigned by the network during training data collection. This ID indicates the association of the training data with the additional conditions implied to generate those data 
If the UE doesn’t have the ID but the NW has the model ID, then the NW can transfer the model to UE and UE update its list of models:   
Proposal 24: For post-deployment validation, if the UE lacks the ID but the network possesses the model ID, then the network can transfer the model to the UE, and the UE can update its list of models
If the UE has a model that partially supports the NW-sided additional conditions then the NW can trigger data collection for fine tuning of the UE-sided model:  
Proposal 25: For post-deployment validation, if the UE has a model that partially supports the network-sided additional conditions, then the network can trigger data collection for fine-tuning the UE-sided model. Subsequently UE updates its list of model IDs.
If there is no model at the network or UE, then the network configures the UE to fallback to legacy mode.
In case there is no ID available, then NW can configure a model monitoring procedure with UE-side measurements to check if the consistency of the additional conditions can be achieved. If performance criteria are met the consistency is achieved and the model has been verified. Otherwise, fallback to legacy mode is configured. 
Proposal 26: The UE updates its model list with a new model derived from either fine-tuning, model transfer from the NW, or monitoring to ensure the consistency of additional conditions. Then, the UE assigns an ID to the new model that supports the NW's additional conditions and shares this information with the NW. If some of the new conditions/configurations are standardized, the UE updates its capability report accordingly.
Proposal 27: If there is no ID available to associate training data with additional conditions, and monitoring procedure fails to guarantee the consistency of the model with the additional conditions then UE should fallback to legacy mode. 
2.7 Data collection for testing
It is necessary to assemble test data in order to perform testing procedures. The following methods were discussed during the SI and collected in the TR:

Different generating methods of test dataset can be used for different tests. The following candidate methods are to be considered:
· Dataset based on TR 38.901, e.g. UMa channel, UMi channel, CDL channel, “legacy approach”, etc.
· “Legacy approach” refers legacy test in which a channel model is used 
· Field dataset (data collected directly from field measurements)
· TE generates dataset for test based on assumptions/parameters defined by RAN4 (e.g. by defining some rules/function to generate data)
· Other methods are not precluded



Utilizing a "legacy approach" rooted in an existing channel model is indeed highly preferable from a practical standpoint. Constructing a dataset of field measurements is likely to entail a significant campaign and necessitate widespread cooperation to accomplish. Therefore, considering the use of a legacy approach as a baseline is reasonable.

It would be possible that for some use-cases, models trained using real field data but evaluated using synthetic channel models may exhibit poor performance and could unfairly fail tests. Similarly, if the field dataset is not sufficiently representative, "real" field data could also lead to similar issues. Therefore, it will be important to assess model performance for each specific use case and ascertain whether the use of synthetic channel models poses any risk of generating "false fails."

Proposal 28: RAN4 must conduct an analysis for each use case to determine the reliability of using synthetic channels for test data in evaluating models trained on real data.

From RAN4 #110 WF the following agreement was captured:
 
Issue 1-7: Test data handling 
Agreement: 
· For inference test, use synthetic channels as baseline, and check whether it can be used for the individual use case
3. Conclusion
In this contribution, we discussed the following observations and proposals for General Aspects on AI/ML for NR Air Interface:
Observation 1: "Model as a baseline" can either be explicitly captured in RAN4 specifications or agreed upon for aligning performance results. 
Observation 2: For Option 1 testting goal and for verifying DUT’s AI/ML capability to load and execute the models, trained AI/ML models can be defined in RAN4 spec for different use case tests
Observation 3: For Option 1 testing goal and for ensuring the model is properly conducted, performance requirements can be established for RAN4-defined AI/ML models across various use cases. The DUT is considered to have successfully passed the tests if it meets the specified performance requirements.

Observation 4: The identified scenarios and configurations can be initially understood as those reported by UE through capability signaling as part of functionality identification.
Observation 5: Different scenarios that will be part of generalization test could act as the additional conditions for the AI/ML model training but do not constitute a part of UE capability for the AI/ML-enabled feature/FG
Observation 6: Configurations utilized for generalization test should be associated with UE capability of an AI/ML-enabled Feature/FG (set configuration and vary the conditions under the configuration)
Observation 7: The existence of a wide range of diverse UE capabilities poses a challenge for RAN4 in identifying a typical configuration or scenario for specifying test cases.

Observation 8: On device fine-tuning retraining could be beneficial to model delivery/transfer to reduce overhead/latency

Observation 9: Having a different AI/ML model for each different Scenario/configuration and additional condition could increase the UE complexity and storage requirements as well as the overhead of delivery/transfers and the associated overhead/latency.

Observation 10: Options 1-a and 1-b for post deployment testing would impose a large burden for testing, signal overhead and complexity 
Proposal 1: RAN4 should study the specification of reference AI/ML models for defining performance requirements for 1 and 2-sided models 
Proposal 2: RAN4 should follow the same process of specifying parameters for designing the reference one-sided and two-sided AI/ML models as used in Option 3 for specifying the test decoder. Additionally, it should define a training dataset to ensure consistency and alignment in performance results. 
Proposal 3: Deprioritize Option 1 and focus on Option 2 for performance requirements as a testing goal 
Proposal 4: For verifying performance gain of AI/ML models/functionalities, RAN4 can define multiple independent test cases with different scenarios and configurations/conditions as reported through UE capability signaling, which could include: 
-  Propagation conditions, e.g., channel modes defined for different scenarios (CDL, AWGN, etc.) in TR38.901, Doppler conditions, SNR levels etc.
-  Configurations, e.g., number of set A/B beams, input types (wide SSB vs narrow CSI-RS beams), output types (classifier vs L1-RSRP prediction network), performance metrics (for example Option 1 or Option 2 KPI metrics for BM use case), carrier frequency, etc   
Proposal 5: If non-static scenarios/configurations are supported for certain use cases, they can be included as part of generalization tests.
Proposal 6: Non-static scenarios/configurations should be considered for test cases only if static scenario/configuration testing fails to fulfill the testing objectives. CSI and beam management temporal prediction use cases are particularly suitable for introducing non-static environments during testing
Proposal 7: To determine the granularity of additional scenarios/conditions for defining generalization tests for each use case, it's essential to study how the AI model's behavior changes with different scenarios and conditions. 
Proposal 8: To improve the generalization behavior of the model, training with a diverse dataset should be investigated. 

Proposal 9: Investigate the reduction of generalization tests by training with a mixed dataset containing samples from different configurations. Investigate the definition of a single generalization test where the testing data consist of a random mixture of these configurations. If the performance degradation between the model trained on the mixed dataset and tested with random mixture configurations and the model trained and tested specifically for each configuration meets a predefined performance margin criterion, the test could pass.

Proposal 10: Consider utilizing post-deployment procedures to augment conformance testing for effectively managing performance across all possible deployment conditions/scenarios (which are not tested)
Proposal 11: For UE-side models and/or UE-part of two-sided models it is suggested that the scenarios and configurations utilized for generalization tests can be determined based on the supported configuration reported by the UE as part of capability signaling.
Proposal 12:  In the RAN4 core requirement, it is mandated that the consistency or association between of additional conditions during both training and inference is guaranteed. This serves as additional assistance information from the network side for testing UE-sided models during inference and monitoring
Proposal 13: RAN4 will explore methods to specify the identified scenarios and/or configurations per use case in future release, contingent upon other WGs can specify the granularity and the capability signaling.

Proposal 14:  For defining generalization tests, RAN4 should define identified scenarios associated with the UE capability report of an AI/ML-enabled Feature FG, and other scenarios (additional conditions). RAN4 should also define minimum level of performance for the identified scenarios and/or conditions.  
Proposal 15: Other scenarios and/or configurations can be interpreted as the scenarios and/or configurations that are not reported by UE capability signaling for an AI/ML-specific functionality or model ID.

Proposal 16: RAN4 to discuss the practicality of formulating a framework that facilitates on-device fine-tuning. The focus will be on exploring the feasibility of creating a dynamic and site-specific approach to online training and fine-tuning (e.g reinforcement learning) 

Proposal 17: After fine-tuning UE can update its stored AI/ML models with the new model ID, where this ID can be associated with the training data (which implicitly have the additional conditions) used to fine tune the model. 

Proposal 18: RAN4 should investigate the options for enhancing the generalizability of AI/ML models by providing the appropriate assistance/side information as input signal to the inference engine of the AI/ML model and discuss the feasibility of training with diverse datasets across different additional conditions
Proposal 19: RAN4 should clarify/agree that the side conditions of the testing procedures should remain the same for legacy and AI/ML methods.
Proposal 20: RAN4 shall define RAN4 core requirement for performance monitoring tests based on RAN1/2 defined monitoring metrics/methods for particular (sub-)use case 
Proposal 21: RAN4 shall consider the latency requirements for model monitoring input data as well as the establishment of tolerance margin requirements for the specified KPIs for model monitoring per use case
Proposal 22: FFS on how to perform cell level BM performance monitoring when the AI/ML model resides at NW
Proposal 23: For post-deployment validation, if the model drifts due to misalignment of network-side additional conditions, the alignment could be achieved through an ID assigned by the network during training data collection. This ID indicates the association of the training data with the additional conditions implied to generate those training data. 
Proposal 24: For post-deployment validation, if the UE lacks the ID but the network possesses the model ID, then the network can transfer the model to the UE, and the UE can update its list of models.
Proposal 25: For post-deployment validation, if the UE has a model that partially supports the network-sided additional conditions, then the network can trigger data collection for fine-tuning the UE-sided model. Subsequently UE updates its list of model IDs.
Proposal 26: UE updates its capability report with a new model resulted from either: finetuning, model transfer from NW or monitoring to check the consistency of additional conditions. Subsequently UE assigns an ID to the new model that supports the NW additional conditions and shares this ID to NW. 
Proposal 27: If there is no ID available to associate training data with additional conditions, and monitoring procedure fails to guarantee the consistency of the model with the additional conditions then UE should fallback to legacy mode. 
Proposal 28: RAN4 must conduct an analysis for each use case to determine the reliability of using synthetic channels for test data in evaluating models trained on real data.
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