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1	Introduction
The RAN4 WI on AI/ML PHY begins at RAN4#110bis. Within the objectives of the WI are included objectives to further study the CSI use-cases to enable a decision to be made on whether to go ahead with a normative WI in September:

· Testability and interoperability [RAN4]: 
· Finalize the testing framework and procedure for one-sided models and further analyse the various testing options for two-sided models, in collaboration with RAN1, and including at least: 
· Relation to legacy requirements
· Performance monitoring and LCM aspects considering use-case specifics
· Generalization aspects 
· Static/non-static scenarios/conditions and propagation conditions for testing (e.g., CDL, field data, etc.)
· UE processing capability and limitations
· Post-deployment validation due to model change/drift
· RAN5 aspects related to testability and interoperability to be addressed on a request basis



Within the RAN4 part, our understanding is that the study necessitates assessing whether a testable and inter-operable solution for RAN4 requirements and RAN5 tests is feasible for the 2-sided CSI case.
During the Rel-18 SI and during RAN4#110, discussions took place on the interoperability aspects for the 2-sided CSI test case. At RAN4#110, it was decided to focus on options 3 and 4:

· Option 3: Full decoder specification in standard
· Option 4: Information specified in standard to facilitate deriving decoder.

This document considers the relation to RAN1 work, and also the discussion that has been started in RAN4 on how a standardized decoder would be considered.

[bookmark: _Ref178064866]2	Relation to RAN1 discussion

Interoperability for the 2-sided use case has been discussed in RAN1#116. The RAN1 agreement is summarized below.

Agreement
To alleviate / resolve the issues related to inter-vendor training collaboration of AI/ML-based CSI compression using two-sided model, study the following options:
· Option 1: Fully standardized reference model (structure + parameters)
· Option 2: Standardized dataset
· Option 3: Standardized reference model structure + Parameter exchange between NW-side and UE-side
· Option 4: Standardized data / dataset format + Dataset exchange between NW-side and UE-side
· Option 5: Standardized model format + Reference model exchange between NW-side and UE-side
Note 1: The above options may not be mutually exclusive and may be used together.
Note 2: Other options are not precluded.
Note 3: The study should consider how different methods of exchanging the parameters / dataset / reference model would affect the feasibility and collaboration complexity of options 3 / 4 / 5 respectively, e.g., over the air-interface, offline delivery, etc.
Note 4: “Dataset” refers to a set of data samples of CSI feedback and associated target CSI.



The discussion on RAN1 and in RAN4 has similarities. In our understanding, the term “reference model” refers to a model that is captured in the specifications for guidance purposes but is not mandatory to implement. The “reference model” can be used for training; for example a reference encoder could be used to train a decoder and vice-versa. If, for example an encoder has been trained against a reference decoder then it can be assumed that decoders that are similar to the reference decoder can operate with the encoder.
In RAN1 terms, consideration of a standardized reference decoder and/or encoder is within the context of training. In RAN4, the concept of the “test decoder” has been developed in the context of testing. The purpose of the “test decoder” is that it can be reproduced in test equipment and that the network vendor can assume that the CSI compression performance of any UE encoder can meet requirements if the decoder is similar to the test decoder. (Possibly a reference encoder may be needed for verifying the test decoder implementation in test equipment; see section 3).
Although the end goals of facilitating training whilst ensuring interoperability (RAN1) and facilitating testing whilst ensuring interoperability (RAN4) may differ, in principle the RAN1 reference decoder and RAN4 test decoder aim to ensure the same thing; that vendors can develop encoders/decoders whilst inter-operability is maintained and requirements can be met. Due to this similarity, either very close collaboration is needed between RAN1 and RAN4, or the discussion on the feasibility of standardized decoder/encoders should take place within one of the groups.
To facilitate discussion we propose that RAN4 discusses the feasibility of standardized decoder/encoders, regardless whether considered test or reference encoder/decoders, and RAN1 considers the interoperability implications of the other options.
[bookmark: _Toc163476027]The RAN1 “reference decoder” and RAN4 “test decoder” are very closely linked
RAN4 considers the feasibility of achieving standardization of test or reference encoder/decoders
RAN1 can continue to consider the other options and their implications to inter-operability.
In case the CSI compression moves to normative standardization, it is necessary to also consider whether a reference decoder/encoder is best captured in RAN1 specs, with an implication of the same decoder being used in RAN4 specs, or vice versa; a test decoder (and potential reference encoder) is captured in RAN4 specifications with an implication that it can be used in the training procedure. This decision can be left for later in any eventual WI.
[bookmark: _Toc163476028]Eventually there will be a need to decide whether to capture standardized encoder/decoders in RAN1 or RAN4 specifications.

Our understanding of the RAN1 options is as follows:
- The RAN1 option 1 is the same as RAN4 option 3 (standardized test / reference decoder) or the proposed RAN4 option 4 solution of option 4 (standardized reference encoder)
- The RAN1 option 2 has similarities with RAN4 option 4, however for the RAN4 option 4 (standardize sufficient information that all TE vendors can get the same decoder) may need more information than just the dataset.
- The RAN1 option 3 may be something like a variation of RAN4 option 4 in which there exist several parameter sets that can be used to derive several different decoders. In this case, the UE and network need to exchange information on which parameter set to assume. This degrades interoperability but does not break it as long as all reference parameter sets are available to both sides. The test equipment would need all parameter sets and the UE may need to be tested against all models.
- The RAN1 option 4 appears to suggest exchanging of datasets. Interoperability in this case would presumably be created because only one side has and sends the dataset and the other side develops a model based on it. However, it is not clear how RAN4 requirements could be guaranteed to be met.
- The RAN1 option 5 appears to suggest exchanging of models. Again, interoperability is presumably achieved by means of only one side developing models, but it is not clear than RAN4 requirements can be met after model transfer.
[bookmark: _Toc163476029]The RAN1 and RAN4 options have similarities but are not directly comparable.

[bookmark: _Ref189046994]3	Discussion on parameterization of model and simulations for option 3
During RAN4#110bis, RAN4 commenced discussion on model and simulation parameterization in the context of model 3. Our understanding of the goal of this exercise is that it is not, in the current phase, aimed at actually getting to a final decoder, but it is aimed at studying whether a means exists whereby RAN4 could undertake the process of getting to a standardized test decoder.
It is not currently straightforward to merge different AI models from different companies, in particular if the AI models would be based on differing assumptions (e.g. backbone, size etc.). Thus, the standardization process would in the end entail selecting one particular model. In order to select a model (or potentially some limited set of models), companies would need to agree that the model(s) would be acceptable in terms of size, complexity etc. and would be workable for meeting requirements in all applicable scenarios. To facilitate getting to an agreement, the following steps would be needed:
1. Discussion and agreement on sufficient key structural aspects of the eventual model(s) such that a standardized model could be derived based on the agreement. The standardized model(s) would be acceptable to companies in terms of their complexity, implementation etc. if the structure would be agreed.
2. Agreement on enough details of the training process and training data such that participating companies could train test models that would be expected to lead to reasonable performance.
3. Agreement of a set of test conditions for the model(s). This range of test conditions could potentially be greater in scope/number than the eventual set of RAN4 requirements, as they would be aimed at ensuring the model(s) would be sufficiently robust once standardized.
4. Companies would then train models based on the agreements in (1) and (2) and simulate their trained models in (3). RAN4 could then compare the results to determine whether the models would offer similar performance 
5. If there would be agreement on companies results being “similar” then a single company model would need to be selected (or potentially several models).

An important consideration is that as part of this process, companies will create both encoder and decoder models. Even if a decoder model is used for testing, it may be useful to capture an encoder within the specification in order to enable verification of the decoder.
[bookmark: _Toc163476034]For option 3, in addition to a standardized test decoder consider capturing a standardized reference encoder in the specifications.

Regardless of standardizing of a reference encoder or not, it will be necessary for each company contributing a decoder to develop an encoder model in order to develop a decoder model. In order to achieve comparability between companies, details of the parameters of the encoder model will need to be agreed in addition to the decoder model. An important discussion is whether the encoder is of the same type and size as the decoder or whether they differ.
[bookmark: _Toc163476030]To create a proposed test decoder, it is necessary to also consider the structure of an encoder.
[bookmark: _Toc163476035]RAN4 should discuss encoder model structure, and the extent to which the encoder structure might differ from the decoder.

In order to decide on the model structure, it is necessary to consider RAN1 evaluations and also consider whether the RAN4 standardized test decoder should target maximum performance or some complexity limit.
[bookmark: _Toc163476036]RAN4 should decide and agree on whether the target is purely performance or both performance and complexity. (Some checking with RAN1 may be needed).

In our understanding, if pre-processing of the Eigenvectors using a Rel-16 enhanced type 2 codebook is applied, then a low complexity ML model can be applied for the CSI compression. On the other hand, if Eigenvectors are directly quantized then a significantly larger and more complex transformer model is needed, although potentially somewhat larger performance can be obtained. In order to make a final decision on pre-processing, model backbone and model size, a RAN1 conclusion on the complexity and performance difference for the different structures is needed (or alternatively, an analysis of the complexity/performance trade-off is needed in RAN4).
[bookmark: _Toc163476031]Pre-processing using enhanced type 2 PMI can reduce the model complexity.

Another factor that influences the selection of model parameters is the size and quantization of the encoder output quantization, and in turn the number of bits used to capture the latent space. Probably a conclusion from the RAN1 evaluations is needed; for example considering scalar quantization RAN1 is currently considering 64, 110 and 230 bits as options.
Thus far, the evaluation/testing scenarios used for deciding on the test decoder have not been discussed. Of key importance is to consider the range of some key parameters, such as channel delay spread and Doppler.
[bookmark: _Toc163476037]Agreements on the scope of the testing (for example channel models, range of Doppler) are needed.

Concerning simulating and selecting models, during RAN4#110bis, the following table was captured as an initial outline:

	Category
	Parameter
	Description/Examples

	Model architecture parameters
	Model type
	Transformer, CNN, RNN, MLP

	
	Model depth
	Number of layers

	
	Layer type
	Fully connected, convolutional, activation layer, etc.

	
	Layer size
	Neuron count and configuration

	
	Quantization method for the encoder output
	Scalar, vector (with codebook)

	
	Encoder-decoder interface
	Number of bits of latent message

	
	Fixed point representation
	Int8, int16, floating point etc

	
	Format of input to encoder/output of decoder
	

	Model Training related parameters
	Training procedure
	FFS (e.g. Initialization method, training duration, training completion criteria, collaboration type, encoder assumption, etc.)

	
	Loss function
	SGCS, NMSE, etc.

	
	Training datasets
	Channel model, number of Tx/Rx ports
Other parameters FFS (e.g. rank)

	
	Hyperparameters
	Learning rate, batch size, regularization techniques and strength, optimization algorithm, etc.

	
	Cross-validation details
	Dataset splits for training/testing/validation

	Generalization (may be applicable to all four options)
	Performance requirements on test dataset(s)
	Mean SGCS, etc.

	Scalability (may be applicable to all four options)
	Supported antenna port configurations
	(2,8,2), (2,4,2), etc.

	
	Supported feedback payloads
	Low, medium, high overhead (with specified number of bits)




In the above discussion, it is noted that there are several fundamental general considerations to be decided in order to decide morel parameters, such as whether encoder and decoder are assumed similar, whether maximal performance only or also complexity is targeted, latent space size etc. Below, an incremental update to the table is provided adding some parameters relating to transformer backbone and some clarifications. We do not differentiate between encoder and decoder in this example, although as discussed above, RAN4 should discuss further whether parameters could differ.

	Category
	Parameter
	Description/Examples

	Model architecture parameters (convolutional)
	Model type
	Transformer or CNN depending on design target

	
	Convolutional Model depth
	e.g. 10 layers

	
	Convolutional: Quantization bits per latent variable
	e.g., 4

	
	Layer type
	Fully connected, convolutional, activation layer, etc.

	
	Layer size
	Neuron count and configuration

	Model architecture parameters (transformer)
	Transformer: Dropout rate
	0.02

	
	Transformer: Embedding dimension
	e.g., 256

	
	Transformer: Number of attenuation heads
	e.g., 16

	
	Transformer: Size of key, query and values
	e.g., 16

	
	Transformer: Number of encoder blocks
	e.g., 3

	
	Transformer: Latent variables in encoder
	e.g., 10

	
	Transformer: Quantization bits per latent variable
	4

	
	Quantization method for the encoder output
	Scalar

	Other parameters
	Encoder-decoder interface
	Consider 63, 110 or 230

	
	Fixed point representation
	Int8, int16, floating point etc.

	
	Format of input to encoder/output of decoder
	Consider pre-processing of Eigenvector using Enhanced Type 2 codebook

	Model Training related parameters
	Training procedure
	FFS (e.g., Initialization method, training duration, training completion criteria, collaboration type, encoder assumption, etc.)

	
	Convolutional: Feedback bits per transmission
	e.g., 10 x 4 = 40

	
	
	

	
	Transformer: Optimizer
	e.g., Adam

	
	Learning rate
	

	
	Loss function
	NMSE

	
	Batch size
	e.g., 256

	
	Training datasets
	Channel model, number of Tx/Rx ports
Other parameters FFS (e.g. rank)

	
	Hyperparameters
	Learning rate, batch size, regularization techniques and strength, optimization algorithm, etc.

	
	Cross-validation details
	Dataset splits for training/testing/validation

	Generalization (may be applicable to all four options)
	Performance requirements on test dataset(s)
	Mean SGCS, etc.

	Scalability (may be applicable to all four options)
	Supported antenna port configurations
	(2,8,2), (2,4,2), etc.

	
	Supported feedback payloads
	Low, medium, high overhead (with specified number of bits)





4	Proposal for option 4

The option 4 envisages standardizing a sufficient number of parameters such that any party can develop a test decoder based on the specification. In order to enable option 4, it is necessary to develop a quantization of the latent space and ensure that the resulting decoder produces consistent results and can pass the RAN4 requirements.
A very effective way to ensure this is to standardize a reference encoder and sufficient comprehensive test description and test data set. The reference encoder would be a guideline in a 3GPP specifications, not a mandatory implementation. With this approach:
· Any party would be able to develop a decoder that, when operated with the reference encoder would be able to pass the 3GPP requirement in the test conditions.
· Any UE vendor that would want to implement 2-sided CSI but not to develop their own encoder would be able to take the reference encoder.
· Any UE vendor that would prefer to develop their own encoder would be able to:
· (i) Create a test decoder based on the reference encoder and test set
· (ii) Develop their own encoder model, that when tested using the test decoder could be shown to pass in 3GPP test conditions

[bookmark: _Toc163476038]For option 4, standardize a reference encoder and a test data framework and test dataset/channel model.
Conclusion
In the previous sections we made the following observations: 
Observation 1	The RAN1 “reference decoder” and RAN4 “test decoder” are very closely linked
Observation 2	Eventually there will be a need to decide whether to capture standardized encoder/decoders in RAN1 or RAN4 specifications.
Observation 3	The RAN1 and RAN4 options have similarities but are not directly comparable.
Observation 4	To create a proposed test decoder, it is necessary to also consider the structure of an encoder.
Observation 5	Pre-processing using enhanced type 2 PMI can reduce the model complexity.


Based on the discussion in the previous sections we propose the following:
Proposal 1	The standardized decoder/encoder options for ensuring interoperability are discussed in one WG
Proposal 2	Align the proposals for standardized encoder/decoder (parameters) between RAN1 and RAN4.
Proposal 3	For option 3, in addition to a standardized test decoder consider capturing a standardized reference encoder in the specifications.
Proposal 4	RAN4 should discuss encoder model structure, and the extent to which the encoder structure might differ from the decoder.
Proposal 5	RAN4 should decide and agree on whether the target is purely performance or both performance and complexity. (Some checking with RAN1 may be needed).
Proposal 6	Agreements on the scope of the testing (for example channel models, range of Doppler) are needed.
Proposal 7	For option 4, standardize a reference encoder and a test data framework and test dataset/channel model.
 
[bookmark: _In-sequence_SDU_delivery]
Annex: More details on model assumptions

A.1: Pre-processing and ML model
A1.1 Input and Output to Encoder/Decoder
The input to the encoder is the unquantized  matrix per transmission layer. The matrix per transmission layer is computed by pre-processing the estimated channel with Rel-16 eType-II (with parComb 5 for low overhead models). Specifically, represents the complex coefficients to combine the spatial and frequency domain basis vectors (say denoted by  and , respectively) computed during pre-processing per transmission layer. This gives input to the encoder, which compresses and quantizes the  matrix per transmission layer. This compressed and quantized output of the encoder forms the input to the decoder, which tries to reconstruct  per transmission layer. The output of decoder is post-processed to get the implicit CSI at the network (similar to legacy eType-II processing). The entire processing chain is shown below, where AE is the encoder+decoder AI model, and  is the number of transmission layer (scheduled rank).
[image: ]
Note: The  pre-processing requires additional side information to be conveyed as UCI from the UE to gNB (e.g., the selected SD and FD basis vectors). This overhead, however, is relatively small (around 23 bits with parComb 5 used for eType-II pre-processing). The pre-preprocessing of the channel with 32 txports, 4 rxports and 52 funits is shown below for parComb 5 used for eType-II pre-processing. This results in  of size  per transmission layer. 
[image: ]
A1.2 Possible ML Model
The architecture of the AE is depicted in figures below. It is a convolutional AE with dense layers and residual connections. More specifically, 
· Black rectangle with solid lines: 2D convolution with valid padding.
· Description of ((x,y), z): (x,y) is the filter size and z is the output channel size of the 2D convolutional layer.
· Black rectangle with dashed lines: 2D convolution with same padding 
· Description of ((x,y), z): (x,y) is the filter size and z is the output channel size of the 2D convolutional layer.
· Blue rectangle:  Dense (fully connected) layer.
· Description of (x,1):  x is the output size of the linear layer.
· Orange oval: Residual (skip) connection. 

The model is trained with NMSE loss function, where the loss value is the NMSE between the unquantized  and output of the decoder.
[image: ]
[bookmark: _Ref115440390]Figure: UE-side encoder
[image: ]
[bookmark: _Ref115440394]Figure:  NW-side decoder

Table	Parameters for training 
	
	Parameters
	Values

	

Training Parameters
	Latent variables in Encoder
	10

	
	Quantization bits per latent variable
	4

	
	Feedback bits per transmisison 
layer
	10 x 4 = 40

	
	Learning rate
	

	
	Loss function 
	NMSE

	
	Batch Size
	256



Table	Complexity in terms of Flops 
	
	Encoder
	Decoder

	Flops
	29344
	30872



A2 Transformer Model
The input to the transformer is embedded to a higher dimension along the column dimension of, which represents the frequency domain basis dimension per spatial/beam domain dimension. The dropout layer prevents overfitting the model to the training data. The transformer model processing is shown in figure below. The transformer encoder/decoder model block same as in described in (Formal Algorithms for Transformers), with necessary modifications to have the training and inference in the complex-domain. The parameters for the transformer encoder/decoder block are given in the table below. The model is trained with NMSE loss function, where the loss value is the NMSE between the unquantized  and output of the decoder.
[bookmark: _Ref158985913]Table	Parameters for transformer encoder block and training 
	
	Parameters
	Values

	


Encoder & Decoder
 Block Parameters
	Dropout rate
	0.02

	
	Embedding dimension
	256

	
	Number of attention heads
	16

	
	Size of key, query and values
	16

	
	Number of encoder blocks
	3

	
	Latent variables in Encoder
	10

	
	Quantization bits per latent variable
	4

	
	Feedback bits per transmisison 
layer
	10 x 4 = 40

	

Training Parameters
	Optimizer
	Adam

	
	Learning rate
	

	
	Loss function 
	NMSE

	
	Batch Size
	256




Table	Complexity in terms of Flops 
	
	Encoder
	Decoder

	Flops
	51,502,592
	77,428,832



[image: ]
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Beam-delay domain processing:
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