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1. [bookmark: _Hlk134894944]Introduction
In R18 SI, we have studied on general aspects, specific issues related to use cases, and interoperability and testability aspects. The agreements have been collected in TR [1].
From RAN#102, some remaining open issues need to be further studied [2].
	Provide specification support for the following aspects:
· Core requirements for the above two use cases for AI/ML LCM procedures and UE features [RAN4]:
· Specify necessary RAN4 core requirements for the above two use cases.
· Specify necessary RAN4 core requirements for LCM procedures including performance monitoring.

Study objectives with corresponding checkpoints in RAN#105 (Sept ’24):
· Testability and interoperability [RAN4]: 
· Finalize the testing framework and procedure for one-sided models and further analyse the various testing options for two-sided models, in collaboration with RAN1, and including at least: 
· Relation to legacy requirements
· Performance monitoring and LCM aspects considering use-case specifics
· Generalization aspects 
· Static/non-static scenarios/conditions and propagation conditions for testing (e.g., CDL, field data, etc.)
· UE processing capability and limitations
· Post-deployment validation due to model change/drift
· RAN5 aspects related to testability and interoperability to be addressed on a request basis


In last meeting, we have the following agreements for CSI compression and CSI prediction.
	Issue 4-1: CSI Prediction Accuracy metrics
Agreement:
· Agree option 3 for inference only. TBD whether we use relative or absolute throughput.
· Monitoring will be discussed separately. 

Issue 4-2: Testing options for 2-sided model
RAN4 to further discuss only options 3 and 4

Issue 4-3: Option 3 for 2-sided model
The table below contains a set of parameters which are needed in the process of the checking the feasibility of Option 3. The parameters in green are agreed. The parameters in yellow are tentatively agreed. The other parameters are still under discussion. Other parameters that are not yet listed might also be needed.
Companies are invited to bring proposals on which parameters to use in future meetings.
	Category
	Parameter
	Description/Examples

	Model architecture parameters
	Model type
	Transformer, CNN, RNN, MLP

	
	Model depth
	Number of layers

	
	Layer type
	Fully connected, convolutional, activation layer, etc.

	
	Layer size
	Neuron count and configuration

	
	Quantization method for the encoder output
	Scalar, vector (with codebook)

	
	Encoder-decoder interface
	Number of bits of latent message

	
	Fixed point representation
	Int8, int16, floating point etc

	
	Format of input to encoder/output of decoder
	

	Model Training related parameters
	Training procedure
	FFS (e.g Initialization method, training duration, training completion criteria, collaboration type, encoder assumption, etc)

	
	Loss function
	SGCS, NMSE, etc.

	
	Training datasets
	Channel model, number of Tx/Rx ports
Other parameters FFS (e.g. rank)

	
	Hyperparameters
	Learning rate, batch size, regularization techniques and strength, optimization algorithm, etc.

	
	Cross-validation details
	Dataset splits for training/testing/validation

	Generalization (may be applicable to all four options)
	Performance requirements on test dataset(s)
	Mean SGCS, etc.

	Scalability (may be applicable to all four options)
	Supported antenna port configurations
	(2,8,2), (2,4,2), etc.

	
	Supported feedback payloads
	Low, medium, high overhead (with specified number of bits)





In this contribution, we further provide our views on testability aspects, especially from general test framework perspective.
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2. Discussion
2.1	AI model introduction 
There are different AI model structures that are mature and popular in AI industry. It is better to have some initial discussions as reference models would be needed when requirements for AI are being defined.
Full connect neural network (FC or MLP), convolutional neural network (CNN) and transformer are current popular AI/ML model backbones. They have achieved great success in image processing, pattern recognition and natural language processing. Then it has been well proved that they are also feasible in AI/ML involved wireless communications. A brief introduction of these backbones will be shown in the following.
Generally speaking, MLP is the most basic neural network. An example of one MLP with one hidden layer is shown in the below figure. The operations of one hidden layer includes one matrix multiplication, one vector addition and one vector passing through the activation function. There are some popular activation functions, e.g., rectified linear unit (ReLu), Tanh and Sigmoid. Activation function brings non-linear operations into the neural network and then gives the capability of approximating arbitrary complex function to the neural network. The depth of MLP is the number of FC layers and the width is the number of neurons in each FC layers.
[image: ]
Fig. 2.1-1. An example of one MLP with one hidden layer
CNN is invented to largely reduce the complexity of FC in image processing. The matrix multiplication in FC would need unaffordable number of parameters and then 2D convolution is introduced to replace the matrix multiplication. For one channel, the multiplications share the same convolution kernel. Fig. 2.1-2 shows an example of how convolution kernel works.
[image: ]
Fig. 2.1-2. The illustration of how convolution kernel works.
Residual neural network (ResNet) has been invented in 2015 and now almost all CNNs have residual blocks. Residual block forces these layers to focus on the high-frequency features, solves the vanishing gradient problem and increases the approximation capability. The neural network can be very deep if residual block is introduced.
[image: ]
Fig. 2.1-3. The illustration of residual block
The depth of CNN is the number of convolution layers. The width of CNN is the number of feature maps in each convolution layers. Fig. 2.1-4. is a diagram of ResNet, where the depth is the number of convolution layers and the width is the number of feature maps in each convolution layer.
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Fig.2.1-4. A diagram of ResNet
Transformer is based on attention mechanism. Attention mechanism introduces additional neural network, which can select different features in the original neural network according to different situations. Also, this additional neural network could assign different weights to the original features and these weights could be called as the soft attentions. After this process, the performance of the neural network could be improved, especially for the data under various situations. The depth of transformer is the number of transformer blocks, and the width is the embedding size of attention block. In our two-sided CSI simulations, the sequential length is the number of subbands.
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Fig. 2.1-5. An illustration of transformer

2.2	Comparison of AI model performance for CSI compression 
In order to better understand the performance difference for different AI models, initial evaluation was conducted under the CDL-A channel model with 30ns delay. Fig. 2.2-1 shows the simulation procedure of the CSI compression. 


Fig. 2.2-1. Illustration of the simulation procedure of CSI compression
The simulation results are provided in Table 2.2-1 with transformer encoder and Table 2.2-2 with CNN encoder, respectively.
Table 2.2-1. Performance comparison for different decoder structure and complexity (Transformer encoder)
	Encoder 
	Decoder
	SGCS (R16 CB: 0.8375)

	
	Back-bone
	Model parameter
	Number of model parameter
	FLOPS
	

	Back-bone: Transformer
Number of model parameter: 4.1M
FLOPS: 5×107
Depth: 10 transformer blocks
Width: embedding=140

	Transformer
	Depth: 18 transformer blocks
Width: embedding=148
	8.0M
	1×108
	0.80

	
	
	Depth: 10 transformer blocks
Width: embedding=198
	8.0M
	1×108
	0.92

	
	
	Depth: 20 transformer blocks
Width: embedding=140
	7.9M
	1×108
	0.62

	
	CNN
	Depth: conv layers
Width: 165 feature maps 
	0.2M
	1×108
	0.88

	
	
	Depth: 17 conv layers
Width: 41 feature maps
	0.2M
	1×108
	0.91

	
	
	Depth: 150 conv layers
Width: 20 feature maps
	0.2M
	1×108
	0.92

	
	MLP
	Depth: 1 FC layers
Width: 9500 neurons
	98.7M
	1×108
	0.91

	
	
	Depth: 10 FC layers
Width: 3200 neurons 
	109.6M
	1×108
	0.89

	
	
	Depth: 15 FC layers
Width: 2600 neurons 
	106.6M
	1×108
	0.83



In Table 2.2-1, transformer encoder is used in the evaluation for verifying performance of different decoders. It can be seen that there could be large performance variance if model structure, including back-bone, parameters of decoder are different even if the complexity (FLOPs) are similar. For same type of decoder, if parameters are different, especially for transformer and MLP type of decoders, performance variance can be observed. The performance of CNN decoder seems not very sensitive to some parameters as listed in the table.
Table 2.2-2. Performance comparison for different decoder structure and complexity (CNN encoder)
	Encoder 
	Decoder
	SGCS (R16 CB: 0.8375)

	
	Back-bone
	Model parameter
	Number of model parameter
	FLOPS
	

	Back-bone: CNN
Number of model parameter: 4.1M
FLOPS: 5×107
Depth: 17 conv layers
Width: 32 feature maps
	CNN
	Depth: 17 conv layers
Width: 16 feature maps
	0.08M
	2×107
	0.88

	
	Transformer
	Depth: 4 transformer blocks
Width: embedding =110
	1.4M
	2×107
	0.84

	
	MLP
	Depth: 3 FC layers
Width: 2200 neurons
	16.5M
	2×107
	0.89



In table 2.2-2, CNN encoder is used in the evaluation for verifying performance of different decoders. Similar observations can be made.
Observation 1: Model structure (back-bone, parameters, e.g., number of layers, etc) also has significant performance impact even if complexity of model (in terms of FLOPS) are similar. 

2.3	Framework of requirements and tests for AI 
Test encoder/decoder is only for the encoder/decoder to be implemented by TE, depending on options for test decoder, which may be different from reference encoder/decoder for defining requirements in 2-sided model framework. Besides, for 1-sided model, specify a reference model for defining requirement would also be need. 
The framework for defining requirements for use cases and corresponding test procedures can be illustrated as in Fig. 2.3-1 and Fig. 2.3-2 for 2-sided model and 1-sided model, respectively. RAN4 testability study should consider all relevant parts in Fig. 2.3-1 and Fig. 2.3-2.
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Fig. 2.3-1. Framework for requirements and tests for 2-sided model

[image: ]
Fig. 2.3-2. Requirements and tests for 1-sided model
For legacy demodulation requirements, it is typically defined with assumption of reference receiver, e.g., MMSE receiver or advanced receiver. The reference encoder and reference decoder for defining requirements for UE side model play similar role.
It can be seen from the evaluation results in section 2.2, there are a lot of factors that could impact the AI model performance. Moreover, different companies have different assumptions and implementations of model structure and parameters. Large performance difference can be expected.
When defining performance requirements for CSI compression with 2-sided models, throughput ratio is one metric for CSI compression. To align results from companies, reference decoder should be introduced for defining performance requirements for UE side encoder. Similarly, to derive gNB decoder performance, if necessary, UE side reference encoder should be introduced. Otherwise, it could be high unlikely to align results and derive requirements.
Moreover, the align evaluation results from companies, it also needs to define reference models for both sides. It means to define requirements for UE encoder, both reference encoder and reference decoder should be defined. With only one side reference model, it may still be challenging to derive requirements due to difficulty of aligning results from companies.
Similarly, even for one sided model, reference model should be defined to align results from companies and derive requirements.
Reference model is the approach to define performance requirements. It can be considered as part of principle for defining requirements in the TR. 
Observation 2: RAN4 testability study should consider all the relevant parts for defining performance requirements and testing.
Proposal 1: RAN4 to define reference model for defining performance requirements for one-sided model.
Proposal 2: In 2-side model use case, both reference encoder and reference decoder are introduced for defining performance requirements for UE side encoder.

How to define reference model
In general, options for deciding test encoder can also be used for determining reference encoder.
If test decoder is based on option 1 or 2, it may not be possible to use same option for reference decoder. The method of defining requirement is try to align results from different companies as much as possible. if option 1 and option 2 were chosen, it would not be possible to define corresponding performance requirements, e.g., PMI reporting requirements based on absolute throughput and relative throughput, due to potential very large gain difference based on reference decoders among UE/infra vendors, which can be seen from simulation results in section 2.2. However, option 3 with fully specified decoder and option 4 with partially specified decoder, could be used to decide reference decoder even if test decoder is based on option 1 or 2.
If test decoder is based on option 3 or 4, it would be straight forward to use same option for reference decoder for defining requirements.
Proposal 3: Fully specified and partially specified options, i.e., option 3 and/or option 4, are used as baseline for RAN4 to specify reference model for defining requirements for different use cases for both 1-sided model and 2-sided model.

2.4	Testing aspects for 2-sided framework 
For 2-sided AI/ML model tests, it was agreed that test decoder/encoder is to be used in UE conformance tests and gNB conformance tests, respectively. Clarifications and pros/cons analysis were discussed and about half of them have been agreed. In the last meeting, it is agreed to focus on Option 3 and Option 4. In this part, further analysis on pros/cons/feasibility and clarification for the Option 3 and Option 4 will be done. 
There would be three potential sub-options for Option 4, which are listed in the following:
· Option 4a: Specify encoder. Dataset would need to be aligned or specified, which includes at least channel information. With aligned test scenarios or dataset, TE vendor would jointly train the test decoder based on the specified encoder. UE vendor may implement the specified encoder, or train the encoder that considers the input-output relationship provided by the specified encoder.
· Option 4b: Specify model structure of decoder. Dataset would need to be aligned or specified, which includes channel information and the encoded bits. TE vendor would directly train the test decoder based on the decoder structure and dataset. UE vendor could train the encoder based on the dataset and decoder structure, using separate training. It is seen that from our analysis in Section 2.2, model structure (back-bone, hyper-parameters, e.g., number of layers, etc) has significant performance impact even if complexity of model (in terms of FLOPS) are similar. If model structure is not specified, we can not achieve the target that TE vendor should be able to implement the test decoder for Option 4 without any involvement from another party. Model backbone and model complexity (e.g., model (parameter) size and FLOPs) could be aligned first, which will facilitate the discussion of model structure.
· Option 4c: Specify model structure of encoder. This sub-option is similar to Option 4b. CSI compression is a two-sided use case and the encoder and the decoder should be designed together. In this sub-option, it is the encoder model structure that will be written in the spec. Dataset would need to be aligned or specified, which includes channel information and the encoded bits. TE vendor trains the test decoder and UE vendor trains the test encoder.
Then we have the following proposal.
Proposal 4: There would be three potential sub-options for Option 4:
· Option 4a: Specify encoder. 
· Option 4b: Specify model structure of decoder. 
· Option 4c: Specify model structure of encoder. 
· Note: Dataset would need to be aligned or specified in Option 4, where the data content may be different in different sub-options. 
In fact, the specification efforts of Option 3, Option 4a, Option 4b and Option 4c would be nearly the same. Since CSI compression is a two-sided use case and the encoder and the decoder is designed together, the encoder should be aligned when specifying the decoder, and vice versa. Also, it is not possible to specify a suitable dataset including the input and output of encoder/decoder, without the aligned encoder and decoder. The only differences between Option 3, Option 4a and Option 4b would be what will be written on the spec. Whether Option 4c would work will depend on the progress of RAN1. Then Option 3 and Option 4 can work together.
Proposal 5: Option 3 and Option 4 can work together. The encoder and the dataset should be aligned when specifying the decoder. 

How to specify the reference/test encoder/decoder
Some efforts are needed to specify the reference/test encoder/decoder. In the following, one possible method of specifying the reference/test model is provided.
· Step 1: Align the dataset containing only channel information. Companies could bring their own generated dataset and multiple datasets from different companies can be merged into one dataset, which is the aligned dataset. This dataset can be generated through 3GPP synthetic channel models. For CSI compression, this dataset only needs the channel information, i.e. the input for the encoder or the output for the decoder.
· Step 2: Determine the model hyperparameters that need to be aligned. Step 1 and Step 2 could work together. Below are some important hyperparameters that need to be aligned for the model:
· Number of layers in the neural network.
· Number of neurons in each layer.
· Activation function(s) for each layer.
· Configuration of normalization layers.
· Special connection relationships between layers:
· ResBlock.
· Inception.
· Special hyperparameters for CNN:
· Parameters for the convolutional layers such as kernel size, stride, padding, activation function, bias, and channel number.
· Special hyperparameters for Transformer:
· Implementation method for multi-head attention, parameters for multi-head attention such as number of heads and dimensions of heads.
· Step 3: Define the evaluation method for model complexity and performance. Model complexity may include Flops or model storage size, which can be restricted to avoid exceeding hardware capabilities and also serve as KPI of model quality. When evaluating model quality, it is important to consider not only its performance but also its implementation complexity. During this process, some restrictions may be aligned directly related to model complexity, e.g., model backbone and some important hyperparameters.
· Step 4: The best model structure(s) may be selected based on the aligned evaluation method, through the simulations using the aligned dataset. Each company can train their own model based on the aligned dataset with only channel information from Step 1. Then, the best model structure(s) would be selected based on the evaluation method defined in Step 3. Model Performance, model complexity and UE implementation flexibility would be considered. Multiple model structures may be needed. For CSI compression, since encoder and decoder are trained in pair, the best model structures of both encoder and decoder should be selected together.
· Step 5: Based on the aligned model structure, the specific parameters of the reference model would be merged from companies. For example, in the design of SRS sequences, each company may provide some sequences that are then merged by some iteratives to obtain usable sequences. Similarly, since the model structure has been determined, it may be possible to iteratively average the model parameters and merge them to obtain the specific parameters of the final reference model.
Proposal 6: The reference/test encoder/decoder may be aligned through the following procedures
· Step 1: Align the dataset containing only channel information. 
· Step 2: Determine the model hyperparameters that need to be aligned. 
· Step 3: Define the evaluation method for model complexity and performance. 
· Step 4: The best model structure(s) may be selected based on the aligned evaluation method, through the simulations using the aligned dataset. 
· Step 5: Based on the aligned model structure, the specific parameters of the reference model would be merged from companies
In the last meeting, there are some progress on Option 3 and some parameters related to model and data have been agreed. Based on the above provided method of aligning model, some modifications have been made on the below table. The below table can be also used for Option 4, as discussed above. Some necessary model architecture parameters have been added. It would be helpful to fully align the training related parameters. However, with the same dataset only with channel and the same training related parameters, different seed or different simulation tools (Tensorflow or Pytorch) would result in different model parameters. Then a guideline of training related parameters may be enough.
Table 2.4-1. The parameters to be aligned for Option 3 and Option 4
	Category
	Parameter
	Description/Examples

	Model architecture parameters
	Model type
	Transformer, CNN, RNN, MLP

	
	Model depth
	Number of layers

	
	Layer type
	Fully connected, convolutional, activation layer, normalization layers, etc.

	
	Layer size
	Neuron count and configuration

	
	Quantization method for the encoder output
	Scalar, vector (with codebook)

	
	Encoder-decoder interface
	Number of bits of latent message

	
	Fixed point representation
	Int8, int16, floating point etc

	
	Format of input to encoder/output of decoder
	

	
	Special connection relationships between layers (if needed)
	ResBlock, Inception, etc

	
	Special hyperparameters for CNN (if needed)
	Kernel size, stride, padding, activation function, bias, and channel number.

	
	Special hyperparameters for Transformer (if needed)
	Implementation method for multi-head attention, parameters for multi-head attention such as number of heads and dimensions of heads.

	Model Training related parameters
	Training procedure
	FFS (e.g Initialization method, training duration, training completion criteria, collaboration type, encoder assumption, etc)
Note that training procedure does not need to be fully aligned.

	
	Loss function
	SGCS, NMSE, etc.

	
	Training datasets
	Channel model, number of Tx/Rx ports
Other parameters FFS (e.g. rank)
Dataset containing only channel information, which is merged by data from companies.

	
	Hyperparameters
	Learning rate, batch size, regularization techniques and strength, optimization algorithm, etc.
Note that training procedure does not need to be fully aligned.

	
	Cross-validation details
	Dataset splits for training/testing/validation

	Generalization (may be applicable to all four options)
	Performance requirements on test dataset(s)
	Mean SGCS, etc.

	Scalability (may be applicable to all four options)
	Supported antenna port configurations
	(2,8,2), (2,4,2), etc.

	
	Supported feedback payloads
	Low, medium, high overhead (with specified number of bits)

	The evaluation method
	The evaluation of models considering both model complexity and performance
	



Proposal 7: Take into consideration the parameters to be aligned for Option 3 and Option 4 in Table 2.4-1.

Suggested reference model structures for both encoder and decoder
Our suggested reference model structure for encoder and decoder are provided, which can be used as a starting point. Both CNN and Transformer are considered. The suggested models are provided as examples and the model hyperparameters could be adjusted to reduce the model complexity.
[image: ]
Figure 2.4-1. Suggested model structure for the encoder of CSI compression (CNN).

[image: ]
Figure 2.4-2. Suggested model structure for the decoder of CSI compression (CNN).

[image: ]
Figure 2.4-3. Suggested model structure for the encoder of CSI compression (Transformer).
[image: ]
Figure 2.4-4. Suggested model structure for the decoder of CSI compression (Transformer).
Then we have the following proposal.
Proposal 8: The suggested model structures in Figure 2.4-1 to 2.4-4 for test decoder/encoder could be used as a starting point

Test decoder pros& cons analysis
Our considerations on the table of the comparison of the four options of test decoder are provided in the following.
For “Supported training collaboration type between DUT and decoder provider”, it seems that this aspect is just for training before test and seems to have no obvious impact on the test. Then this aspect does not need to be discussed, and we have the following proposal:
Proposal 9: “Supported training collaboration type between DUT and decoder provider” can be removed from the table of the comparison of the four options of test decoder, since this aspect is just for training before test and seems to have no obvious impact on the test.
Other aspects would need further discussion. Updated summary is provided in Table 2.4-2.
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	Option 1: DUT provides decoder
	Option 2: Decoder not from DUT and Spec
	Option 3: Full decoder specification in standard
	Option 4: partially specified decoder

	Clarification of options

	Source of the test decoder
	DUT vendor
	Decoder vendor (infra vendor in case of testing UEs)
	RAN4 specifications
	TE vendor, decoder developed based on RAN4 specifications

	Source of decoder training data
	Up to DUT vendors (no need to be specified)
	· Up to decoder implementer (infra vendor)
	Not needed, decoder fully specified (used as part of the RAN4 procedure to specify the decoder)
	FFS
· Could be specified depending on how Option 4 will be defined

	DUT vendor knowledge of the test decoder
	Full knowledge
	No or partial or enough or full knowledge based on alignment with infra vendors or specifications
	Full knowledge based on the specifications
	Partial knowledge – based on RAN4 specification

	[bookmark: _Hlk157525608]Supported training collaboration type between DUT and decoder provider (source of training data should be consistent with the collaboration type)
	Up to DUT vendor (All training collaboration Type 1/2/3)

	Up to infra vendor (All training collaboration Type 1/2/3)

	Up to RAN4 procedure to specify the decoder
	Up to TE vendor (All training collaboration Type 1/2/3)

	Test decoder performance verification procedure at TE
	Need to ensure that decoder performance is not degraded (as intended by the decoder provider) on the TE
	Need to ensure that decoder performance is not degraded (as intended by the decoder provider) on the TE

Need to ensure that decoder performance is good enough to enable a DUT that meets the minimum requirements to pass the test
	Not needed as long as the standardized model implementation can be similar enough between TE vendors
	Not needed as long a the model implementation can be similar enough between TE vendors

	Feasibility of test decoder verification procedure
	FFS
	FFS
	FFS
	FFS

	Pros/Cons analysis

	Reflection on the real deployment (likelihood that test decoder would be used
	Low
There could be large performance mismatch with field performance due to mismatch between test decoder and field decoder implemented by infra vendors.
Depends on training collaboration type and/or training dataset, the decoder mismatch would be alleviated.
	Medium
Could reflect the performance in the field if network vendors use same or similar decoder in the field as the test decoder. 
Since test decoder is designed for minimum requirement, network vendors may use more powerful decoder with better performance in the field.
	Low/Medium
Could reflect the performance if the test decoder(s) is generated from the well-designed datasets that could reflect real deployment.
There could be large performance mismatch if the training dataset is not realistic. UE may have to implement an additional encoder only for the tests.
	Medium
Could reflect the performance if the test decoder(s) is generated from the well-designed datasets that could reflect real deployment.
Could reflect the performance if infra/UE vendors consider the partially specified test decoder as reference for implementation.

	TE requirements to deploy the decoder (e.g., training, complexity, interopereatbility)
	Higher than Option 3/4 in terms of that maybe more than one decoder is implemented by TE

Lower thank Option 3/4 in terms of that no training at TE is required
	Higher than Option 3/4 in terms of that maybe more than one decoder is implemented by TE

Lower thank Option 3/4 in terms of that no training at TE is required
	Lower complexity than Option 1/2 in terms of that only one decoder is implemented by TE

Lower thank Option 4 in terms of that no training at TE is required
	Lower complexity than Option 1/2 in terms of that only one decoder is implemented by TE

Higher than Option 3 in terms of that training at TE is required 

Note: How to ensure compatibility/ interoperability between TE and DUT needs further study

	Specification effort (defining test decoder and requirements)
	Low
	Low
	Highest

RAN4 needs to standardize the entire decoder
	High

RAN4 needs to study and may decide on what to standardize

	Confidentiality/ IP issues in the testing procedure (after specs are published)
	Yes 
DUT vendor might have to expose some aspects of the design to the TE vendor
Depending on means used to share test decoder, TE vendors might require integrating source code from third party, which could even require licensing
	Yes
Decoder vendor might have to expose some aspects of the design to the TE vendor
Depending on means used to share test decoder, TE vendors might require integrating source code from third party, which could even require licensing
	No
	No

	Applicability to different scenarios/conditions/ configurations
	Applicable
Depending on how generalization test is defined and how test decoder is trained.
	Applicable
Depending on how generalization test is defined and how test decoder is trained.
	Applicable
Depending on how generalization test is defined and how test decoder is trained.
	Applicable
Depending on how generalization test is defined and how test decoder is trained.

	Complexity of testing for the ecosystem
	Testing the encoder at DUT

Higher than  Option 3/4 

Need for interaction between TE vendor
	Testing the encoder at DUT

Higher than Option 3/4 

Testing complexity higher also than Option 1
	Testing the encoder at DUT

Low – no need for interaction between TE vendors and other parties
	Testing the encoder at DUT

Low – no need for interaction between TE vendors and other parties

	Complexity of verifying/testing the test decoder
	Higher than Option 3/4 

FSS compared to Option 2
	Higher than Option 3/4 

FSS compared to Option 1
	Low
	Low

	Complexity of deploying for the ecosystem
	High
Offline co-engineering between TE vendor and UE vendors may be needed depends on model format.
TE needs to select different test decoder for different DUT, which may be based on DUT declaration.
All UE vendors should develop its own test decoder.

	High
Offline co-engineering between TE vendor and infra vendors may be needed depends on model format. 
How would TE select the corresponding test decoder for a UE under test or would the DUT pass test with all the test decoder from different network vendors?
Whether should all infra vendors provide test decoder?
DUT may need to be tested against one or multiple test decoders provided by different infra vendors.
	Low
TE only needs to implement the test decoder.
DUT may consider the test decoder for encoder implementation

	Low/Medium
TE only needs to train and implement partially specified test decoder.
DUT may consider the test decoder for encoder implementation


	Friendly to STOA (state of the art) model test / Forward compatibility when new AI models are invented
	Yes
	Yes
	No
	Yes

	Relationship with reference decoder/encoder (used by RAN4 to define the performance requirements) for defining the requirement
	A different reference decoder (e.g., based on option 3 or option 4) for defining requirements.
	A different reference decoder (e.g., based on option 3 or option 4) for defining requirements.
	Same reference decoder as test decoder for defining requirements.
	Same reference decoder as test decoder for defining requirements.

	Whether model transfer/delivery is needed during the test procedure
	FFS
	FFS
	FFS
	FFS




After the above discussions, we have the following proposal.
Proposal 10: Take into consideration the summary of 4 options for testing of 2-sided model in Table 2.4-2.

2.5	Testing aspects for CSI prediction
In the last meeting, we have the following agreements for CSI prediction.
	Issue 4-1: CSI Prediction Accuracy metrics
Agreement:
· Agree option 3 for inference only. TBD whether we use relative or absolute throughput.
· Monitoring will be discussed separately. 


In the last meeting, throughput is agreed to be the default metric, others should be discussed only if throughput is not feasible. Then the discussion would be focused on whether to use absolute throughput or relative throughput. The inception of absolute throughput and relative throughput would be same. Compared with absolute throughput, relative throughput would be used to see the gain from CSI prediction. The comparison baseline can be further discussed, such as randomly chosen PMI.
Proposal 11: Compared with absolute throughput, relative throughput would be used to see the gain from CSI prediction. The comparison baseline can be further discussed, such as randomly chosen PMI.
Proposal 12: Since Monitoring is still under discussion in RAN1, RAN4 should wait for further progress of RAN1.

3. Summary
In this contribution, we provided our views on testability aspects for CSI compression and CSI prediction. Based on above analysis, following proposals and observations are present.
Observation 1: Model structure (back-bone, parameters, e.g., number of layers, etc) also has significant performance impact even if complexity of model (in terms of FLOPS) are similar. 
Observation 2: RAN4 testability study should consider all the relevant parts for defining performance requirements and testing.
Proposal 1: RAN4 to define reference model for defining performance requirements for one-sided model.
Proposal 2: In 2-side model use case, both reference encoder and reference decoder are introduced for defining performance requirements for UE side encoder.
Proposal 3: Fully specified and partially specified options, i.e., option 3 and/or option 4, are used as baseline for RAN4 to specify reference model for defining requirements for different use cases for both 1-sided model and 2-sided model.
Proposal 4: There would be three potential sub-options for Option 4:
· Option 4a: Specify encoder. 
· Option 4b: Specify model structure of decoder. 
· Option 4c: Specify model structure of encoder. 
· Note: Dataset would need to be aligned or specified in Option 4, where the data content may be different in different sub-options. 
Proposal 5: Option 3 and Option 4 can work together. The encoder and the dataset should be aligned when specifying the decoder. 
[bookmark: _GoBack]Proposal 6: The reference/test encoder/decoder may be aligned through the following procedures
· Step 1: Align the dataset containing only channel information. 
· Step 2: Determine the model hyperparameters that need to be aligned. 
· Step 3: Define the evaluation method for model complexity and performance. 
· Step 4: The best model structure(s) may be selected based on the aligned evaluation method, through the simulations using the aligned dataset. 
· Step 5: Based on the aligned model structure, the specific parameters of the reference model would be merged from companies
Proposal 7: Take into consideration the parameters to be aligned for Option 3 and Option 4 in Table 2.4-1.
Proposal 8: The suggested model structures in Figure 2.4-1 to 2.4-4 for test decoder/encoder could be used as a starting point
Proposal 9: “Supported training collaboration type between DUT and decoder provider” can be removed from the table of the comparison of the four options of test decoder, since this aspect is just for training before test and seems to have no obvious impact on the test.
Proposal 10: Take into consideration the summary of 4 options for testing of 2-sided model in Table 2.4-2.
Proposal 11: Compared with absolute throughput, relative throughput would be used to see the gain from CSI prediction. The comparison baseline can be further discussed, such as randomly chosen PMI.
Proposal 12: Since Monitoring is still under discussion in RAN1, RAN4 should wait for further progress of RAN1.

4. [bookmark: _Hlk4777878]References
[1] [bookmark: _Ref158104822][bookmark: _Hlk53739108][bookmark: _Ref134696736]3GPP TR38.843, “Study on Artificial Intelligence (AI)/Machine Learning (ML) for NR air interface (Release 18)”, V18.0.0, 2023-12.
[2] Qualcomm Incorporated, RP-234039, “New WID on Artificial Intelligence (AI)/Machine Learning (ML) for NR Air Interface”, RAN#102, Dec.11-15, 2023.
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