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1. [bookmark: _Ref124589705][bookmark: _Ref129681862]Introduction
At RAN4 #110[1][2], proposals on deciding the encoder/decoder’s pair backbone structures were made. To this end, we propose the introduction and evaluation of a well-researched AI/ML-based CSI compression model CsiNet and its extended models in this piece.
2.  Introduction and evaluation of CsiNet and its extended models
2.1  Introduction and evaluation of CsiNet
Reference [3] proposed CsiNet, which is the first work to introduce AI for CSI feedback enhancement. In CsiNet, the full CSI matrices are first transformed into the angular-delay domain using 2D-DFT. 
The encoder works at the UE, using a CNN layer containing two convolutional kernels of size 3 x 3 to generate two channel feature maps. A fully connected layer is used to generate compressed codewords. The codewords are first restored to the original dimension of the channel matrix by a fully connected layer as initial estimates of the real and imaginary parts. Then, the reconstruction quality is improved through two RefineNet units. RefineNet consists of four convolutional layers and introduces the idea of residual networks, which adds the output of the first convolutional layer to the final layer as the output of the entire unit, avoiding the problem of gradient vanishing caused by too many layers. Finally, a 3x3 convolutional layer is used to reconstruct the CSI. The last convolutional layer of the decoder uses the sigmoid activation function to normalize the output to the [0,1] interval, corresponding to the input. 
In addition, all convolutional layers use LeakyReLU as the activation function, and batch normalization layers are used before the activation function to reduce the difficulty of training the entire architecture. CsiNet uses NMSE as the cost function for training.
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Figure 1: Structure of CsiNet
Table 1： Simulation assumption for dataset generation
	Parameter
	Value

	Channel Model
	COST 2100

	Scenario
	Indoor picocellular\ Outdoor rural

	Frequency Range
	5.3GHz/300MHz

	Antenna setup and port layouts at gNB
	ULA 32 antennas

	Antenna setup and port layouts at UE
	2RX: (1,1,2,1,1,1,1), (dH,dV) = (0.5, 0.5)λ for (rank 1,2)

	Dataset type
	Full channel matrix

	Channel estimation
	Ideal

	UE distribution
	Randomly positioned in the square area with lengths of
20 and 400m


Table 2： NMSE(dB) results for CsiNet
	γ
	M
	Methods
	Indoor
	Outdoor

	
	
	
	NMSE/dB
	
	NMSE/dB
	

	1/4
	512
	LASSO
	–7.59
	
	–5.08
	

	
	
	BM3D-AMP
	–4.33
	
	–1.33
	

	
	
	TVAL3
	–14.87
	
	–6.90
	

	
	
	CsiNet
	–17.36
	
	–8.75
	

	1/16
	128
	LASSO
	–2.72
	
	1.01
	

	
	
	BM3D-AMP
	0.26
	
	0.55
	

	
	
	TVAL3
	–2.61
	
	–0.43
	

	
	
	CsiNet
	–8.65
	
	–4.51
	

	1/32
	64
	LASSO
	–1.03
	
	–0.24
	

	
	
	BM3D-AMP
	24.72
	
	22.66
	

	
	
	TVAL3
	–0.27
	
	0.46
	

	
	
	CsiNet
	–6.24
	
	–2.81
	

	1/64
	32
	LASSO
	–0.14
	
	–0.06
	

	
	
	BM3D-AMP
	27.53
	
	25.45
	

	
	
	TVAL3
	0.63
	
	0.76
	

	
	
	CsiNet
	–5.84
	
	–1.93
	


The evaluation assumption for dataset generation is listed in Table 1 and the NMSE results for CsiNet is shown is Table 2. With all compression ratios, CsiNet achieved the lowest NMSE, significantly surpassing Compressive Sensing based methods. When the compression ratio is reduced to 1/16, the CS-based methods can no longer function, whereas CsiNet and CS-CsiNet continue to perform well.
2.2 Introduction and evaluation of QuanCsiNet
Reference [4] proposed QuanCsiNet which introduced a quantization module based on the CsiNet architecture, and conducted simulations based on datasets from actual measurements.
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Figure 2: Structure of QuanCsiNet
The quantization layer of QuanCsiNet quantifies the codeword into a bitstream form of encoding, where each element is either 0 or 1. Once the BS receives the codeword, it is input into the quantization layer and converted back to a floating-point vector from bit stream form.
QuanCsiNet uses channel data measured in actual channel environments. The center frequency of the system is 3.5 GHz, with a bandwidth of 100mHz, equipped with 4 transmitting antennas, 4 receiving antennas, and 256 subcarriers. The receiver moves along the red dot trajectory at a speed of 1.5 m/s. The red dots represent the data collection location of the receiver, and the distance between adjacent red dots is 1m. Mark point 1 and mark point 51 are 3 meters and 5 meters away from the transmitter, respectively. A total of 100 sets of data were tested. The starting point of each group of data is the corresponding point of the marked value, and the ending point is the corresponding point of the next value. For example, the 26th group of data is the data from point 26 to point 27 in Figure 3.
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Figure 3: Measurement channel scenario
The NMSE performance results of QuanCsiNet using different quantization bits B are shown in Table 2. When B is fixed, the performance of NMSE improves with the increase of feedback bits. On the one hand, under the same feedback cost, the network performance decreases as B increases. On the other hand, when the compression dimension is fixed, the NMSE performance of the network does not change much with B. This indicates that QuancsiNet compensates for the influence of quantization.
Table 3： NMSE(dB) results for QuanCsiNet
	Feedback bits
	128 bits
	256 bits
	512 bits
	1024 bits

	QuanCsiNet (B = 4)
QuanCsiNet (B = 8)
QuanCsiNet(B = 32)
	−5.058 
	−7.308
	−10.442
	−13.480

	
	−2.670
	−5.138
	−7.266
	−10.321

	
	−0.751 
	−1.263
	−2.612
	−4.898


2.3 Introduction and evaluation of CsiNet-LSTM
On the basis of CsiNet, reference [5] proposes CsiNet-LSTM for time-varying channel feedback.
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Figure 4: Structure of CsiNet-LSTM
T channel matrice are placed together as a group. The first matrix in the channel group is set as the main channel and the remaining T-1 matrices as auxiliary channels. For the main channel, a higher compression rate CsiNet encoder is used to encode and obtain high-dimensional codewords. For the auxiliary channels, due to the correlation with the main channel, a lower compression rate CsiNet encoder can be used for encoding to obtain low dimensional codewords. At the decoder end, the main channel is decoded directly from the codewords using a higher compression rate CsiNet, while the codewords of the auxiliary channels are merged with those of the main channel and then decoded by the CsiNet decoder. Note that the CsiNet encoder and decoder corresponding to the auxiliary channels have the same structure and share parameters.
The output of the CsiNet decoder serves as the initial reconstruction result of the channel group and is input into the LSTM network with a time step of T in chronological order. The LSTM network consists of three LSTM units with a hidden number of 2 x 32 x 32. The LSTM network implicitly learns temporal correlation information from the input at the previous time step and fuses it with the CSI matrix to be reconstructed at the current time step to improve reconstruction quality. In this case, although the auxiliary channels are reconstructed at a lower compression rate and the reconstruction qualities are lower through the CsiNet decoder, the main channel can be reconstructed more accurately through the CsiNet decoder at a higher compression rate due to its correlation with the main channel. With the assistance of temporal correlation information, the secondary channel can also achieve similar or even better reconstruction accuracy as the main channel.
The CsiNet-LSTM uses the same training data as CsiNet. The time interval for channel feedback is set to 0.04s, and the channel group size is T=10. In indoor scenes, the UE moves along the axis at a speed of 0.0036km/h and the coherence time is ∆ t=27.3s; In outdoor scenes, the UE moves at a speed of 0.72km/h along the axis and 3.24km/h along the axis and the coherence time is ∆ t=0.54s.
Table 4：NMSE(dB) results for CsiNet-LSTM
	γ
	Methods
	Indoor
	Outdoor

	
	
	NMSE/dB
	
	NMSE/dB
	

	1/16
	LASSO
	–2.96
	
	–1.09
	

	
	BM3D-AMP
	0.25
	
	0.40
	

	
	TVAL3
	–3.20
	
	–0.53
	

	
	CsiNet
	–10.59
	
	–3.60
	

	
	CsiNet-LSTM
	–23.06
	
	–9.86
	

	1/32
	LASSO
	–1.18
	
	–0.27
	

	
	BM3D-AMP
	20.85
	
	18.99
	

	
	TVAL3
	–0.46
	
	0.42
	

	
	CsiNet
	–7.35
	
	–2.14
	

	
	CsiNet-LSTM
	–22.33
	
	–9.18
	

	1/64
	LASSO
	–0.18
	
	–0.06
	

	
	BM3D-AMP
	26.66
	
	24.42
	

	
	TVAL3
	0.60
	
	0.74
	

	
	CsiNet
	–6.09
	
	–1.65
	

	
	CsiNet-LSTM
	–21.24
	
	–8.83
	


Table 4 shows the simulation results. The CsiNet and CsiNet-LSTM significantly outperform all traditional CS algorithms at all compression rates in both communication scenarios. When the compression ratio is low, most traditional CS algorithms cannot work effectively, while deep learning algorithms can still basically restore the original CSI matrix and provide sufficient beamforming gain. From the comparison between deep learning algorithms, it can be found that the CsiNet-LSTM algorithm has the lowest NMSE at all compression rates, surpassing the reconstruction performance of CsiNet. Its advantages are more evident in outdoor scenes with low compression rates and complex channels. When the compression ratio was reduced from 1/16 to 1/64, the NMSE performance of CsiNet decreased by 42% and 54% in indoor and outdoor scenes, respectively, while the performance of CsiNet LSTM only decreased by 8% and 10%, respectively, with the lowest performance loss among all algorithms.
2.4 Introduction and evaluation of network compression 
Reference [6] proposes a method to compress CSI feedback networks CsiNet+ based on quantization and pruning.
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Figure 5: Structure of CsiNet+
Reference [6] used the K-means algorithm to cluster the weights of neural network parameters, quantifying the weights to reduce storage and computational costs, and evaluating the impact of quantization on its reconstruction accuracy and complexity. Firstly, use end-to-end methods to train CsiNet+, then use k-means clustering to quantify pre-trained parameters including fully connected layers and convolutional layers, and retrain until it converges again.
Moreover, reference [6] takes the CsiNet+ network as an example to perform fine-grained weight pruning on pre-trained neural networks to evaluate the impact of pruning on the reconstruction accuracy and complexity of CSI feedback networks. Fine-grained pruning is the process of unstructured pruning of neural network weights, without considering the position of neural network weights, to ensure high sparsity of the pruned neural network weights. Therefore, reference [6] sets a threshold in advance for pruning the fully connected layer, and any connection with an absolute weight value less than the threshold will be pruned. Then, retrain the pruned neural network until it converges.
Table 5： NMSE(dB) results for quantization
	
	Indoor
	Outdoor

	γ
	1/4
	1/8
	1/16
	1/32
	1/4
	1/8
	1/16
	1/32

	B=32
	-27.13
	-17.69
	-13.78
	-9.82
	-11.36
	-8.28
	-5.60
	-3.42

	B=7
	-15.38
	-15.56
	-13.09
	-9.64
	-10.69
	-8.17
	-5.51
	-3.37

	B=6
	-11.60
	-13.21
	-11.51
	-9.02
	-9.81
	-7.73
	-5.21
	-3.11

	B=5
	-8.37
	-10.17
	-8.95
	-7.62
	-8.29
	-6.79
	-4.35
	-2.57

	B=4
	-3.91
	-6.37
	-5.88
	-5.27
	-5.97
	-4.29
	-2.83
	-1.60

	B=3
	-1.84
	-3.73
	-3.47
	-1.49
	-2.10
	-1.51
	-0.20
	-0.06


Table 6： NMSE(dB) results for weight pruning
	γ
	1/4
	1/8
	1/16
	1/32

	Indoor
	Original CsiNet+
	-27.13
	-17.69
	-13.78
	-9.82

	
	t=0.010
	-21.82(0.50%)
	-18.40(4.07%)
	-13.75(6.02%)
	-10.14(20.26%)

	
	t=0.025
	-19.03(0.23%)
	-17.55(2.22%)
	-13.54(2.79%)
	-10.09(11.38%)

	
	t=0.050
	-12.98(0.11%)
	-16.16(1.25%)
	-13.15(1.39%)
	-9.93(6.04%)

	
	t=0.075
	-9.63(0.07%)
	-14.92(0.83%)
	-12.79(0.86%)
	-9.73(3.84%)

	
	t=0.100
	-8.49(0.06%)
	-13.75(0.59%)
	-12.53(0.62%)
	-9.73(2.69%)

	Outdoor
	Original CsiNet+
	-11.36
	-8.28
	-5.60
	-3.42

	
	t=0.010
	-12.17(34.48%)
	-8.82(54.56%)
	-5.89(67.18%)
	-3.61(74.32%)

	
	t=0.025
	-10.16(16.77%)
	-8.39(35.10%)
	-5.79(49.50%)
	-3.58(59.81%)

	
	t=0.050
	-8.76(6.18%)
	-6.66(17.60%)
	-5.39(32.32%)
	-3.44(44.55%)

	
	t=0.075
	-8.43(2.55%)
	-5.10(8.37%)
	-4.72(20.64%)
	-3.19(32.92%)

	
	t=0.100
	-8.18(1.19%)
	-5.05(3.81%)
	-4.06(12.82%)
	-2.93(24.01%)


Table 5 presents the NMSE performance of CsiNet+ after quantization, where B represents the number of quantization bits for the NN parameter. Firstly, as shown in the table, as the number of quantization bits B increases, the performance of NN is gradually improving. As mentioned earlier, due to extremely limited feedback overhead in actual systems, larger compression factors are generally used. Consider 32 times CSI compression here, and when using 32-bit floating-point numbers, its NMSE is -9.82dB. When quantifying the parameters at 7 bits, the NMSE was -9.64dB and the performance value decreased by 0.18 dB. However, at this point, the storage space occupation has decreased to about 20% of the original. When the quantization bit is 6, NMSE only decreases by about 0.8dB, while storage overhead decreases by 81.25%. Corresponding to the storage space, the computational complexity of NN will also be significantly reduced.
Table 6 shows the NMSE performance of CsiNet+ after pruning, where the pruning thresholds of the two FC layers on the encoder-decoder end are set to 0.010, 0.025, 0.050, 0.075, and 0.100, respectively. From this table, it can be observed that when the compression ratio is 16 or 32 and the threshold is set to 0.010, 0.025, or 0.050, the pruned CsiNet+ can even perform better than the original CsiNet+. At this point, in indoor and outdoor scenes, more than 80% and 30% of NN parameters are pruned, respectively, significantly reducing the complexity and storage requirements of the FC layer. Due to the excessive redundant connections in the original FC layer, pruning operations effectively reduce these redundancies, prevent overfitting on the training set, and improve the generalization of CsiNet+. At high compression ratios, reconstruction performance is not sensitive to pruning operations. For example, considering an indoor scene with a compression factor of 32, setting the pruning threshold to 0.100 results in over 97.3% of connections being subtracted, and at this point, NMSE only decreases by 0.09 dB. Due to the limited feedback overhead in practical systems, the compression factor is generally high.
Observation 1: CsiNet has been extensively studied and a large number of derivative models have emerged based on it
Observation 2: Sufficient evaluation results can be provided for CsiNet and its derivative models with their source code.
Proposal 1: CsiNet can be considered as a candidate backbone structure for AI-based CSI compression with a two-side model
3.  Conclusion
Observation 1: CsiNet has been extensively studied and a large number of derivative models have emerged based on it
Observation 2: Sufficient evaluation results can be provided for CsiNet and its derivative models with their source code.
Proposal 1: CsiNet can be considered as a candidate backbone structure for AI-based CSI compression with a two-side model
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