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Rel-19 Al/ML based RRM enhancement | Current Status
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= Background:

= Beam management, e.g., bearmr
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= Positioning accuracy enhancements for different scenarios including, e.g., those

P-213599 lists the use cases to focus on for Al/ML interface

= Use cases to focus on:
= CSl feedback enhancement, e.g., overhead reduction, improved accuracy, prediction
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Rel-19 Al/ML based RRM enhancement | L3 Measurement Enhancement

= Motivation:

= The overhead of RS used for RRM (i.e., SSB and CSI-RS) is quite high in the current NR design, e.g., when SMTC
periodicity is 20ms, the related SMTC overhead in FR2 is 25%, especially for FR2 (with 5ms SSB burst)

= |t should be quite beneficial to reduce the number of beams at both Tx and/or Rx in L3 related measurements
= Potential enhancement on RRM functionality with Al/ML.:

= | .3 measurements delay reduction by minimizing the Tx/RBx beam sweeping set (spatial beam prediction). SMTC
window duration can be reduced by reducing the beam sweeping factor. This way the measurement delay is
reduced

= |3 measurement reductions by periodically skipping the Tx/Rx beam sweeping. SMTC periodicity can e increased

= As a result of minimizing the L3 measurements we achieve reductions in scheduling restrictions (which increases
throughput)

= Justification
= Al/ML algorithm can be utilized to enhance RRM performance
= Key difference from beam management study in RAN1 includes
= Model generalization.
= All intra- and inter-frequency neighbor cells for L3 measurement vs. serving cell only for L1 measurement
= Operating SNR difference
= -6dB SNR for L3 measurement vs. >0dB SNR for L1 measurement




RSRP Map, Deep Learning and Image SuperResolution
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Generate Data as Inputs to Al/ML

as True Labels

= Find the best N {Tx,Rx} beam pairs from
the interpolated image map [7, f]lzN = g(f/ ),

Deep Learning

= The optimum {Tx,Rx} beam is denoted
by [r*, t*] = g(Y), from the genie labels Y

= Simulations for computing the probability
of having [r*, *] € [F, f];.y




Simulation Results: Al/ML Spatial Prediction for High SNR

= The labels aTx/bRx/c % TR/N = d/CH
in the figure denote:

= a Is the number of subsampled Tx beams

= b is the number of subsampled Rx beams

ab
_c=(1- )100 % is the TR
NCZMCZ

» N=d is the number of top-N beams
= CH = {LOS,NLOS} is the channel type

TR: Training Reduction

Network is trained at antenna

spacing = A/2

Full search= 6416 =1024
1- 22(Tx)*6(Rx)/64*16= 87.5% TR

TR: Training Reduction
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Challenges: Simulation Results for Different SNR Levels

" For L3 RS

= \We trained and simulated the

= The system was simulated with the parameters:

:%

P measurements, SNR becomes more important. Noise and Cell interference could be
dominant during handover

s 22Tx/5Rx/90 % TR/N = 4/NLOS

= We also tested the generalization ability of the
/M
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Rel-19 Al/ML based RRM enhancement | RSRP/RSRQ/SINR Accuracy Enhan:

= Motivation: Al/ML based RSRP/RS

= Definition:
= Current RS

= Al/ML based

RS
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Example of Al/ML Aided (temporal prediction) Conditional Handover (CHO)

Serving NW uses prediction algorithm for final CHO based on the received RSRP
information rather than selecting N-C3. N-C3 shows

the best RSRP at the time of CHO |execution event but it suffers sudden RSRP degradation
due to geographical blockages (such as buildings, trees, mobile objects), and N-C1

is actually the best cell for final CHO. AI/ML could predict the best cell based on database
training
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Conventional HO Enhancement: NW Implementation

Al/ML

Model
NW trained

Databaso o Moasuroments —

Database of Measurements

Probabilities for final

UE_N cell to HO
1 JJdJ111. P1
. || YV¥V)VIVIV) —
UE ID ] ----Q
VIVIVIVESD
Ao ) RSRP Map for current UE P2
A Co, [IRIIRIAR
VIR | M VIV
LE_ = ¢t vl VI Vly, . Select best cell
Cell ID | W VIV i e
Based on ERYNYCIRY
MO I DIVRIe
Cell ID 2N &L NNY,
t MO: >
Measurement Time Series
Object
>
Time Series
| P K

—> TO



TM and © 2023 Apple Inc. All rights reserved.



