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[bookmark: _Toc116995841]Introduction
The first discussions on AI/ML for NR air interface held at RAN4#106-bis-e and RAN4#107. The outcomes of the meetings are captured in the WF [1] and [2]. Some of the use case specific issues require further discussion, as follows:
· [bookmark: _Hlk134788564]KPIs/Test Metrics for use cases
· Use case specific core and LCM (Life Cycle Management) related requirements
· Use case specific requirements/tests related to generalization
· Measurement accuracy requirements
In this paper, we provide some additional views on the topics listed above.
More detailed analysis of general aspects of AI/ML and Interoperability and testing aspects are provided in our accompanying papers [3] and [4], respectively.

[bookmark: _Toc116995842]Discussion
KPIs/ Test Metrics for use cases
KPIs/Test Metrics for CSI Feedback
[bookmark: _Hlk134733295]From RAN WG4 Meeting # 107 WF [2] document we observe the KPIs identified are as below.
	Agreement:
· For metrics for CSI requirements/tests for model inference performance testing
· Consider the following possible test metrics
· Throughput – absolute throughput or relative throughput
· If throughput is not applicable or significant disadvantage is observed by using throughput, intermediate KPIs like cosine similarity, accuracy of predicted CQI, etc,
· FFS on whether the KPIs are testable
· Companies are encouraged to show how the KPI can be tested in RAN4
· If throughput is not applicable or significant disadvantage is observed by using throughput, other test metrics are not precluded
· FFS on whether the KPIs are testable 
· Companies are encouraged to show how the KPI can be tested in RAN4




Performance Requirements
Currently minimum performance requirements of PMI reporting are defined based on the precoding gain, expressed as the relative increase in throughput when the transmitter is configured according to the UE reported PMI compared to the case when the transmitter is using random precoding, respectively. This ratio is referred to as γ (gamma). With the introduction of ML-enabled CSI compression we can foresee some changes in the CSI reporting framework for PMI. and that may impact the cases especially the PMI reporting requirements in terms of performance and the value of γ (gamma) can be different than the current minimum performance requirement. 

The CSI use case impacts only PMI part of the CSI reporting requirements. 
RAN4 should further study the impacts of AI/ML-enabled CSI use cases on the UE performance requirements in TS 38.101-4. A specific new target value of γ (gamma) for AI/ML-enabled CSI use cases can be envisaged.
Other than the legacy γ (gamma), a potential new parameter can be introduced to measure the relative increase in throughput when the transmitter is configured according to the UE reported PMI (using AI/ML-enabled method) compared to the case when the transmitter is configured according to the UE reported PMI, respectively. This new ratio γAIML will show the performance gain of AI/ML enabled use cases in comparison with legacy mechanism.
γAIML is defined as below:

Where:
· 
 is as per the existing requirement (90 % of the maximum throughput obtained at  using the precoders configured according to the UE reports). It can be either type1 random, type1 or type2 precoding.
· 
 is the throughput measured at using the precoders configured according to the CSI report when AIML based CSI feedback enabled.

A new relative throughput performance indicator can be introduced for AI/ML-enabled CSI use cases. 
RAN4 should further study if a new relative throughput performance indicator would be more suitable for AI/ML-enabled CSI use case, other than the legacy γ (gamma).
Note: Legacy performance can be considered as baseline only for the features/use-cases that are mandatorily supported by the device.
Throughput is already a well-defined measure for testing the CSI feedback as a functionality. Relative throughput is also being discussed. Now if we have introduced AIML based CSI feedback functionality, it makes sense to test the performance of the functionality based on the parameters specific to AIML based functionality in addition to the existing legacy test parameters. For e.g., model inference performance can be a criterion to test an AIML enabled functionality. 
Apart from the legacy KPI parameters, an AIML enabled functionality should also be tested and measured for performance based on the AIML specific KPI parameters. 
RAN4 should further study if AIML specific KPI parameters can be used to test an AIML functionality along with the legacy performance requirements/parameters.
Test of CSI Prediction Accuracy
As discussed, and agreed in the previous meeting, testability of KPIs other than throughput (such as CSI Prediction) should be described. In this paper, we discuss this aspect of testability of CSI Prediction accuracy.
A possible way to test the CSI prediction accuracy is to compare the predicted CSI with the measured CSI (ground truth) for the same time horizon.
The test methodology is as illustrated in Figure 1.


[bookmark: _Ref141462658]Figure 1: Test Method for CSI Prediction Accuracy
The Test Equipment (TE) has configured the Device Under Test (DUT) as below to measure the CSI using legacy approach as well as prediction of CSI for a specific time horizon. 
· Measurements between time horizon t1-t7
· Prediction of CSI between time horizon t5-t7 using the measured CSI from t1-t4.
· Report both the Measured CSI and Predicted CSI to the TE.
Now as represented by marker 1 in the Figure 1, the DUT will start measuring the CSI from time interval t1. Once it reaches time interval t5, it feeds the measured CSI into the AIML Model (represented by marker 2 in the Figure 1) to generate the predicted CSI for the time horizon t5-t7. And the DUT continues to measure the CSI until time interval t7 as configured. This is represented by marker 3. 
In parallel, the AIML Model at the DUT predicts the CSI for time horizon t5-t7 as represented by marker 4 in Figure 1. 
Now at the end of time interval t7, the DUT has both the measured CSI value – which is the ground truth and predicted CSI value for time horizon t5-t7. Both of these are reported to the TE. 
At the TE, the predicted CSI value (from marker 5) is compared against the ground truth (from marker 3) to determine the accuracy of the CSI prediction.
To make sure that CSI predictions are actually predicted and not re-used / generated in order to match it with the measured CSI to validate the test, special monitoring reference signals can be introduced as illustrated in Figure 2, with some factor of randomness known only to the TE, so that the TE can easily detect such anomalies. 
[image: ]
[bookmark: _Ref140067997]Figure 2: Monitoring CSI RSs (blue) transmitted regularly in parallel to the conventional CSI RS (red) allocated to different close by resource elements.
As illustrated above in Figure 1 and Figure 2, by introducing monitoring reference signals with some factor of randomness, and then comparing the predicted CSI with ground truth can be a fair test of CSI prediction accuracy.
RAN4 should consider the intermediate KPI used in CSI prediction - accuracy of predicted CSI (SGCS) – as one of the test KPIs for inference performance validation. 

KPIs/Test Metrics for beam management
From RAN WG4 Meeting # 107 WF [2] document we observe the KPIs identified are as below.
	Agreement:
Metrics to be studied for evaluation of beam management inference performance (RAN4 to decide which options are relevant and useful based on study):
· Option 1: RSRP accuracy
· Option 2: Beam prediction accuracy
· Top-1 (%) : the percentage of “the Top-1 strongest beam is Top-1 predicted beam”
· Top-K/1 (%) : the percentage of “the Top-1 strongest beam is one of the Top-K predicted beams”
· Top-1/K (%) : the percentage of “the Top-1 predicted beam is one of the Top-K strongest beams”
· Option 3: other options could be considered



L1-RSRP prediction
In this section, we provide the baseline performance for Spatial-domain DL L1-RSRP prediction of Tx beam for Set A of beams based on measurements results of Set B (BM-Case1). The evaluation results of Set B is subset of Set A are illustrated in Table 1.
For DL L1-RSRP prediction of Tx beam when Set B is subset of Set A
· ML model input: Set B beam L1-RSRP
· ML model output: Set A L1-RSRP of best beam
· Model training and testing with the same Set B

Table 1: Evaluation results of BM-Case1 DL L1-RSRP prediction of Tx beam for Set A
	Assumptions
	Fixed Set B with best Rx beam 
	Fixed Set B with best Rx beam 

	Number of beams in Set A
	64
	64

	Number of beams in Set B

	F32
	F16

	[Pattern of Set B]
	 Tx ID=[ 0, 2, 4, … ]

	Tx ID= [ 0, 4, 8, … ]


	[Rx beam assumption]
	 Best Rx beam for each input sample
	 Best Rx beam for each input sample

	Model input, 
	L1-RSRP, implicty  Tx beam ID
	L1-RSRP, implicty  Tx beam ID

	Model output, 
	Predicted L1-RSRPs of all beams
	Predicted L1-RSRPs of all beams

	Model label
	L1-RSRPs per beam of all the beams(pairs) in Set A
	L1-RSRPs per beam of all the beams(pairs) in Set A

	Training
	~33K
	~33K

	Testing
	~4K
	~4K

	model description
	FNN
+
CNN 
	FNN
+
CNN

	[Model complexity
in a number of model parameters (M)]
	~65K
	~60K

	[Model complexity
in a number of model size (e.g. Mbyte)]
	~0.26MB
	~0.24MB

	Computational complexity [FLOPs]
	~0.244M
	~0.24M

	Top-1(%)
	92.23 
	87.04

	Top-1(%) with 1dB margin
	99
	96.0

	Top-2/1(%) , Top-4/1(%) , other values 
	[99.19,99.92 ]
	[96,30, 98.88]

	Top-1/2(%), Top-1/4(%), other values (Optional)
	-
	-

	Average L1-RSRP diff (dB)
	0.021 
	0.13

	[5%ile of L1-RSRP diff (dB)]
	 0.127
	0.5

	[e.g., Predicted L1-RSRP] (Optional)[dB]
	0.32
	0.56

	RS overhead Reduction (%)
	50% 
	75% 

	[avg. UE throughput]
	-
	-

	[5%ile UE throughput]
	-
	-

	[UCI report]
	-
	-



From BM-Case1 DL L1-RSRP prediction of Tx beam for Set A, when Set B is the subset of Set A, the evaluation results show the KPIs in Table 1.
· For Set B fixed to 32 beams, the prediction accuracy of L1-RSRP of Top-1 DL Tx beam is [99%] at 1 dB margin, evaluation results show the prediction accuracy of L1-RSRP of Top-4 DL Tx beams is almost 100%. The difference between predicted L1-RSRP of Top-1 beam and ground truth (L1-RSRP value of Top-1 beam) is [0.32] dB.  
· For Set B fixed to 16 beams, the prediction accuracy of L1-RSRP of Top -1 DL Tx beam is [96%] at 1 dB margin, evaluation results show the prediction accuracy of L1-RSRP of Top-4 DL Tx beams is [98.88%]. The difference between predicted L1-RSRP of Top-1 beam and ground truth is [0.56] dB.  
RAN4 should further study the prediction accuracy of L1-RSRP of Top-1 DL Tx beam in BM-Case 1 when Set B is subset of Set A. The requirements of AI/ML based L1-RSRP prediction should be further studied.

RAN 4 should further study the test mechanism of KPIs based L1-RSRP prediction.

[bookmark: _Ref110848946]Beam prediction accuracy
Based on the agreed metrics to be studied for evaluation of beam management inference performance, the baseline performance evaluations for Spatial-domain DL Tx beam prediction for Set A of beams based on measurements results of Set B of beams (BM-Case1) are considered:
· BM-Case1 Baseline-option 1: Select the best beam within Set A of beams based on the measurement of all RS resources or all possible beams of beam Set A (exhaustive beam sweeping)
· BM-Case1 option 2-1 (Set B is a subset of Set A): Select the best beam within Set A based on input from Set B.
· BM-Case1 option 2-2 (Set B is different from Set A): Select, for instance, the best narrow beam within Set A based on input from wide beams Set B.

The KPIs of beam (IDs) prediction for BM-Case1 is under studied in RAN1. The Top-1 or Top-K/1 prediction accuracy, the average of L1-RSRP difference (L1-RSRP of predicted Top-1 or Top-K/1 beam IDs) and the average UE throughput are provided in the simulation results in RAN1 [5].
· BM-Case1 option 2-1 and option 2-2 :
· ML model input: Set B beam L1-RSRP
· ML model output: Set A best beam ID


· BM-Case1 option 2-2 : Set B is different from Set A 
As mentioned in our accompanying RAN1 BM paper [5], for BM-Case- Set B is different from Set A, we consider Set B to be a wide beam codebook, and Set A is a refined (narrow) beam codebook. 
The following Set B wide beam codebook construction methods are as follow: 
· Wide beam (WB) codebook#1 - baseline
· The wide beam codebook construction aggregates 4 adjacent narrow beams in one wide beam [4].

· Wide beam (WB) codebook#2
· The wide beam codebook is constructed in a hybrid fashion - some wide beams are constructed based on the wide beam codebook#1 method while other wide beams are constructed randomly selecting refined beams in Set A. The hybrid wide beam codebook has the same coverage as Set A. 
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Figure 3. Wide beam codebook pattern

[bookmark: _Hlk142492732][bookmark: _Hlk142520660]From BM-Case1 DL Tx beam prediction, for both options 2-1 and 2-2 , the KPIs of the beam ID(s) prediction need to be verified. 
RAN4 should further study the test mechanism for AI/ML based Top-1 (%), Top-K/1(%) beam ID(s) prediction for BM-Case 1 DL Tx beam prediction.

Based on the agreed metrics to be studied for evaluation of beam management inference performance, the baseline performance evaluations for Temporal-domain DL Tx beam prediction for Set A of beams based on the historical measurements results of Set B of beams. For temporal-domain DL Tx beam prediction (BM-Case 2), the baseline options are considered as follow:
· BM-Case2 option 1: (Set B is the same as Set A): Select the best beam within Set A based on the historical measurements results of Set B.
· BM-Case2 option 2-1 (Set B is a subset of Set A): Select the best beam within Set A based on the historical measurements results of Set B.
· BM-Case2 option 2-2 (Set B is different from Set A): Select, for instance, the best narrow beam within Set A based on input from wide beams Set B.

For BM-Case 1 DL Tx beam prediction in temporal domain, RAN 4 should further study on the test mechanism for AI/ML based Top-1(%), Top-K/1(%) beam IDs prediction for BM-Case 2 option 1, option 2-1 and option 2-2.  

KPIs/Test Metrics for positioning
From RAN WG4 Meeting # 107 WF [2] document we observe the KPIs identified are as below.

	Agreement:
KPIs/metrics to be studied for positioning:
· Option 1: positioning accuracy: Ground truth vs. reported
· only option available for direct positioning
· Option 2: LOS/NLOS indicator
· Option 3: path phase
· Option 4: RSTD
· Option 5: PRS RSRP
· Option 6: others
Companies proposing Option 3 should clarify how this is used for positioning evaluation
Whether option 1 can be used in RAN4 tests as a metric should be further analyzed
RAN4 should also study whether defining a requirement for existing procedures could only be done when AI/ML is used.
· 



 Direct AI/ML Positioning:
Positioning accuracy as a KPI:
From RAN WG4 Meeting # 107 WF [2] document we observe that the Positioning accuracy is the option 1 KPI considered for further analysis for the RAN4 test evaluation procedure especially for direct positioning.
Since in the case of UE based direct AI/ML Positioning, positioning coordinates are the inference of AI/ML model/functionality, and since L1-RSRP is not necessarily the output of the AI/ML model/functionality, we understand that in this case, the position accuracy would be a very good candidate for potential test metric for inference validation.
Positioning coordinates are inference output of AI/ML model functionality in case of UE based direct AI/ML Positioning.
Positioning accuracy should be considered as Test metric/KPI in RAN4 for inference validation for UE based direct AI/ML Positioning.

Positioning accuracy KPI validation:
For positioning accuracy validation, The AI/ML model inference consisting of the location co-ordinates can be verified based on the ground truth. The ground truth consists of the location point(s) with known location co-ordinates (eg: PRU or GNSS based). The reported location co-ordinate from the UE can be compared to the ground truth to verify the accuracy.
For positioning accuracy validation, The AI/ML model inference consisting of the Positioning co-ordinates can be verified based on the ground truth. The ground truth may consist of the location point(s) with known positioning co-ordinates derived based on different methods like PRU (i.e. Positioning Reference Unit location is known to gNB/LMF) or GNSS (i.e. Location can be derived with the help of GNSS based positioning procedure). New test mechanisms can be added in RAN4 for positioning coordinates validation in case of UE based AI/ML direct Positioning.
Positioning accuracy can be verified based on the ground truth which may consist of the location points with known positioning co-ordinates (i.e. PRU or GNSS based).
Validation of Positioning accuracy KPI is feasible based on the ground truth which can consist of known positioning co-ordinates. New test methods can be introduced for Positioning accuracy validation.

Assisted AI/ML Positioning:
LOS/ NLOS indicator as an intermediate KPI/ feature:
From RAN WG4 Meeting # 107 WF [2] document we observe that the LOS/ NLOS is the option 2 KPI considered for further analysis for the RAN4 test evaluation procedure.
LOS/ NLOS indicator can serve as an input to the AI/ML or non AI/ML based algorithm at the UE. It can also be provided from UE to gNB/LMF for deriving the positioning co-ordinates. LOS/ NLOS indicator used as one of the input for the positioning algorithm will have impact on the positioning accuracy.  Hence, it should be considered as an intermediate KPI/ feature.
For Assisted AIML positioning, intermediate KPIs such as LOS/NLOS have direct impact on the positioning accuracy.
For Assisted AIML Positioning, the intermediate KPIs (e.g., LOS/NLOS) need to be consider for validating the positioning accuracy.

PRS RSRP and RSTD as intermediate KPIs/ features:
 In RAN WG1 Meeting # 112, following agreement was achieved.
Agreement 
Regarding AI/ML model inference, to study the potential specification impact (including the feasibility, and the necessity of specifying AI/ML model input and/or output) at least for the following aspects for AI/ML based positioning accuracy enhancement
· For direct AI/ML positioning (Case 2b and 3b), type of measurement(s) as model inference input considering performance impact and associated signaling overhead
· Potential new measurement: CIR/PDP
· existing measurement: e.g., RSRP/RSRPP/RSTD
· Note1: details of potential new measurement and/or potential enhancement to existing measurement is to be studied
· Note2: study the impact of model input for other cases are not precluded
· For AI/ML assisted positioning with UE-assisted (Case 2a) and NG-RAN node assisted positioning (Case 3a), measurement report to carry model output to LMF
· new measurement report: e.g., ToA, path phase
· existing measurement report: e.g., RSTD, LOS/NLOS indicator, RSRPP
· enhancement of existing measurement report: e.g., soft information/high resolution of RSTD 
· Assistance signaling and procedure to facilitate model inference for both UE-side and Network-side model
· RS configurations
· Other assistance information is not precluded 

From RAN1#112 agreement, PRS RSRP and RSTD are listed as the existing measurements for further study. For UE sided models case 1 (i.e. UE-based positioning with UE-side model, direct AI/ML or AI/ML assisted positioning) and case 2a (UE-assisted/LMF-based positioning with UE-side model, AI/ML assisted positioning), the AI/ML model inference (PRS RSRP or RSTD) will serve as input to positioning algorithm at UE or LMF. 
The measurement accuracy requirements for PRS RSRP and RSTD defined for legacy positioning should be further analyzed and adapted for AI/ML based model/ functionality. Hence PRS RSRP and RSTD should be considered as intermediate KPIs/ features.
For Assisted AI/ML Positioning, PRS RSRP or RSTD inference from AI/ML model/ functionality serving as an input for the positioning algorithm at UE/ LMF will have impact on the positioning accuracy.  Hence, PRS RSRP and RSTD should be considered as intermediate KPIs/ features and the existing PRS RSRP and RSTD measurement accuracy requirements should be further analyzed and adapted for AI/ML based model/ functionality.
For Assisted AI/ML Positioning, the existing measurement accuracy requirements of the intermediate KPIs PRS RSRP and RSTD should be further analyzed and adapted for AI/ML based model/ functionality.

Core requirements for AI/ML / LCM Related Requirements
[bookmark: _Hlk142648000]From RAN WG4 Meeting # 107 WF [2] document we observe the KPIs identified are as below.
	Agreement:
Framework for RRC/MAC-CE/DCI based core reqs
· Option 1: Use the legacy framework for RRC/MAC-CE/DCI based core requirements(e.g. define delay requirements based on multiple delay components)
· Use option 1 as the baseline for LCM procedures
· Discuss the additional core requirement framework if the new procedure is introduced by other WGs and option 1 is not applicable to those new procedures.
RAN4 should also study whether defining a requirement for existing procedures could only be done when AI/ML is used.




LCM related requirements for BM use case
For beam management use-case, the performance monitoring is listed as NW-sided performance monitoring and UE-side performance monitoring. For UE-sided models, it may sound reasonable to assume both types of performance monitoring approaches, but we think that the functionality level performance monitoring shall always be handled and decided by the NW. 
From RAN WG1 Meeting # 113
	Agreement
For BM-Case1 and BM-Case2 with a UE-side AI/ML model, regarding performance monitoring, study potential spec impact(s) from the following aspects in addition to those included in previous agreements: 
· Configuration/Signalling from gNB to UE for measurement and/or reporting
· UE calculates performance metric(s), either reports it to NW or reports an event to NW based on the performance metric(s) 
· FFS: definition of an event and the performance metric(s) used to identify it
· Indication from NW for UE to do LCM operations 



In some cases, the gNB may prefer some monitoring KPI reporting from the UE side such that performance of the functionality from the UE perspective can be obtained at the gNB side. This is somewhat well discussed before in RAN1 and some metrics are further provided below, 
Agreement Regarding the performance metric(s) of AI/ML model monitoring for BM-Case1 and BM-Case2, study the following alternatives (including feasibility/necessity) with potential down-selection:
· Alt.1: Beam prediction accuracy related KPIs, e.g., Top-K/1 beam prediction accuracy
· Alt.2: Link quality related KPIs, e.g., throughput, L1-RSRP, L1-SINR, hypothetical BLER
· Alt.3: Performance metric based on input/output data distribution of AI/ML 
· Alt.4: The L1-RSRP difference evaluated by comparing measured RSRP and predicted RSRP 
· Other alternatives are not precluded
· Note: At least the performance and spec impact should be considered



For UE-sided model and UE sided monitoring, the UE needs to detect the performance
degradation/improvement with respect to the predefined threshold for different KPIs in BM-Case 1 and BM-Case 2.
For UE-sided model and NW sided monitoring, the test needs to ensure that the UE performs
with respect to the request from NW regarding LCM operations. 
For BM-Case 1 and BM-Case 2, RAN 4 should further study on the test mechanism for the performance metric(s) of AI/ML functionality ID based LCM at UE side and NW side.    

Generalization/scalability of requirements/tests
Pointers from RAN WG4 Meeting # 106-bis-e WF [1] as below.
	· Further study whether it is needed/feasible to introduce some form of generalization and/or scalability related requirements for different scenarios/configurations based on RAN1 agreements
· Whether this can be implicitly handled in the test case definition should be considered
· Intention is to guarantee that performance will still be maintained in different environments/scenarios/configurations.



	
Generalization refers to the model's ability to adapt properly to new, previously unseen data, drawn from the same distribution as the one used to create the model. In other words, generalization examines how well a model can digest new data (mostly corresponding to new environment/scenario) and make correct predictions (for unseen/new environment or scenario) after getting trained on a training set.
If a model is trained too well on training data, it will be incapable of generalizing. In such cases, it will end up making erroneous predictions when it’s given new data. In this section, we will discuss about testability of Generalization aspects for beam management use case.
Generalization aspects for BM use case
For AI/ML based BM solution, Generalization poses one of the main challenges for RAN4 testing. Generalization issue includes the following main aspects:
· Changing radio conditions:
If the configured AI/ML functionality/model has been trained with a dataset representing mainly certain radio condition environment, then this AI/ML functionality/model may experience degraded performance if different channel conditions are met in the field. 
· Changing configurations/parameters settings:
The impact of generalization on the performance of various AI/ML use cases depends heavily on the configuration and parameter settings used for dataset generation for the training. For example, for AI/ML beam management use-case, configurations should cover different beam sets/codebooks used, number of wide/narrow beams, grid of beam configuration etc. Similarly, parameters settings may include different sweeping frequency of the beams, the power settings, etc.
· Reference radio conditions and configurations for BM use case:
It is possible to find some reference conditions/configurations based on typical RAN4 testing methods. It is expected that he UE may experience various degree of variations from the reference condition/configuration in the field. Therefore, in order to ensure that the UE performs within the tolerated margins, and different conditions and configurations can be tested and validated in RAN4. Example of reference radio condition can be an AWGN propagation condition. Example of reference configuration can be a certain (selected/mutually agreed) beam set, number of wide/narrow beams, grid of beam configuration. The example of reference parameters setting would be a certain (selected/mutually agreed) sweeping frequency of the beams and the power settings etc.
· Selection of Other scenarios for Generalization testing for BM use case:
Different scenarios can be mutually agreed to be tested in order to validate Generalization aspects for BM use case. For example, for radio conditions, it can be a selection from most present scenarios in the field or from the standardized propagation modes. For instance, TDL-A and/or TDL-C propagation conditions. For selection of different configurations, this can be a selection of beam set configuration from different network vendors, different grid of beam configurations and different number of narrow and wide beams.

Generalization aspects should be tested in RAN4 for BM use case. 
Some reference radio conditions, and configuration/parameters settings can be identified for BM use case and different scenarios can be mutually agreed to be tested in addition of reference conditions and configurations.
Measurement accuracy requirements
· L1-RSRP Quantization Errors
Both BM-Case 1 and BM-Case 2 sub use cases utilize L1-RSRP measurements for the input/output of the ML model. However, due to the RF impairments and other non-ideal components at the UE receiver, the L1-RSRP measurements are affected by errors. The range of measurement errors for FR2 is set by current L1-RSRP requirements defined in Clauses 10.1.20 of TS 38.133. Therefore, in the evaluation, we assume that the measurements error can be modelled with a normal distribution with zero mean and standard deviation that allows with a 95% probability to keep the measurement errors within a range. Then, we repeat the evaluation with different ranges of measurement errors. 
All Tx beams are assumed with the same range of measurements error, nonetheless the measurement errors are independently generated between one and other beams because the UE may perform the beams’ measurements in different time instances. 
For both BS and UE side models, the measurement errors affect the input L1-RSRPs for SetB beams. At the same time, during training, measurement errors also affect the output since the labels are determined based on the non-ideal L1-RSRP of SetA beams. Therefore, we use as model input the non-ideal L1-RSRP values for both training and inference operations. On the other hand, for the model output, during training, we determine the labels from the non-ideal L1-RSRP, whereas during inference we use the ideal L1-RSRP for assessing model performance. A summary is provided in Table 2. We use the BM-Case1 with fixed Set B pattern and 16 Tx beams input to predict SetA with 64 Tx beams.

[bookmark: _Ref131582462]Table 2: Evaluation assumptions for model input/output with measurement errors.
	
	Model Input
	Model Output

	Training
	L1-RSRP with measurement errors
	L1-RSRP with measurement errors

	Inference
	L1-RSRP with measurement errors
	Based on ideal L1-RSRP (for assessing model performance)




Figure 4 shows the CDFs of the difference between the ideal L1-RSRP of predicted beam and the ideal L1-RSRP of the genie-aided beam. Several ranges including 95% of measurement errors are tested: ± 0 dB, ± 2 dB, ± 4 dB, ± 6 dB. Ideal quantization it is assumed to evaluate the measurement error effect only. 
[image: Chart
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Figure 4: Tx beam prediction results for different ranges of measurement errors: ± 0 dB, ± 2 dB, ± 4 dB, ± 6 dB and ideal quantization (step size 0 dB).
The range of ± 6 dB introduces an RSRP difference of 3.6 dB at the 95%-tile of the CDF. This degrades the RSRP difference by 2.8 dB compared to the model that uses ideal measurements. Differently, with ± 4 dB and ± 2 dB ranges, the RSRP differences at the 95%-tile are 2.6 dB and 1.4 dB, respectively. Hence, the RSRP difference increases by 1.7 dB and by 0.5 dB wrt ideal measurements. 
For BM-Case1 and BM-Case2, RAN4 should define the measurement accuracy requirements of non-ideal measurements considering values of measurement errors ranges tighter than the current L1-RSRP requirements.
[bookmark: _Toc116995848]Conclusion
In this paper we share our views on potential RAN4 impacts from selected AI/ML use cases in NR air interface. Specifically, we cover following aspects for selected use cases:
· KPIs/Test Metrics for use cases
· Use case specific core and LCM (Life Cycle Management) related requirements
· Use case specific requirements/tests related to generalization
· Measurement accuracy requirements
In the paper, the following Observations and Proposals were made:
1. The CSI use case impacts only PMI part of the CSI reporting requirements. 
1. RAN4 should further study the impacts of AI/ML-enabled CSI use cases on the UE performance requirements in TS 38.101-4. A specific new target value of γ (gamma) for AI/ML-enabled CSI use cases can be envisaged.
A new relative throughput performance indicator can be introduced for AI/ML-enabled CSI use cases. 
RAN4 should further study if a new relative throughput performance indicator would be more suitable for AI/ML-enabled CSI use case, other than the legacy γ (gamma).
Note: Legacy performance can be considered as baseline only for the features/use-cases that are mandatorily supported by the device.
Apart from the legacy KPI parameters, an AIML enabled functionality should also be tested and measured for performance based on the AIML specific KPI parameters. 
RAN4 should further study if AIML specific KPI parameters can be used to test an AIML functionality along with the legacy performance requirements/parameters.
As illustrated above in Figure 1 and Figure 2, by introducing monitoring reference signals with some factor of randomness, and then comparing the predicted CSI with ground truth can be a fair test of CSI prediction accuracy.
RAN4 should consider the intermediate KPI used in CSI prediction - accuracy of predicted CSI (SGCS) – as one of the test KPIs for inference performance validation. 
From BM-Case1 DL L1-RSRP prediction of Tx beam for Set A, when Set B is the subset of Set A, the evaluation results show the KPIs in Table 1.
· For Set B fixed to 32 beams, the prediction accuracy of L1-RSRP of Top-1 DL Tx beam is [99%] at 1 dB margin, evaluation results show the prediction accuracy of L1-RSRP of Top-4 DL Tx beams is almost 100%. The difference between predicted L1-RSRP of Top-1 beam and ground truth (L1-RSRP value of Top-1 beam) is [0.32] dB.  
· For Set B fixed to 16 beams, the prediction accuracy of L1-RSRP of Top -1 DL Tx beam is [96%] at 1 dB margin, evaluation results show the prediction accuracy of L1-RSRP of Top-4 DL Tx beams is [98.88%]. The difference between predicted L1-RSRP of Top-1 beam and ground truth is [0.56] dB.  
RAN4 should further study the prediction accuracy of L1-RSRP of Top-1 DL Tx beam in BM-Case 1 when Set B is subset of Set A. The requirements of AI/ML based L1-RSRP prediction should be further studied.

RAN 4 should further study the test mechanism of KPIs based L1-RSRP prediction.

From BM-Case1 DL Tx beam prediction, for both options 2-1 and 2-2 , the KPIs of the beam ID(s) prediction need to be verified. 
RAN4 should further study the test mechanism for AI/ML based Top-1 (%), Top-K/1(%) beam ID(s) prediction for BM-Case 1 DL Tx beam prediction.

[bookmark: _Toc116995849]For BM-Case 1 DL Tx beam prediction in temporal domain, RAN 4 should further study on the test mechanism for AI/ML based Top-1(%), Top-K/1(%) beam IDs prediction for BM-Case 2 option 1, option 2-1 and option 2-2.  

Positioning coordinates are inference output of AI/ML model functionality in case of UE based direct AI/ML Positioning.
Positioning accuracy should be considered as Test metric/KPI in RAN4 for inference validation for UE based direct AI/ML Positioning.

Positioning accuracy can be verified based on the ground truth which may consist of the location points with known positioning co-ordinates (i.e. PRU or GNSS based).
Validation of Positioning accuracy KPI is feasible based on the ground truth which can consist of known positioning co-ordinates. New test methods can be introduced for Positioning accuracy validation.
For Assisted AIML positioning, intermediate KPIs such as LOS/NLOS have direct impact on the positioning accuracy.
For Assisted AIML Positioning, the intermediate KPIs (e.g., LOS/NLOS) need to be consider for validating the positioning accuracy.
For Assisted AI/ML Positioning, PRS RSRP or RSTD inference from AI/ML model/ functionality serving as an input for the positioning algorithm at UE/ LMF will have impact on the positioning accuracy.  Hence, PRS RSRP and RSTD should be considered as intermediate KPIs/ features and the existing PRS RSRP and RSTD measurement accuracy requirements should be further analyzed and adapted for AI/ML based model/ functionality.
For Assisted AI/ML Positioning, the existing measurement accuracy requirements of the intermediate KPIs PRS RSRP and RSTD should be further analyzed and adapted for AI/ML based model/ functionality.
For UE-sided model and UE sided monitoring, the UE needs to detect the performance
degradation/improvement with respect to the predefined threshold for different KPIs in BM-Case 1 and BM-Case 2.

For UE-sided model and NW sided monitoring, the test needs to ensure that the UE performs
with respect to the request from NW regarding LCM operations. 
For BM-Case 1 and BM-Case 2, RAN 4 should further study on the test mechanism for the performance metric(s) of AI/ML functionality ID based LCM at UE side and NW side.    
Generalization aspects should be tested in RAN4 for BM use case. 
Some reference radio conditions, and configuration/parameters settings can be identified for BM use case and different scenarios can be mutually agreed to be tested in addition of reference conditions and configurations.
For BM-Case1 and BM-Case2, RAN4 should define the measurement accuracy requirements of non-ideal measurements considering values of measurement errors ranges tighter than the current L1-RSRP requirements.
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