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[bookmark: _Toc116995841]Introduction
RAN4 is starting the discussion on 3GPP Release 18 SI on “AI/ML for air interface” (RP-221348) [1]. This specifically addresses two main aspects highlighted below. 
· Study the 3GPP framework for AI/ML for air-interface corresponding to each target use case regarding aspects such as performance, complexity, and potential specification impact. 
· Use cases to focus on:  
· Initial set of use cases includes:  
· CSI feedback enhancement, e.g., overhead reduction, improved accuracy, prediction 
· Beam management, e.g., beam prediction in time, and/or spatial domain for overhead and latency reduction, beam selection accuracy improvement 
· Positioning accuracy enhancements for different scenarios including, e.g., those with heavy NLOS conditions
In this paper, we discuss potential RAN4 impacts from selected AI/ML use cases in NR air interface. We discuss following main aspects in this regard:
· Impact on use cases related performance requirements
· Use case specific life cycle management (LCM) requirements
· Use case specific generalization capabilities of the functionalities
· Use case specific testability and interoperability aspects
· Specification impacts
The paper starts with a brief introduction of the selected use cases, relevant RAN1 agreements are in the Annex section. Further details about use case specific impacts on performance requirements, potential specification impacts and testability and interoperability issues are discussed in Section 3. Discussion, separately for different use cases.
Our view on the general aspects and their RAN4 impacts are presented in the accompanying paper [2].

Overview of the use-cases
AI/ML-enabled CSI feedback enhancement
AI/ML-enabled CSI feedback enhancement is selected as one of the use cases in RAN1 for the SI RP-221348. CSI feedback use case consists of two sub use cases CSI Compression and CSI prediction. We believe that it is beneficial to exchange views on what could be a general approach to the formulation of requirements and testing of this selected use case.
Below we provide a very brief overview of the selected use cases. A little more description and the relevant agreements can be found in the Annex below.
CSI Compression
In the current standards as part of the CSI feedback framework, RI, PMI and CQI could be jointly reported to gNB according to the given configuration(s) by the gNB, where CQI may need more resources for feedback in the case of sub-band reporting. For codebook-based solutions, UE determines the CQI for reporting based on the precoding matrix indicated by the PMI and also its associated receiver.
With the introduction of MU MIMO system, the overhead required to transmit high-resolution CSI feedback at high ranks in the uplink has increased by many folds. AI/ML based solutions can help in reducing the overhead by compressing the CSI report. We have various approaches to achieve this using AI/ML based solutions using two sided models (Autoencoders). 
The auto encoder-based solution consists of two-sided model with an encoder at the UE which compresses the CSI report parameters (channel matrix or eigenvectors) into a code word that is smaller than the original information. The code word is transmitted in the air interface to the gNB. And it is then reconstructed by the decoder at the gNB. Bringing in the required overhead reductions.
CSI Prediction
Getting accurate CSI is challenging due to rapid channel variation and multi-path fading. The inaccuracy of CSI imposes severe impact on the performance of a wide range of adaptive wireless systems. So, a channel prediction that can optimize the current CSI by forecasting the future CSI in advance with time, can help improve the accuracy of CSI.
AI/ML based solutions can help predict the channel for future time. 
In CSI prediction using AI/ML, the radio channel is measured over several time instances, typically for FDD systems based on regularly transmitted CSI RSs. Then the UE or the gNB input the estimated CSI, either directly or after some pre-processing, into the pre-trained ML model, which outputs the predicted CSI for one- or several-time steps. 
[bookmark: _Toc131156168]RAN4 needs to study impacts from AI/ML enabled CSI feedback use cases, both CSI compression and CSI prediction use cases. Impacts are to be studied for both performance requirements as well as testability and interoperability requirements.
AI/ML-enabled Beam Management
AI/ML-enabled Beam Management is a selected use case in RAN1 for the SI RP-221348 and we believe that it is beneficial to exchange views between the companies on what could be a general approach to the formulation of requirements and testing of this selected use case.
As mentioned in RAN1 agreements (see Annex), RAN1 agreed to study BM-Case1 and BM-Case2, and the corresponding potential specification impact.
Selected BM Cases
1.1.1.1. BM-Case1: Spatial Domain Beam Prediction
AI/ML-enabled beam prediction involves predicting the best beam(s) or predicting the ranking or other quantities (i.e., RSRP(s)) of all beams based on a limited set of measurements. For spatial domain prediction, a limited set of TX beams, RX beams, or TX-RX beam pairs are measured by the UE, and the best beam or beam pair for the UE is determined based on that limited set of measured beams. In spatial domain beam prediction, the limited set (or reduced set) of measurements generally includes beam measurements that do not contain any historical information and therefore do not enable any tracking of the time dimension of the channel. 	

1.1.1.2. BM-Case2: Temporal Domain Beam Prediction
In spatial-temporal domain beam prediction, the ML model can predict the best beam for a UE based on a set of limited measurements that includes historical information.  For example, the set of measurements could include a history of the best beam index selected by the UE with optional inclusion of the corresponding RSRP. The intent for this prediction would be to lower RS overhead by narrowing down candidate best beam(s) for mobile UEs, or by increasing the time period between the transmission of CSI-RS resource sets for beam refinement (e.g., CRI with RSRP feedback) for mobile UEs, which will also reduce reporting overhead by increasing the time period between UE reporting.
[bookmark: _Toc131156169]RAN4 needs to study impacts from AI/ML enabled BM use-cases in both spatial Domain and Temporal Domain. Impacts are to be studied for both performance related requirements as well as testability and interoperability requirements
Relevant RAN1 agreements on AI/ML enabled BM use case are listed in the Annex.
[bookmark: _Toc116995842]Discussion
AI/ML-enabled CSI feedback enhancement
At RAN4 the CSI feedback and its related requirements are present for both the BS (38.104) and the UE (38.101-4).  
At the BS side the CSI feedback requirements are mainly impacting the PUSCH performance requirements. Especially the UCI multiplexed on PUSCH. 
The UE side of CSI feedback requirements are mainly in the PDSCH demodulation requirements and the CSI reporting requirements.
[bookmark: _Toc131156170]Currently there are no RRM requirements defined for CSI feedback.
CSI Compression
1.1.1.3. Performance requirements
With the introduction of AI/ML enabled CSI compression use case, we observe that there can be impacts on certain performance related requirements both at the UE and the BS. Below we discuss the impacts to these requirements.
Impacts on BS Requirements
There can be potential impacts on demodulation performance requirements at the BS. For instance, we foresee some potential impacts on the Requirements for UCI multiplexed on PUSCH (see Clause 8.2.3 of 38.104). Here the compressed CSI data that is exchanged between the UE and the gNB could impact the decoding of CSI at the BS, consequently affecting the BLER of CSI. BLER being one of the KPIs for the minimum requirement (see Clause 8.2.3.2 of 38.104).
Potential Impacts are foreseen in the Requirements for UCI multiplexed on PUSCH (see Clause 8.2.3 of 38.104). 
To analyze the impacts on the requirements, we require some conclusions from the RAN1 as to how the compressed CSI feedback is reported to the BS. As per RAN1#112, some agreements on way forward are listed below in the Annex.
[bookmark: _Toc131156172]Currently RAN1 has just started to discuss on the approaches to report the compressed CSI feedback. And there is no conclusion on this yet. 
[bookmark: _Toc131156175]RAN4 can wait for the RAN1 side conclusion on the mechanisms to report the compressed CSI and then study the impacts of that on the existing performance requirements.
Impacts on UE Performance Requirements
We foresee potential impacts to the UE performance requirements in 38.101-4. Some potential impacts are discussed below.
PDSCH demodulation requirements in Clause 5.2 of TS 38.101-4. For instance, as in legacy requirements, there are minimum performance tables for different rank values (e.g., Table 5.2.1.1.1-3 is for Rank1), we expect to have some impacts on these minimum performance tables. For a given set of parameters – such as reference channel, bandwidth/SCS, modulation format and code rate, propagation conditions and antenna configurations, the compressed CSI reporting should improve the reference values such as ‘fraction of maximum throughput’ and ‘SNR’.
The CSI compression use case impacts PDSCH demodulation requirements. 
CSI reporting requirements in Clause 6 of TS 38.101-4 – The related requirements are categorized as reporting for CQI, PMI and RI. However, the CSI compression use case from the SI mainly impacts the PMI reporting requirements. So, in this paper we are discussing only the PMI reporting requirements from Clause 6.3 of TS 38.101-4.
The CSI compression use case impacts only PMI part of the CSI reporting requirements. 
Currently minimum performance requirements of PMI reporting are defined based on the precoding gain, expressed as the relative increase in throughput when the transmitter is configured according to the UE reported PMI compared to the case when the transmitter is using random precoding, respectively. This ratio is referred to as γ (gamma). With the introduction of ML-enabled CSI compression we can foresee some changes in the CSI reporting framework for PMI. and that may impact the cases especially the PMI reporting requirements in terms of performance and the value of γ (gamma) can be different than the current minimum performance requirement. 

[bookmark: _Toc131156177]RAN4 should further study the impacts of AI/ML-enabled CSI compression on the UE performance requirements in 38.101-4. Consider RAN1 evaluation methodology as starting point.
CSI Prediction
1.1.1.4. Performance requirements
The CSI prediction use case does not change the way CSI reporting is done as part of UCI multiplexed on PUSCH. So, there is no impact on the BS requirements. 

There is ongoing discussion on CSI prediction in the context of MIMO evolution WI [3], and potential impacts on performance requirements are expected to be studied. These potential impacts, if any, would become legacy requirements for AI/ML enabled CSI prediction use case and should be considered in the future.

Alignments with performance requirements for CSI prediction from MIMO evolution WI would be beneficial. 
The CSI prediction use case impacts only UE demodulation performance requirements. 
In case of CSI prediction, the CSI reporting related requirements for PMI reporting (Clause 6.3 of TS 38.101-4) will be impacted. The CSI reporting is done as per the predicted channels for a time horizon in future. This could help in the increased value of the γ. Refer to 3.1.1.1 above for further details of γ.
The CSI prediction use case impacts the PMI part of the CSI reporting requirements.  
RAN4 should further study the impacts of AI/ML-enabled CSI prediction on the UE performance requirements in 38.101-4. Consider RAN1 evaluation methodology as starting point.
CSI prediction accuracy requirement
For CSI prediction use case, we may also foresee certain requirements for CSI prediction accuracy. Since in RAN1 discussions, different prediction horizons can be supported depending upon the UE conditions (such as UE speed), in RAN4 we should study the possibility to define requirements to verify CSI prediction accuracy for different prediction horizons. Depending on the UE or gNB configurations different degradations of the CSI accuracy loss might have to be defined.  
[bookmark: _Toc131156178]RAN4 to further study on the test framework/related requirements for CSI prediction accuracy considering prediction horizons.
AI/ML enabled CSI feedback use case specific testability, interoperability, and LCM aspects
As we introduce AI/ML enabled CSI feedback, we can foresee new testability issues to be addressed. In the following, we discuss some of the problem areas.

Generalization / scalability of the models. 
Based on the agreements for generalization and scalability from RAN1#110 (relevant RAN1 agreements are given in the Annex), the models used in the AI/ML functionality are trained using different data sets by different vendors (both UE side and Network side). Now if the test data used by the device is different than the data used to train the models, then the performance of the functionality can be affected. In that case there must be mechanisms in place to mitigate the performance impact. The same must be reflected in the performance requirements when AI/ML enabled functions are introduced.
[bookmark: _Toc131156182] Generalization or scalability related requirements are currently not present in RAN4.
[bookmark: _Toc131156183][bookmark: _Toc131156184]RAN4 to further study on introducing generalization and scalability related requirements and corresponding criteria for the scenarios/configurations based on RAN1 agreements.
Test Setup impacts
Two-sided models use-cases, such ML-enabled CSI compression, introduce the ML-enabled functionalities to be present at both the UE side and the network side. This poses a problem as the test setups are now required to be capable of running network specific ML-enabled functionalities as shown in Figure 1. 


[bookmark: _Ref131158615]Figure 1 - Test Equipment to support Two-sided model
Furthermore, interoperability of the UE side functionality and that at the network side is essential for proper validation of the complete functionality. Now if the sources of these functionality components are different, then the interoperability problem further amplifies.
Although RAN5 is not officially allocated to SI, we should not preclude the discussion on test set up for this use case.
[bookmark: _Toc131156185]Currently the test equipment does not have the capability to run ML-enabled functionality that is required for validation of the ML-enabled functionality inside either UE or NW side.
[bookmark: _Toc131156186]RAN4 to analyze and discuss how RAN5 related impacts on the testing setup would be addressed, including interoperability related impacts and test equipment design, due to the introduction of AI/ML enabled functionalities.

Channel modelling
Currently the requirements are based on the TDL channel modelling. The models used are TDLA30, TDLB100 and TDLC300. The TDL models are not the most appropriate for channel reporting because the special correlation aspect is not fully considered. Another aspect is time evolution of the channel model.
A special channel model is needed instead of just TDL models that are used. More advanced models can be considered for the test such as CDL. Another aspect is time evolution of the channel model. 
[bookmark: _Toc131156187]RAN4 to study whether TDL models are sufficient for the performance evaluation of AI/ML Enabled CSI feedback use-cases.

LCM aspects
Currently the discussions are only around the generic LCM aspects. And there are no LCM aspects related discussions specific to the use cases identified in the SI.  
Currently there is no use case specific LCM discussions in RAN1/RAN2. 
RAN4 should wait until RAN1/RAN2 concludes on AI/ML enabled CSI feedback reporting use case specific LCM mechanisms.

AI/ML-enabled Beam Management
Performance requirements
[bookmark: _Toc129768823]The UE performance requirements and testing methodology should not aim at testing the ML model or ML algorithm/architecture implementation (input features, inference output, hyperparameters, etc.), but rather at testing the output/outcome of the overall ML-enabled Feature or (ML) Functionality, which is supported or assisted by the ML Model. 
As concluded in RAN1 discussion that L1-RSRP will be used as input to the AI/ML Model for BM use case. It is understood that for AI/ML model to function correctly and accurately high-quality input data will be required for training and inference purposes. Therefore, it may be required to study if L1-RSRP accuracy requirements (Clause 10.1.19 and 10.1.20 of TS 38.133) are needed to be updated for AI/ML enabled Beam Management in both spatial domain and time domain prediction. 
A high-quality input data (such as high accuracy measurements of L1-RSRP) is required for AI/ML models for BM to perform correctly and accurately.
In training and testing phase, the input and output of AI/ML enabled beam management are impacted by L1-RSRP measurements error. There might also be some difficulties in verification the predicted output with the ground truth, when L1-RSRP measurements have error. 
In summary, the SetB beams patterns are studied in three options. Opt1: SetB is fixed across training and inference. For this option we studied several combinations for selecting the 16 Tx beams in SetB from all the Tx beams in SetA.  Opt2B: SetB is randomly changed among pre-configured patterns. Opt2C: SetB is randomly changed among the SetA beams. We assume that each UE randomly selects 16 Tx beams out of 64 Tx beams for measurements. In order to highlight the significance of L1-RSRP accuracy, in this section, we study the selection of SetB of Tx beams as well as the performances with different patterns of SetB and different pre-configured patterns of SetB. The configurations of SetB patterns are described in accompanying RAN1 paper “Evaluation of ML for beam management” [4]. 

1.1.1.5. L1-RSRP measurements error
The maximum level of measurements error for FR2 is set by current L1-RSRP requirements defined in Clauses 10.1.20 (FR2) of TS 38.133. Therefore, in accompanying RAN1 paper “Evaluation of ML for beam management” [4], we assume that the measurements error can be modelled with a normal distribution with zero mean and standard deviation that allows with a 95% probability to keep the measurement errors below requirements. Then, we repeat the evaluation with different values of measurements error. 
· For both BS and UE side models, the measurement errors affect the input L1-RSRPs for SetB beams. At the same time, during training, measurement errors also affect the output since the labels are determined based on the non-ideal L1-RSRP of SetA beams. For training and inference operations we use as model input the non-ideal L1-RSRP values. On the other hand, for the model output, during training, we determine the labels from the non-ideal L1-RSRP, whereas during inference we use the ideal L1-RSRP for assessing model performance
Fig 2.1 shows the CDFs of the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam. Several values of measurements errors are tested: ± 0 dB, ± 2 dB, ± 4 dB, ± 6 dB and ideal quantization, it is assumed to evaluate the measurement error effect only. 
[image: Chart

Description automatically generated]
Figure 2.1: Top-1 Tx beam prediction results for different ranges of measurements errors: ± 0 dB, ±2 dB, ± 4 dB, ± 6 dB.
The model trained with data affected by measurements error (modelled with normal distribution) introduces a significant prediction error wrt to the model trained with ideal measurements. In Figure 2.1, for the L1-RSRP requirement of ± 6 dB, the measurements error degrades the L1-RSRP difference due to predictions at the 95%-tile by 2.8 dB compared to the model trained with ideal measurements.
RAN4 to study if L1-RSRP accuracy requirements are needed to be updated for AI/ML enabled Beam Management.
1.1.1.6. Quantization error of input L1-RSRP
The quantization error might affect the predicted output of AI/ML Beam Management (Clause 10.1.6 “RSRP Measurement Report Mapping" of TS 38.133).  Fig 2.2 shows the CDFs of the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam. We repeat the evaluation with several quantization step sizes: 0 dB, 1 dB, 2dB, and 4 dB. Note that the ideal measurement accuracy is assumed to evaluate the quantization error effect only. 
[image: Chart

Description automatically generated]
Figure 2.2: Top-1 Tx beam prediction results for different values quantization step sizes: 0 dB, 1 dB, 2dB, and 4 dB.
The model trained with measurements reported by UE with quantization step sizes of 1 dB and 2 dB do not much affect the L1-RSRP prediction difference.
RAN4 to study if quantization step sizes requirements are needed to be updated for AI/ML enabled Beam Management.
1.1.1.7. Combined measurements error and Quantization error
Fig 2.3 shows the CDFs of the difference between the ideal L1-RSRP of Top-1 predicted beam and the ideal L1-RSRP of the Top-1 genie-aided beam. The measurements errors: ± 0 dB, ± 2 dB and the quantization step sizes: 0 dB, 1 dB, 2 dB are tested.

[image: ]
Figure 2.3 Top-1 Tx beam prediction results for different values of measurements errors: ± 0 dB, ±2 dB and quantization step sizes: 0 dB, 1 dB, 2dB.
Both measurements error and quantization steps degrade the prediction performance.
RAN4 to study if combined measurements error and quantization step sizes requirements might need to be added for AI/ML enabled Beam Management.
[bookmark: _Toc131156189]
In case of beam prediction for both UE and NW side models, we would expect some impacts on the reporting frequency of L1-RSRP measurements. Therefore, it is proposed to study if any update is needed in L1-RSRP measurements reporting frequency requirements (Clause 9.5.3 of TS 38.133) for AI/ML enabled Beam Management. 

Some impacts would be expected in L1-RSRP measurements reporting frequency for both UE and NW side models.

RAN4 to study if any update is needed in L1-RSRP measurements reporting frequency requirements for AI/ML enabled Beam Management.

AI/ML enabled BM use specific LCM related requirements
In order to ensure consistent system performance, the network should have at least the possibility to switch or de/activate the UE side ML Functionality. The applicable conditions for AI/ML Beam Management based LCM are discussed in accompanying RAN1 paper “Other aspects on ML for beam management” [5]. Verification of additional conditions required to switch/activate/de-activate the ML functionality at the UE side and the testability of UE and NW side LCM related requirements for AI/ML beam management should be studied in RAN4. 

[bookmark: _Toc131156196]The ML model updates at the UE side can have an impact on the performance of the ML-enabled functionality for Top-N beam prediction in both spatial and time domain.
The prediction accuracy or intermediate KPIs or system KPIs for AI/ML Beam Management should be further studied in RAN4. The NW could verify when to switch or de-activate the UE side AI/ML functionalities based on the prediction accuracy or intermediate KPIs or system KPIs. RAN4 requires RAN1 and RAN2 to provide KPIs for use-case specific.
RAN4 will further progress after RAN1 and RAN2 agree on AI/ML Beam Management use-case based LCM.

AI/ML enabled BM use specific testability and interoperability requirements
For AI/ML Beam Management use-case, the AI/ML-enabled functionalities can be present at UE side or NW side. When the AI/ML model and functionality are at UE side, the NW needs to properly valid the model and functionality.  
For AI/ML enabled BM use case, the generalization becomes a very important criteria that needs to be addressed. One UE trained for a set of beams of a certain BS(s) can find itself in the coverage area of a BS for which it hasn’t been trained. In such a case, either a minimum performance should be provided by AI/ML enabled solution, or a fallback mechanism should be supported to fallback to legacy.
[bookmark: _Toc131156200]
Changes in beam sets might cause either (temporary) degradation of the ML enabled BM functionality, or deactivation/switch of the ML-enabled BM Functionality, or ML Model, and use a legacy/ fallback algorithm.
To ensure the consistent performance of ML-enabled BM Functionality performance generalization, it is necessary to test the new ML-enabled Feature and selected Functionality not only in same beam sets only (e.g., each applicable conditions separately) but also in different beam sets configurations.

[bookmark: _Toc116995848]Conclusion
In this paper we share our initial views on potential RAN4 impacts from selected AI/ML use cases in NR air interface. We mainly focused on AI-enabled CSI feedback enhancement and AI/ML-enabled BM use cases. Specifically, we discuss impacts on use cases related performance requirements, use case specific testability and interoperability aspects, impacts due to generalization capabilities of the functionalities and specification impacts.
In the paper, the following Observations and Proposals were made:
General observations and proposals are as follows:
1. RAN4 needs to study impacts from AI/ML enabled CSI feedback use cases, both CSI compression and CSI prediction use cases. Impacts are to be studied for both performance requirements as well as testability and interoperability requirements.
RAN4 needs to study impacts from AI/ML enabled BM use-cases in both spatial Domain and Temporal Domain. Impacts are to be studied for both performance related requirements as well as testability and interoperability requirements.
AI/ML-enabled CSI feedback enhancement related observations and proposals are as follows:
Currently there are no RRM requirements defined for CSI feedback.
Potential Impacts are foreseen in the Requirements for UCI multiplexed on PUSCH (see Clause 8.2.3 of 38.104). 
Currently RAN1 has just started to discuss on the approaches to report the compressed CSI feedback. And there is no conclusion on this yet. 
1. RAN4 can wait for the RAN1 side conclusion on the mechanisms to report the compressed CSI and then study the impacts of that on the existing performance requirements.
The CSI compression use case impacts PDSCH demodulation requirements. 
The CSI compression use case impacts only PMI part of the CSI reporting requirements. 
RAN4 should further study the impacts of AI/ML-enabled CSI compression on the UE performance requirements in 38.101-4. Consider RAN1 evaluation methodology as starting point.
Alignments with performance requirements for CSI prediction from MIMO evolution WI would be beneficial. 
The CSI prediction use case impacts only UE demodulation performance requirements. 
The CSI prediction use case impacts the PMI part of the CSI reporting requirements.  
RAN4 should further study the impacts of AI/ML-enabled CSI prediction on the UE performance requirements in 38.101-4. Consider RAN1 evaluation methodology as starting point.
RAN4 to further study on the test framework/related requirements for CSI prediction accuracy considering prediction horizons.
Generalization or scalability related requirements are currently not present in RAN4.
RAN4 to further study on introducing generalization and scalability related requirements and corresponding criteria for the scenarios/configurations based on RAN1 agreements.
Currently the test equipment does not have the capability to run ML-enabled functionality that is required for validation of the ML-enabled functionality inside either UE or NW side.
RAN4 to analyze and discuss how RAN5 related impacts on the testing setup would be addressed, including interoperability related impacts and test equipment design, due to the introduction of AI/ML enabled functionalities.
A special channel model is needed instead of just TDL models that are used. More advanced models can be considered for the test such as CDL. Another aspect is time evolution of the channel model. 
RAN4 to study whether TDL models are sufficient for the performance evaluation of AI/ML Enabled CSI feedback use-cases.
Currently there is no use case specific LCM discussions in RAN1/RAN2. 
RAN4 should wait until RAN1/RAN2 concludes on AI/ML enabled CSI feedback reporting use case specific LCM mechanisms.
AI/ML-enabled Beam Management related observations and proposals are as follows:
A high-quality input data (such as high accuracy measurements of L1-RSRP) is required for AI/ML models for BM to perform correctly and accurately.
The model trained with data affected by measurements error (modelled with normal distribution) introduces a significant prediction error wrt to the model trained with ideal measurements. In Figure 2.1, for the L1-RSRP requirement of ± 6 dB, the measurements error degrades the L1-RSRP difference due to predictions at the 95%-tile by 2.8 dB compared to the model trained with ideal measurements.
RAN4 to study if L1-RSRP accuracy requirements are needed to be updated for AI/ML enabled Beam Management.
The model trained with measurements reported by UE with quantization step sizes of 1 dB and 2 dB do not much affect the L1-RSRP prediction difference.
RAN4 to study if quantization step sizes requirements are needed to be updated for AI/ML enabled Beam Management.
Both measurements error and quantization steps degrade the prediction performance.
RAN4 to study if combined measurements error and quantization step sizes requirements might need to be added for AI/ML enabled Beam Management.
Some impacts would be expected in L1-RSRP measurements reporting frequency for both UE and NW side models.
RAN4 to study if any update is needed in L1-RSRP measurements reporting frequency requirements for AI/ML enabled Beam Management.
The ML model updates at the UE side can have an impact on the performance of the ML-enabled functionality for Top-N beam prediction in both spatial and time domain.
The prediction accuracy or intermediate KPIs or system KPIs for AI/ML Beam Management should be further studied in RAN4. The NW could verify when to switch or de-activate the UE side AI/ML functionalities based on the prediction accuracy or intermediate KPIs or system KPIs. RAN4 requires RAN1 and RAN2 to provide KPIs for use-case specific.
RAN4 will further progress after RAN1 and RAN2 agree on AI/ML Beam Management use-case based LCM.
Changes in beam sets might cause either (temporary) degradation of the ML enabled BM functionality, or deactivation/switch of the ML-enabled BM Functionality, or ML Model, and use a legacy/ fallback algorithm.
To ensure the consistent performance of ML-enabled BM Functionality performance generalization, it is necessary to test the new ML-enabled Feature and selected Functionality not only in same beam sets only (e.g., each applicable conditions separately) but also in different beam sets configurations.
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Annex
Description of CSI Feedback Use cases
CSI Compression with two sided models
In the current standards as part of the CSI feedback framework, RI, PMI and CQI could be jointly reported to gNB according to the given configuration(s) by the gNB, where CQI may need more resources for feedback in the case of sub-band reporting. For codebook-based solutions, UE determines the CQI for reporting based on the precoding matrix indicated by the PMI and also its associated receiver.
With the introduction of MU MIMO system, the overhead required to transmit high-resolution CSI feedback at high ranks in the uplink has increased by many folds. AI/ML based solutions can help in reducing the overhead by compressing the CSI report. We have various approaches to achieve this using AI/ML based solutions using two sided models (Autoencoders). 
Autoencoders are, by definition, matching the problem of CSI feedback compression. Indeed, autoencoders are an unsupervised learning technique where a bottleneck is imposed in the network to force a compressed knowledge representation of the original input. The architecture of autoencoders is illustrated in Figure 1. The main challenge remains the reconstruction of the original input.
Before training the autoencoder, four hyperparameters, among others, need to be set: 1) the size of the codeword/bottleneck, 2) the number of layers, 3) the number of nodes per layer, and 4) the loss function to be used, e.g., mean squared error (MSE), cosine similarity. The number of nodes per layer typically decreases with each subsequent layer of the encoder and increases back in the decoder. The decoder is symmetric to the encoder in terms of the layer structure.
An autoencoder consists of three parts as described in Figure 1: 1) the encoder, 2) the bottleneck (codeword here), and 3) the decoder. The encoder aims at compressing the input data, in our case the channel matrix or the eigenvectors, into a codeword that is of dimension smaller than the original information. The bottleneck, in our case the codeword, is the compressed representation of the original information. The bottleneck is followed by the decoder, a module that decompress the codeword and reconstruct the data: the recovered information .  is then compared to  It is a lossy process, and the recovered matrix  will not be the same as  
[image: ]
Figure 1: Autoencoder architecture.

In order to improve the encoding efficiency, the quantization of codewords is needed. Therefore, it is important to consider the quantization of the CSI after compression. The quantizer module is depicted Figure 2. The quantization process introduces quantization noise/distortion, it is then important to design an efficient quantizer that minimized the quantization noise. The methods proposed in the literature are not differentiable and cannot be included in the backpropagation of the training. To get optimal performance, the quantization module should be optimized with the overall structure of the neural network. 
[image: ]
Figure 2: Lossy compression and recovery.

Further details can be found in [6].
CSI Prediction
Getting accurate CSI is challenging due to rapid channel variation and multi-path fading. The inaccuracy of CSI imposes severe impact on the performance of a wide range of adaptive wireless systems. So, a channel prediction that can optimize the current CSI by forecasting the future CSI in advance with time, can help improve the accuracy of CSI.
AI/ML based solutions can help predict the channel for future time. 
Channel prediction is seen as a main enabler for more advanced use cases, which are sensitive to channel aging like MU MIMO precoding or coherent JT-CoMP as discussed for cell free massive MIMO. Furthermore, accurate channel prediction over a large prediction horizon can support high speed UEs and can be a suitable means to reduce the CSI reporting overhead over the state-of-the-art techniques like NR TYPE II. Such overhead reduction can be achieved by a reduced CSI reporting rate, which is then related to the channel prediction quality. 
We should note that channel prediction also fundamentally impacts massive MIMO overhead for reference signals in FDD systems. Without channel prediction the usage of the reported CSI is limited by the coherence time and coherence frequency bandwidth. In case of a high number of antenna elements or antenna ports the related number of CSI reference signals might become a large portion of the resource elements in this coherence area of the radio channel. Therefore, it reduces the related number of resource elements for the user data rate, i.e., the PDSCH. With channel prediction the channel evolution might be reconstructed, thereby potentially might overcome this coherence related limitations. 
Figure 3 illustrates the most basic idea for channel prediction, where the radio channel is measured over several time instances, typically for FDD systems based on regularly transmitted CSI RSs. Then the UE or the gNB input the estimated CSI, either directly or after some pre-processing, into the pre-trained ML model, which outputs the predicted CSI for one or several time steps. 
[image: ]
Figure 3: Basic concept of channel prediction, where the radio channel is observed over a period of time and measured by CSI RSs and predicted into the future.
Most useful is to predict as CSI the explicit radio channel evolution in the time and/or the frequency domain as this will enable any type of precoding, will support any type of MU MIMO user grouping and scheduling and therefore is the basis for more advanced future concepts like extensive massive MIMO, or cell free massive MIMO. Alternatively, the CSI prediction might be close to current Type II CSI reporting and predicting parameters like PMI, RI, CQI, etc. Note that the possible inference and reporting options for channel prediction are closely related to the options as discussed above for channel compression. Therefore, the channel prediction can be either for the explicit CSI, for the strongest eigenvectors, or, for W2 while W1 is fixed for a certain number of prediction steps. 
Further details can be found in [6].
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CSI Compression
The agreements for using a two-sided model-based CSI compression from RAN1#109-e as shown below. 
	Agreement 
For the evaluation of the AI/ML based CSI compression sub use cases, a two-sided model is considered as a starting point, including an AI/ML-based CSI generation part to generate the CSI feedback information and an AI/ML-based CSI reconstruction part which is used to reconstruct the CSI from the received CSI feedback information.
· At least for inference, the CSI generation part is located at the UE side, and the CSI reconstruction part is located at the gNB side.



The agreements from RAN1#112 on way forward for reporting the CSI reporting structure for AI/ML based CSI Feedback
	Agreement
In CSI compression using two-sided model use case, further study the following aspects for CSI configuration and report: 
· NW configuration to determine CSI payload size, e.g., possible CSI payload size, possible rank restriction and/or other related configuration.
· How UE determines/reports the actual CSI payload size and/or other CSI related information within constraints configured by the network.

Agreement
In CSI compression using two-sided model use case, further study the feasibility and methods to support the legacy CSI reporting principles including at least: 
· The priority rule regarding CSI collision handling and CSI omission
· Codebook subset restriction
· CSI processing Unit



The agreements from RAN1#110 on training type definitions are as follows:
Agreement
In CSI compression using two-sided model use case, the following AI/ML model training collaborations will be further studied:
· Type 1: Joint training of the two-sided model at a single side/entity, e.g., UE-sided or Network-sided.
· Type 2: Joint training of the two-sided model at network side and UE side, repectively.
· Type 3: Separate training at network side and UE side, where the UE-side CSI generation part and the network-side CSI reconstruction part are trained by UE side and network side, respectively.
· Note: Joint training means the generation model and reconstruction model should be trained in the same loop for forward propagation and backward propagation. Joint training could be done both at single node or across multiple nodes (e.g., through gradient exchange between nodes).
· Note: Separate training includes sequential training starting with UE side training, or sequential training starting with NW side training [, or parallel training] at UE and NW
· Other collaboration types are not excluded. 
In RAN1#110bis-e following conclusion were reached:
Conclusion 
For the evaluation of Type 2 (Joint training of the two-sided model at network side and UE side, respectively), following procedure is considered as an example:
· For each FP/BP loop,
· Step 1: UE side generates the FP results (i.e., CSI feedback) based on the data sample(s), and sends the FP results to NW side
· Step 2: NW side reconstructs the CSI based on FP results, trains the CSI reconstruction part, and generates the BP information (e.g., gradients), which are then sent to UE side
· Step 3: UE side trains the CSI generation part based on the BP information from NW side
· Note: the dataset between UE side and NW side is aligned.
· Other Type 2 training approaches are not precluded and reported by companies
Conclusion
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following procedure is considered for the sequential training starting with NW side training (NW-first training):
· Step1: NW side trains the NW side CSI generation part (which is not used for inference) and the NW side CSI reconstruction part jointly
· Step2: After NW side training is finished, NW side shares UE side with a set of information (e.g., dataset) that is used by the UE side to be able to train the UE side CSI generation part
· Step3: UE side trains the UE side CSI generation part based on the received set of information
· Other Type 3 NW-first training approaches are not precluded and reported by companies
Conclusion
For the evaluation of an example of Type 3 (Separate training at NW side and UE side), the following procedure is considered for the sequential training starting with UE side training (UE-first training):
· Step1: UE side trains the UE side CSI generation part and the UE side CSI reconstruction part (which is not used for inference) jointly
· Step2: After UE side training is finished, UE side shares NW side with a set of information (e.g., dataset) that is used by the NW side to be able to train the CSI reconstruction part
· Step3: NW side trains the NW side CSI reconstruction part based on the received set of information
· Other Type 3 UE-first training approaches are not precluded and reported by companies
Furthermore, following agreement was reached in RAN1#112 for model monitoring with intermediate KPIs:
 Agreement
In CSI compression using two-sided model use case, further study the necessity, feasibility, and potential specification impact for intermediate KPIs based monitoring including at least:
· NW-side monitoring based on the target CSI with realistic channel estimation associated to the CSI report, reported by the UE or obtained from the UE-side. 
· UE-side monitoring based on the output of the CSI reconstruction model, subject to the aligned format, associated to the CSI report, indicated by the NW or obtained from the network side.
· Network may configure a threshold criterion to facilitate UE to perform model monitoring. 
· UE-side monitoring based on the output of the CSI reconstruction model at the UE-side
· Note: CSI reconstruction model at the UE-side can be the same or different comparing to the actual CSI reconstruction model used at the NW-side. 
· Network may configure a threshold criterion to facilitate UE to perform model monitoring. 
· FFS: Other solutions, e.g., UE-side uses a model that directly outputs intermediate KPI. Network-side monitoring based on target CSI measured via SRS from the UE.
Note: Monitoring approaches not based on intermediate KPI are not precluded
Note: the study of intermediate KPIs based monitoring should take into account the monitoring reliability (accuracy), overhead, complexity, and latency.

CSI Prediction
For CSI prediction use case it was concluded in RAN1#110 that a one-sided model will be used as a starting point.
	Conclusion
If the AI/ML based CSI prediction sub use case is to be selected as a sub use case, a one-sided structure is considered as a starting point, where the AI/ML inference is performed at either gNB or UE.



Generalization
Agreements on Generalization from RAN1#110 and RAN1#111 listed below.
	
Agreement
The following cases are considered for verifying the generalization performance of an AI/ML model over various scenarios/configurations as a starting point:
· Case 1: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a dataset from the same Scenario#A/Configuration#A
· Case 2: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model performs inference/test on a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B
· Case 3: The AI/ML model is trained based on training dataset constructed by mixing datasets from multiple scenarios/configurations including Scenario#A/Configuration#A and a different dataset than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B, and then the AI/ML model performs inference/test on a dataset from a single Scenario/Configuration from the multiple scenarios/configurations, e.g.,  Scenario#A/Configuration#A, Scenario#B/Configuration#B, Scenario#A/Configuration#B.
· Note: Companies to report the ratio for dataset mixing
· Note: number of the multiple scenarios/configurations can be larger than two
· FFS the detailed set of scenarios/configurations
· FFS other cases for generalization verification, e.g.,
· Case 2A: The AI/ML model is trained based on training dataset from one Scenario#A/Configuration#A, and then the AI/ML model is updated based on a fine-tuning dataset different than Scenario#A/Configuration#A, e.g., Scenario#B/Configuration#B, Scenario#A/Configuration#B. After that, the AI/ML model is tested on a different dataset than Scenario#A/Configuration#A, e.g., subject to Scenario#B/Configuration#B, Scenario#A/Configuration#B.
Agreement
For CSI enhancement evaluations, to verify the generalization performance of an AI/ML model over various scenarios, the set of scenarios are considered focusing on one or more of the following aspects as a starting point:
· Various deployment scenarios (e.g., UMa, UMi, InH)
· Various outdoor/indoor UE distributions for UMa/UMi (e.g., 10:0, 8:2, 5:5, 2:8, 0:10)
· Various carrier frequencies (e.g., 2GHz, 3.5GHz)
· Other aspects of scenarios are not precluded, e.g., various antenna spacing, various antenna virtualization (TxRU mapping), various ISDs, various UE speeds, etc.
· Companies to report the selected scenarios for generalization verification
Agreement
For CSI enhancement evaluations, to verify the generalization/scalability performance of an AI/ML model over various configurations (e.g., which may potentially lead to different dimensions of model input/output), the set of configurations are considered focusing on one or more of the following aspects as a starting point:
· Various bandwidths (e.g., 10MHz, 20MHz) and/or frequency granularities, (e.g., size of subband)
· Various sizes of CSI feedback payloads, FFS candidate payload number
· Various antenna port layouts, e.g., (N1/N2/P) and/or antenna port numbers (e.g., 32 ports, 16 ports)
· Other aspects of configurations are not precluded, e.g., various numerologies, various rank numbers/layers, etc.
· Companies to report the selected configurations for generalization verification
· Companies are encouraged to report the method to achieve generalization over various configurations to achieve scalability of the AI/ML input/output, including pre-processing, post-processing, etc.
Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different input dimensions of CSI generation part (e.g., different bandwidths/frequency granularities, or different antenna ports), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed dimension X1 (e.g., a fixed bandwidth/frequency granularity, and/or number of antenna ports), and then the AI/ML model performs inference/test on a dataset from the same dimension X1.
· Case 2: The AI/ML model is trained based on training dataset from a single dimension X1, and then the AI/ML model performs inference/test on a dataset from a different dimension X2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of X1, X2,..., Xn, and then the AI/ML model performs inference/test on a single dataset subject to the dimension of X1, or X2,…, or Xn.
· Note: For Case 2/3, the solutions to achieve the scalability between Xi and Xj, are reported by companies, including, e.g., pre-processing to angle-delay domain, padding, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases
Agreement
For evaluating the generalization/scalability over various configurations for CSI compression, to achieve the scalability over different output dimensions of CSI generation part (e.g., different generated CSI feedback dimensions), the generalization cases of are elaborated as follows
· Case 1: The AI/ML model is trained based on training dataset from a fixed output dimension Y1 (e.g., a fixed CSI feedback dimension), and then the AI/ML model performs inference/test on a dataset from the same output dimension Y1.
· Case 2: The AI/ML model is trained based on training dataset from a single output dimension Y1, and then the AI/ML model performs inference/test on a dataset from a different output dimension Y2.
· Case 3: The AI/ML model is trained based on training dataset by mixing datasets subject to multiple dimensions of Y1, Y2,..., Yn, and then the AI/ML model performs inference/test on a single dataset of Y1, or Y2,…, or Yn.
· Note: For Case 1/2/3, companies to report whether the output of the CSI generation part is before quantization or after quantization.
· Note: For Case 2/3, the solutions to achieve the scalability between Yi and Yj, are reported by companies, including, e.g., truncation, additional adaptation layer in AI/ML model, etc.
· FFS the verification of fine-tuning
· FFS other additional cases




Relevant RAN1 Agreements for AI/ML based BM

For performance monitoring, RAN1#112 meeting made following agreements:

Agreement 
Regarding the performance metric(s) of AI/ML model monitoring for BM-Case1 and BM-Case2, study the following alternatives (including feasibility/necessity) with potential down-selection:
· Alt.1: Beam prediction accuracy related KPIs, e.g., Top-K/1 beam prediction accuracy
· Alt.2: Link quality related KPIs, e.g., throughput, L1-RSRP, L1-SINR, hypothetical BLER
· Alt.3: Performance metric based on input/output data distribution of AI/ML 
· Alt.4: The L1-RSRP difference evaluated by comparing measured RSRP and predicted RSRP 
· Other alternatives are not precluded
· Note: At least the performance and spec impact should be considered


Agreement
For BM-Case1 and BM-Case2 with a UE-side AI/ML model, regarding NW-side performance monitoring, study the following aspects as a starting point including the study of necessity: 
· Configuration/Signaling from gNB to UE for measurement and/or reporting
· UE reporting to NW (e.g., for the calculation of performance metric) 
· Indication from NW for UE to do LCM operations 
· Other aspect(s) is not precluded
· Note1: At least the performance and reporting overhead of model monitoring mechanism should be considered

Agreement
For BM-Case1 and BM-Case2 with a UE-side AI/ML model, regarding UE-side performance monitoring, study the following aspects as a starting point including the study of necessity and feasibility: 
· Indication/request/report from UE to gNB for performance monitoring 
· Note: The indictation/request/report may be not needed in some case(s)
· Configuration/Signaling from gNB to UE for performance monitoring
· Other aspect(s) is not precluded

For Spatial Domain BM, RAN1#111 meeting made the following agreements in RAN1# related to Set A and Set B, and further discussions on these may be needed to limit the scope of the study. 

	Agreement 
For the sub use case BM-Case1, support the following alternatives for further study:
· Alt.1: Set A and Set B are different (Set B is NOT a subset of Set A)
· Alt.2: Set B is a subset of Set A
· Note1: Set A is for DL beam prediction and Set B is for DL beam measurement.
· Note2: The beam patterns of Set A and Set B can be clarified by the companies.

Agreement 
For the sub use case BM-Case1 and BM-Case2, further study the following alternatives for the predicted beams:
· Alt.1: DL Tx beam prediction
· Alt.2: DL Rx beam prediction
· Alt.3: Beam pair prediction (a beam pair consists of a DL Tx beam and a corresponding DL Rx beam)
· Note1: DL Rx beam prediction may or may not have spec impact




For temporal domain BM, RAN1#111 meeting made the following agreements related to Set A and Set B, and further discussions on these may be needed to limit the scope of the study.Agreement
For the sub use case BM-Case2, further study the following alternatives:
· Alt.1: Set A and Set B are different (Set B is NOT a subset of Set A)
· Alt.2: Set B is a subset of Set A (Set A and Set B are not the same)
· Alt.3: Set A and Set B are the same
· Note1: The beam pattern of Set A and Set B can be clarified by the companies.

Agreement 
For the sub use case BM-Case1 and BM-Case2, further study the following alternatives for the predicted beams:
· Alt.1: DL Tx beam prediction
· Alt.2: DL Rx beam prediction
· Alt.3: Beam pair prediction (a beam pair consists of a DL Tx beam and a corresponding DL Rx beam)
· Note1: DL Rx beam prediction may or may not have spec impact



Regarding model input for AI/ML based BM use case, RAN1 made following conclusion:
Conclusion
Regarding the sub use case BM-Case1, further study the following alternatives for AI/ML input:
· Alt.1: Only L1-RSRP measurement based on Set B
· Alt.2: L1-RSRP measurement based on Set B and assistance information
· FFS: Assistance information. The following were mentioned by companions in the discussion:  Tx and/or Rx beam shape information (e.g., Tx and/or Rx beam pattern, Tx and/or Rx beam boresight direction (azimuth and elevation), 3dB beamwidth, etc.), expected Tx and/or Rx beam for the prediction (e.g., expected Tx and/or Rx angle, Tx and/or Rx beam ID for the prediction), UE position information, UE direction information, Tx beam usage information, UE orientation information, etc.
· Note: The provision of assistance information may be infeasible due to the concern of disclosing proprietary information to the other side.
· Alt.3: CIR based on Set B
· Alt.4: L1-RSRP measurement based on Set B and the corresponding DL Tx and/or Rx beam ID
· Note1: It is up to companies to provide other alternative(s) including the combination of some alternatives
· Note2: All the inputs are “nominal” and only for discussion purpose.

Regarding the model output for BM-Case 1, certain predicted quantities for each beam in Set A are discussed in RAN1#110 and 110-bis-e meetings:

	Agreement 
Regarding the sub use case BM-Case1 and BM-Case2, study the following alternatives for AI/ML output:
· Alt.1: Tx and/or Rx Beam ID(s) and/or the predicted L1-RSRP of the N predicted DL Tx and/or Rx beams 
· E.g., N predicted beams can be the top-N predicted beams
· Alt.2: Tx and/or Rx Beam ID(s) of the N predicted DL Tx and/or Rx beams and other information
· FFS: other information (e.g., probability for the beam to be the best beam, the associated confidence, beam application time/dwelling time, Predicted Beam failure) 
· E.g., N predicted beams can be the top-N predicted beams
· Alt.3: Tx and/or Rx Beam angle(s) and/or the predicted L1-RSRP of the N predicted DL Tx and/or Rx beams
· E.g., N predicted beams can be the top-N predicted beams
· FFS: details of Beam angle(s)
· FFS: how to select the N DL Tx and/or Rx beams (e.g., L1-RSRP higher than a threshold, a sum probability of being the best beams higher than a threshold, RSRP corresponding to the expected Tx and/or Rx beam direction(s))

Agreement 
For BM-Case1 with a UE-side AI/ML model, study the potential specification impact of L1 signaling to report the following information of AI/ML model inference to NW 
· The beam(s) that is based on the output of AI/ML model inference
· FFS: Predicted L1-RSRP corresponding to the beam(s)
· FFS: other information

Agreement
For BM-Case2 with a UE-side AI/ML model, study the potential specification impact   of L1 signaling to report the following information of AI/ML model inference to NW
· The beam(s) of N future time instance(s) that is based on the output of AI/ML model inference
· FFS: value of N
· FFS: Predicted L1-RSRP corresponding to the beam(s)
· Information about the timestamp corresponding the reported beam(s)
· FFS: explicit or implicit
· FFS: other information
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