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1 Introduction 
In the last RAN4 meeting, there were some initial discussions on the feasibility of FR2 multi-band BS. A WF [1] was made and the following is extracted from the WF:
Feasibility of FR2 multi-band BS
· The following technical challenges need to be studied for FR2 multi-band BS
· RF front-end
· Antenna array
· Phase shifters
· Beamforming architectures
· Others are not excluded
· The following topics should be considered for investigation of FR2 multi-band BS:
1) Additional declarations for FR2 multi-band BS
2) The applicability of multi-band requirements
3) OTA transmitter OFF power
4) OTA Adjacent Channel Leakage Power Ratio (ACLR)
5) OTA operating band unwanted emissions 
6) OTA transmitter spurious emissions
7) OTA adjacent channel selectivity
8) OTA in-band blocking
9) OTA out-of-band blocking
10) OTA receiver spurious emissions
11) OTA receiver intermodulation
12) OTA EVM
13) EIRP accuracy
· The largest feasible bandwidth for an FR2 multi-band BS should be studied and decided in the SI.
In this contribution, we further discuss the technical feasibility of FR2 multi-band BS, and give our proposals on this issue.
2 [bookmark: _Ref178064866]Discussion
2.1 RF front-end
To support FR2 Multi-band BS, compact and high integration, high performance, low power consumption, and low cost broadband RF front-end is very important. 
2.1.1	PA
Single-band FR2 BS performance can be taken as start point when discuss Multi-band FR2 BS feasibility. Assume a 26GHz single-band FR2 BS, with 256 PA elements and 256 antenna elements with +45/-45° dual-polarization, one PA with 10dBm average output power, and one antenna element has 6dBi antenna gain. Assume the combiner/divider/switch total insertion loss is 2dB, then we get the EIRP is 10dBm+24dB+6dBi+24dB+3dB-2dB=65 dBm, as shown in the following table. 
Table 1: Simplified BS transmitter link budget
	PA element average power (dBm)
	10

	Number of PA
	256

	10*log10(Number of PA)
	24

	Antenna element gain (dBi）
	6

	Number of antenna element 
	256

	10*log10(Number of antenna element)
	24

	Number of antenna polarization
	2

	Insertion Loss（dB）
	2

	EIRP (dBm )
	65



It is noted that FR2 MB BS PA should tradeoff the Pout per element and array size at fixed EIRP, Smaller array requires high Pout per element, while larger array adds complexity and cost. Basically, PA element with average power no smaller than 10dBm is practically feasible for a FR2 multi-band BS.
In [2] a 24-to-42GHz wideband PA was presented. The chip has a core area of only 0.21mm2 , ideal for large scaled array applications .It exhibits flat P1dB of 17.8 to 19.6dBm, within 1.6dB from Psat, and flat PAEP1dB of 36.6 to 44.3% over 24 to 40GHz, verifying the truly wideband large-signal matching. At 26GHz, the PA achieves 20.3dBm Psat and 19.2dBm P1dB with a high 46.1% PAEmax and 44.3% PAEP1dB. It also achieves the highest reported modulation speed (36 Gb /s 64-QAM) for mm-wave PAs below 50GHz.
[image: ]
Figure 1 in [2] Top schematic of the prototype PA and small-signal S-parameters and large-signal CW measurement results

[image: ]
Figure 2 in [2] Comparison table with recently reported mm-wave PAs in silicon 
In [3] it shows a 26-39GHz PA. The hybrid N/PMOS allows the PA deep Class-AB biasing and device cascade, substantially increasing PA Pout and efficiency.
[image: ]
Figure 3 in [3]: Performance summary and comparison with prior-art 5G mm-wave bi-directional and uni-directional single PA 
Observation 1：Some recent literature shows PA cover 26-39GHz, 24-42GHz.

2.1.2	RX
For receiver, NF smaller than 10dB is assumed for FR2 BS, which can get a reasonable EIS. In this section, some recent academic and industry documents are reviewed.
Table 2 in [4] lists some commercially available TRX beamformer chips. Most can cover n258, n261, n257 with Tx P1dB larger than 12dBm and 5-6 dB NF. 
Table 2 in [4] Some Commercial TRX Beamformer Chips 
[image: ]

In [5] a 27-41GHz RX was designed and a proof-of-concept mm-Wave four-input–four-output MIMO RX array is implemented in a 45-nm CMOS SOI process with a total chip size of 3.6 mm×6.5 mm. Figure 4 is System architecture and Table 3 summarised performance。

[image: ]
Figure 4 in [5] (a) System architecture of the 27–41-GHz N-input–N-output MIMO RX with scalable cascadable array-based high-order ASFs for instinctual full-FoV signal/blocker management. (b) Scaling to 1 ×N MIMO arrays by assembling multiple unit chips along the zero-phase symmetric reference plane.

Table 3 in [5] Comparison with State-Of-The-Art Spatial Notch Array Rx And Mm-Wave 5g Beamforming Array Rx
[image: ]


In [6] a 24.25-to-71GHz phased-array receiver is introduced, which covers the whole FR2 frequency band 3GPP have defined. A harmonic-selection technique is proposed to extend the operating bandwidth with low power consumption.
The LNA can be configured into operating Mode 1 covering 24 to 44GHz and operating Mode 2 covering 44 to 71GHz.
[image: ]
Figure 5 in [6] Block diagram of proposed multi-band phased-array receiver

[image: ]
Figure 6 in [6] Performance comparison of 5G NR FR2 multi-band receivers
There are some other FR2 multi-band receiver in Figure 5 from UCSD, Georgla Tech which can cover 26+40GHz.
In [3] it shows a 26-39GHz LNA Front-End. The bi-directional PA/LNA with no T/R switch, share the same matching networks, and by obviating the T/R switch, it largely reduces chip area and improves the front-end performance by obviating the T/R switch.
[image: ]
Figure 7 in[3]: Performance summary and comparison with prior-art 5G mm-wave bi-directional and uni-directional single PA and LNA design.

Observation 2：For RF front-end, commercially available TRX chips cover 24-29.5GHz. 27-41GHz RX is implemented .A harmonic-selection technique is proposed to extend the receiver’s operating bandwidth up to 24.25-71GHz. 

2.1.3	Summary
Observation 3: State of the art device performance indicates that RF components and solutions are feasible to cover multi-band FR2 implementations.
2.2 Antenna Array
2.2.1 About FBW 
There may be a misconception about broadband antennas. The performance of the entire bandwidth of 26G to 40G do not have to be very good. Therefore, the inter-band gap frequency of the antennas can be ignored.
Take the FR1multi-band antenna as an example. The following table shows that the antenna frequency covers from 1427-2690 MHz, FBW is about（2690-1427）/((1427+2690)/2)=61%, in all frequency bands of interested, the electrical properties is acceptable.
Table 4 Datasheet of an antenna (part)
[image: ]
Observation 4：Traditional 20% FBW is not suitable to multi-band antenna scenarios. For some FR1 multi-band antenna FBW can be up to 61% with the acceptable electrical performance. 
The bandwidth of the array antenna depends on many factors such as array element, the spacing between the array elements and beam squint effect.
2.2.2 Antenna element
For multi-band antenna array，one way is to design two kind of antenna elements for each band, optimize them separately, then stack or interleave the two kinds of elements on the same PCB, but optimized antenna performance for each band. But one of the element would have to be aimed ‘blind’ to the other. This is a mature and simple way, and the performance of each band is optimized.
Observation 5: FR2 MB BS can design each band antenna separately to achieve the best performance meanwhile without significant increase in PCB area.
Another way is design a wideband array element for different bands sharing the common physical antenna elements. This is challenging but not impossible.
In [7] a dual-band patch antenna working at 28/38 GHz is proposed manufactured, and validated.
The simulated and measured reflection coefficients of the dual-band antenna are depicted in Fig. 8. As the figure shown, the fabricated antenna covers two separated S11 < −10 dB band ranges of 27.7-28.7 GHz and 36.8-40.2 GHz.


[image: ]
Figure 8. in [7] Simulated and measured reflection coefficients of the proposed dual-band antenna
The dual-band antenna are 8.4 dBi at 28 GHz and 6.1 dBi at 38 GHz while the radiating efficiencies at the two operation bands are 84% and 99%, respectively. The gain at 38GHz is 2.3dB smaller than that at 28GHz. However, it is noted that the PA output power of the low band is higher than that of high band, and the path loss of the low frequency is much lower. In practice, more effective way is to priority optimize the performance the high band.
Two multi-band antenna designs were presented in [8] .The first case is 27 GHz + 37 GHz with maximum gain of 8 dB, as Table 5 shown. The second case is for 5 different bands that is, 28 GHz, 35.5 GHz, 41 GHz, 51 GHz and 60 GHz, as shown in Table 6. Bandwidth in each case is above 1.3 GHz. 
Table 5 in [8] Summary of the final design of the multi band antenna design
[image: ]
Table 6 in [8] Summary of the final design of the multi band antenna design
[image: ]
Observation 6：Multi-band antenna element are feasible to cover FR2 frequency ranges.

2.2.2 Phase array antenna
The previous section only considered the antenna element performance, for phase array antenna, to achieve the total antenna performance, we also should consider the array factor.
Take a 26G+40G multi-band antenna as an example. Assume that the array spacing of 26G is 0.5 λ based on the low frequency, then the array element spacing of 40G is 0.8 λ. In this case, the 40G will have grating lobes. Although some techniques can theoretically reduce grating lobes, they have an impact on beam orthogonality and sweep gain roll. 
The optimization of the array spacing and its impact need further study.

2.2.3 Luneburg lens Antenna 
Besides patch antenna arrays, optical lens antennas are also considered for FR2. For example, adapting the luneburg lens, with a continuously varying refractive index, such that it has a relative permittivity of 2 at the centre and 1 at the outer surface, each digital channel or data stream can share the antenna aperture of the luneburg lens to obtain the maximum antenna gain.
As described in [9] ,The simulated beam-steering performance shown that the lens, with only six layers and a highest permittivity of 12, achieves scan angles of 30° with gains of at least 18 dBi over a bandwidth from 57 to 66 GHz.
[image: ]
Figure 9 in [9] Transformed Luneburg lens structure showing the six layers

Observation 7：Optical lens antenna, such as Luneburg Lens antenna may be considered for FR2 MB BS.
2.3 Phase shifter
A phase shifter is one of the critical elements in phased-array mmW transceivers, as its phase resolution and accuracy directly affect the beam’s directivity, steering resolution, and pointing accuracy. In [10] , fabricated in 40-nm CMOS, the prototype demonstrates an RMS phase/gain error of 1◦/0.24 dB over a bandwidth of 23.8–30.4 GHz while the core consumes 11 mW, which is suitable for MB-BS.

[image: ]
Figure 10 in [10] (a) Chip micrograph; measured (b) IQ magnitude and phase mismatch for different RS1 and RC settings. (c) Constellation diagram at 28 GHz. (d) RMS phase error versus the VMPS normalized gain. (e) RMS phase and gain errors. (f) S-parameters for all phase states 
However，if multi-band phase shifter is adopted，the appropriate code book for signal of one band signal may not be suitable for another band，this would impact beamforming performance. So, multi-band shifter may not a good candidate for multi-band FR2 BS. 
Another issue for wideband array antenna implemented with phase shift is beam squint. There were a series of discussions about beam squint in FR2 UE CBM, and the relaxation that is based on frequency separation is introduced to reflect the influence of beam squint on EIS spherical coverage. For FR2 MB BS, the angle of the beam squint will be greater, EIRP and EIS relaxation can be further studied.
If single-band shifter is adopted, for the transmitter, the phase-shifted signals of different band are combined and sent to the multi-band RF front-end; for receiver, signals from multi-band RF front-end are divided and send to each single-band shifter.  
Observation 8：Phase shifter is demonstrated to cover a bandwidth of 23.8–30.4 GHz. 
Observation 9：Considering the coupling of beam management of different bands, multi-band shifter may not a good candidate. Single-band shifter is more suitable, especially for larger band gap case. 
Observation 10：Even if the single-band shifter is adopted in FR2 BS, it still belongs to the MB BS as long as the front-end use multi-band implementation.
3 Summary
In this contribution, we collect some recent academic and industry literature, and further discuss the technical feasibility of FR2 multi-band BS including RF front-end, and Antenna array.

Observation 1：Some recent literature shows PA cover 26-39GHz, 24-42GHz.
Observation 2：For RF front-end, commercially available TRX chips cover 24-29.5GHz. 27-41GHz RX is implemented .A harmonic-selection technique is proposed to extend the receiver’s operating bandwidth up to 24.25-71GHz.
Observation 3: State of the art device performance indicates that RF components and solutions are feasible to cover multi-band FR2 implementations.
Observation 4：Traditional 20% FBW is not suitable to multi-band antenna scenarios. For some FR1 multi-band antenna FBW can be up to 61% with the acceptable electrical performance. 
Observation 5: FR2 MB BS can design each band antenna separately to achieve best performance meanwhile without significant increase in PCB area.
Observation 6：Multi-band antenna element are feasible to cover FR2 frequency ranges.
Observation 7：Optical lens antenna, such as Luneburg Lens antenna may be considered for FR2 MB BS.
Observation 8：Phase shifter is demonstrated to cover a bandwidth of 23.8–30.4 GHz. 
Observation 9：Considering the coupling of beam management of different bands, multi-band shifter may not a good candidate. Single-band shifter is more suitable, especially for larger band gap case. 
Observation 10：Even if the single-band shifter is adopted in FR2 BS, it still belongs to the MB BS as long as the front-end use multi-band implementation.
[bookmark: _GoBack]Proposal 1: MB BS supporting 26G+40G is feasible from RF front-end and antenna implementation perspective based on preliminary study.
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Table 2. Summary of the final design of the multi band antenna design
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Table 3. Summary of the final design of the multi band antenna design
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FIGURE 1: Transformed Luneburg lens structure showing the six layers.
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Figure 24.6.3: Top schematic of the prototype PA and small-signal S-
parameters and large-signal CW measurement results.
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Figure 24.6.6: Comparison table with recently reported mm-wave PAs in
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