Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-RAN WG3 #55-bis
Tdoc R3-070630
St. Julian, Malta, 27-30 March, 2007

Agenda Item:
7.12
Source:
Ericsson

Title:
MBMS L2 content synchronization
Document for:
Approval
1 Introduction

In RAN3 a number of proposals are being discussed for content synchronization of MBMS data within an SFN. In this contribution we elaborate on the byte level sequence number based proposal introduced in [1] in order to demonstrate the feasibility of the concept.
2 Byte Level Sequence Number Based Synchronization
The byte level sequence number based content synchronization method belongs to the category of “SAE Bearer Level L2 Content Synchronization” schemes according to the categories defined in R3.018. The corresponding protocol stack is shown in Figure 1. In this solution the logical SYNC layer in the mUPE adds byte level sequence numbers to the MBMS PDUs.

[image: image1.emf]

RLC

MAC

PHY

UE

mUPE

eNB

PDCP

PDCP

RLC

MAC

PHY

eBM - SC

MBMS packet

MBMS packet

 TNL TNL

 TNL

SYNC SYNC

SYNC: Protocol to sy n chronise data used to genera t e a certain radio frame

Figure 1: SAE Bearer Level L2 Content Synchronization
The assignment of sequence numbers to MBMS PDUs is illustrated by an example in Figure 2. The SN of the next packet is obtained by the SN of the previous packet incremented by the length of the previous packet (expressed in number of bytes). That is, the first PDU (PDU#1) gets SN=0 (or any initial SN value as specified by the control plane at the start of the MBMS service), then the next PDU (PDU#2) gets SN=256, assuming that the length of the first PDU was 256 byte and so on. (We note that the mUPE would also add a fixed increment in the byte count per packet to account for the RLC/MAC header that will be added to the packet in the eNodeB. This will help to maintain the synchronization also if multiple consecutive packets get lost on the transport network, as we will show later in the paper.)

[image: image2.emf]

PDU#1 PDU#2 PDU#3 PDU#4

s ize: 256 byte s ize: 512 byte

s ize: 128 byte

PDU#1 SN: 0 PDU#2 SN: 256 PDU#3 PDU#4 SN: 768 SN: 896

s ize: 256 byte

Figure 2: Adding byte level sequence numbers to MBMS PDUs at the mUPE
Prior to the start of the MBMS service a set of Physical Resource Blocks (PRB) and a corresponding Modulation and Coding Scheme (Transport Format) to be used for the given MBMS service are selected and signalled to all eNodeBs. The start time of the MBMS service in terms of an absolute time is also configured at each eNodeB so that each eNodeB knows when to send the first PDU with the initial sequence number (SN=0 in this example). Finally, the eNodeB needs to know in which consecutive TTIs it is supposed to transmit with the given Transport Format, i.e., the recurrence pattern. The block of data transmitted in one TTI, using the pre-allocated PRBs and TFs, is called a Transport Block (TB).
Based on the above information all eNodeBs can unambiguously map the received PDUs into the corresponding transport blocks, which is necessary to maintain the SFN properties. The example in Figure 3 shows how an eNodeB maintains its transmission window and thereby detects losses and idle periods. We have assumed a Transport Format size of 4096 bit which is scheduled for every 5th TTI and sums up to 819.2 kbps. Based on this information an eNodeB can advance its lower window edge (next expected sequence number) upon each occurrence of the MBMS TTI. If the corresponding PDUs have been received in time (inside the light-blue boxes) without any gaps, the eNodeB performs concatenation to generate the RLC/MAC PDU.

[image: image3.emf]

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

static Transport Format (e.g. 819.2 kbps



4096 bit=512 byte)

Fixed step size: 4096 bit

Byte SN count at

eNB

Loss on the TN!

Advance expected

byte SN

DTX

(no valid data)

No transmission

from mUPE for this period

DTX

(no valid data)

Expected SN

Required Data for this TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

static Transport Format (e.g. 819.2 kbps



4096 bit=512 byte)

Fixed step size: 4096 bit

Byte SN count at

eNB

Loss on the TN!

Advance expected

byte SN

DTX

(no valid data)

No transmission

from mUPE for this period

DTX

(no valid data)

Expected SN

Required Data for this TB

Figure 3: Mapping the byte numbered PDUs into the appropriate radio resource blocks at the eNodeB
Since the Physical Resource Blocks and Transport Formats configured for the use of the given MBMS service on the radio interface are known by each eNodeB within the same SFN area, upon reception of the byte sequence numbered PDUs each eNodeB will know unambiguously how to segment and concatenate the PDUs and in which Transport Blocks to send them out on the radio interface. This works also in case of packet loss (even multiple consecutive losses) on the Transport Network (see middle part of Figure 3) and even if the mUPE does not send any data for a particular TTI (right part of Figure 3). More details on these two cases are explained below.
Operation in case of packet losses on the transport network
In Figure 4 it is shown how the eNodeB should map the PDUs into the appropriate Transport Blocks in case some of the PDUs get lost on the transport network.

[image: image4.emf]

128 byte

 256 byte

PDU#1 PDU#2 PDU#3 PDU#4

T B s ize: 512 byte T B s ize: 512 byte

T B#1

SN: 0 SN: 256 SN: 768 SN: 896

T B#2 T B#3

512 byte

256 byte

no transm. of TB#2

T B s ize: 512 byte

Figure 4: Mapping the PDUs into the appropriate transport blocks at the eNodeB
- some packets are lost on the transport –

Let us assume that PDU#3 is lost on the transport network, which of course means that the sequence number of the lost PDU is unknown as well. In this case the eNodeB should determine which PDU or which part of a PDU it should resume transmission in TB#3. Note that TB#2 cannot be sent out by the eNodeB with partial content, as this would destroy the SFN property.
The eNodeB can use the byte sequence number of the next received PDU (i.e., PDU#4) and the byte sequence number of the last received PDU (i.e., PDU#2) to determine how many bytes of data is missing and determine where it should continue with PDU#4 in TB#3.
Note that the content synchronization can be maintained using the above method also in case of multiple consecutive packet losses. This is due to the assumption that the size of the RLC/MAC (and PDCP) header added per upper layer SDU in the RLC/MAC layer is fixed (i.e., predictable), independently of how the SDU get segmented or concatenated. In other words, the RLC/MAC header added per SDU is assumed to include the required header fields to support both segmentation and concatenation of that PDU. As a consequence, the overhead would be somewhat larger (worst case overhead) compared to the RLC/MAC header for unicast transmission. However, the relative overhead increase would not be significant, especially if the MBMS data is sent in large blocks, i.e., if the whole bandwidth in a TTI is for MBMS transmission only (RAN1 assumption).

When generating the byte sequence numbers the mUPE would include also the RLC/MAC header size in the byte count. Therefore, in case of consecutive packet losses the eNodeB with the lost PDUs does not need to know the size of the individual lost PDUs in order to determine how they would have been multiplexed and how large the RLC/MAC overhead would have been. It only needs to know the number of lost bytes, which includes the RLC/MAC overheads as well, and based on that it can shift the start of the next PDU in the payload space accordingly, such that the synchronization will not be damaged.

The use of fixed RLC/MAC header sizes per SDU is illustrated in Figure 5. The MAC header is assumed to have a fixed, common part and additional fixed size parts corresponding to the respective SDUs that have been multiplexed into the given MAC PDU. It is assumed that each multiplexed SDU has a fixed share in the MAC header (2 byte in the example) and we assume that the mUPE adds an additional 2 bytes to the byte sequence number assigned to the PDU in order to account for its share in the RLC/MAC header. The grey dashed arrows in the figure show the correspondence between the SDU and its RLC/MAC header share.

[image: image5.emf]

PDU #1

SDU #1

MAC SDU

MAC SDU

PDU #2

SDU #2

PDU #3

PDU #4

SDU #4

SDU #3

bSN:0

+2

bSN:256

+2

bSN:512

+2

bSN:768

+2

e.g., +2 bytes to account for the share

in the RLC/MAC header of the PDU

MAC header: a fixed size common part +

fixed size per SDU parts

mUPE

eNodeB

PDU #1

SDU #1

MAC SDU

MAC SDU

PDU #2

SDU #2

PDU #3

PDU #4

SDU #4

SDU #3

bSN:0

+2

bSN:256

+2

bSN:512

+2

bSN:768

+2

e.g., +2 bytes to account for the share

in the RLC/MAC header of the PDU

MAC header: a fixed size common part +

fixed size per SDU parts

mUPE

eNodeB

Figure 5: Mapping of SDUs into RLC/MAC PDUs
- with fixed size RLC/MAC header per SDU -
Operation in case of idle gaps in the stream
Once the MBMS service has been started the synchronization is self-sustained according to the above method as long as the buffer in the eNodeB for the particular MBMS service does not run out of data. However, this may not be possible to guarantee in all cases as the MBMS data may be bursty, meaning that there might be idle gaps between bursts of packets.
In order to maintain the synchronization also in cases of idle gaps in the MBMS data stream the mUPE needs to advance the byte sequence number of the first packet sent after the gap such that the increment in the sequence number accounts for the amount of data that could have been sent during the idle gap. The procedure is illustrated by an example in Figure 6.

[image: image6.emf]

padding

T B#2

Idle gap

no transm. padding

 256 byte

PDU#1 PDU#2

T B s ize: 512 Kbyte T B s ize: 512 byte

T B s ize: 512 byte

T B#1

SN: 0 SN: 1152

T B#3

256 byte

Figure 6: Maintaining the synchronization in case of idle gaps in the MBMS stream
- by advancing the SN -
As shown in the example, there is temporarily no data to send after PDU#1. The mUPE continuously measures the data rate of the MBMS stream and it detects when the rate falls below the target rate, i.e., below the rate that has been allocated for the MBMS service on the radio interface. In such cases it advances the byte sequence number of the next PDU such that it catches up with the data rate on the radio interface. That is, the mUPE ensures that the PDUs following an idle gap have sequence numbers that are ahead of the next expected sequence number to be transmitted by the attached eNodeBs.
We note that the mUPE is not required to maintain precise knowledge about the timing of the MBMS transport blocks on the radio interface (i.e. on the TTI level) in order to determine how much it needs to advance the byte sequence number after an idle gap. It would be sufficient to measure the raw data rate at the mUPE on a longer time scale (e.g., on ~x100 ms) than the periodicity of the MBMS transport block (e.g., 5 TTI in the example of Figure 3) and detect the rate decrease on that time scale.
We also note that the first packet with the advanced SN after the gap does not necessarily fall on a TB border (i.e., PDU#2 may not necessarily start at the beginning of TB#3 in the example). In such a case the eNodeB should add padding to the beginning of the TB.
One possible enhancement of the above scheme is to let the mUPE send dummy PDUs during the idle gap in order to keep the MBMS stream utilized with virtual data and to keep the byte counter rolling on continuously in the eNodeB, as shown in Figure 7. Sending dummy PDUs enables for the eNodeB to distinguish the idle gap from packet losses. This could be important in deciding whether a partially filled TB can be sent out with padding or the eNodeB should refrain from transmission completely. Note that if the lack of data is due to an idle gap then the eNodeB can safely send partially filled TBs with padding, while in case of loss of data on the transport network the eNodeB has to refrain from sending at all in order not to destroy the SFN property.

[image: image7.emf]

padding

T B#2

dummy dummy dummy

Idle gap

no transm. padding

 256 byte

PDU#1 PDU#2

T B s ize: 512 byte T B s ize: 512 byte

T B s ize: 512 byte

T B#1

SN: 0 SN: 1024

T B#3

256 byte

SN: 256 SN: 512 SN: 768

Figure 7: Maintaining the synchronization in case of idle gaps in the MBMS stream
- by sending dummy PDUs –
As shown in the example, the mUPE inserts dummy PDUs, each with a virtual size of 256 Kbyte as indicated in the SN field of the packet header (it is just an example, it could be any size of virtual data). These PDUs do not contain a data part, only the header. When the dummy PDUs arrive to the eNodeB, the eNodeB increases the next expected SN and maintains in which TB the next expected PDU should be transmitted, just the same way as it would do for normal data PDUs. The only difference is that no transmission is performed on the radio interface for empty TBs corresponding to the dummy PDUs.
Protocol realization

From a protocol realization point of view the required byte level sequence numbers can be placed into the GTP-U tunnelling header. Carrying the byte sequence number information in the GTP-U header has the advantage that no new protocol layer needs to be defined (i.e., a SYNC protocol). It is assumed that a ~3 byte sequence number space should be sufficient for the byte level sequence numbering of the packets, which enables the continuous sequence numbering of approximately 16 Mbyte of data.
From the RLC/MAC layer it is required that it adds fixed size and byte aligned headers per SDU in case of MBMS transmission. The fixed size header added per SDU in the RLC/MAC layer has to account both for the segmentation and concatenation of the SDU, i.e., a worst case header size. However, the relative overhead increase would not be significant, especially if the MBMS data is sent in large blocks, i.e., if the whole bandwidth in a TTI is for MBMS transmission only (RAN1 assumption). It is assumed that in principle, the same RLC/MAC header format can be used as for unicast data with the exception that some fields that are optional in the unicast case depending on whether the packet is segmented or concatenated, have to be made mandatory for the MBMS case (FFS). See [2] for more information on proposed RLC/MAC header format to be used for unicast transmission.
3 Properties of this solution
· The UP protocol architecture for MBMS services can be the same as for point-to-point services. The mUPE functionality can be very similar to the UPE functions.

· No knowledge about the timing and the size of the transport blocks allocated for the MBMS service on the radio interface is needed in the mUPE, as there is no segmentation/concatenation or time stamping function in the mUPE. The mUPE only needs to know the average transmission rate allocated for the particular MBMS service. (The mUPE does not need to “mimic” the RLC/MAC segmentation/concatenation either.)
· There is no need for an absolute clock in the mUPE that runs in synch with the eNodeB clocks. (No absolute time stamps need to be handled in the mUPE.)
· No new protocol layer needs to be introduced. The available RLC/MAC protocols in the eNodeB can be reused (e.g., to perform segmentation/concatenation). The required sequence numbering can be added to GTP-U with minimal modification.

· The extra protocol overhead over the transport network (due to the sequence numbers) is minimal. The GTP-U sequence numbering is already supported.

4 Conclusion
In this contribution we have demonstrated the feasibility of the byte sequence numbering concept for MBMS L2 content synchronization. We propose for RAN3 to agree on the proposed scheme for MBMS L2 content synchronization in LTE.
5 References

[1] R3-061782
MBMS L2 content synchronization, Ericsson, RAN3#54, November, 2006, Riga
[2] R2-070576
RLC-MAC header formats, Ericsson, RAN2#57, February, 2007

1/6
2007-03-21

_1229690288.doc
[image: image1.emf]MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

static Transport Format (e.g. 819.2 kbps



4096 bit=512 byte)

Fixed step size: 4096 bit

Byte SN count at

eNB

Loss on the TN!

Advance expected

byte SN

DTX

(no valid data)

No transmission

from mUPE for this period

DTX

(no valid data)

Expected SN

Required Data for this TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

MBMS

TB

static Transport Format (e.g. 819.2 kbps



4096 bit=512 byte)

Fixed step size: 4096 bit

Byte SN count at

eNB

Loss on the TN!

Advance expected

byte SN

DTX

(no valid data)

No transmission

from mUPE for this period

DTX

(no valid data)

Expected SN

Required Data for this TB

_1235042826.doc
[image: image1.emf]PDU #1

SDU #1

MAC SDU

MAC SDU

PDU #2

SDU #2

PDU #3

PDU #4

SDU #4

SDU #3

bSN:0

+2

bSN:256

+2

bSN:512

+2

bSN:768

+2

e.g., +2 bytes to account for the share

in the RLC/MAC header of the PDU

MAC header: a fixed size common part +

fixed size per SDU parts

mUPE

eNodeB

PDU #1

SDU #1

MAC SDU

MAC SDU

PDU #2

SDU #2

PDU #3

PDU #4

SDU #4

SDU #3

bSN:0

+2

bSN:256

+2

bSN:512

+2

bSN:768

+2

e.g., +2 bytes to account for the share

in the RLC/MAC header of the PDU

MAC header: a fixed size common part +

fixed size per SDU parts

mUPE

eNodeB

_1235804935.doc

SYNC: Protocol to synchronise data used to generate a certain radio frame

SYNC

SYNC

TNL

TNL

TNL

MBMS packet

MBMS packet

eBM-SC

PHY

MAC

RLC

PDCP

PDCP

eNB

mUPE

UE

PHY

MAC

RLC

_1235038885.doc
[image: image1.bmp]

no transm. of TB#2

256 byte

TB#3

SN: 896

SN: 768

128 byte

512 byte

SN: 256

 256 byte

SN: �0

TB#1

TB#2

TB size: 512 byte

TB size: 512 byte

TB size: 512 byte

PDU#4

PDU#3

PDU#2

PDU#1

_1228919555.doc
[image: image1.bmp]

no transm.

padding

256 byte

TB#3

SN: 1152

padding

Idle gap

 256 byte

SN: �0

TB#1

TB#2

TB size: 512 byte

TB size: 512 byte

TB size: 512 Kbyte

PDU#2

PDU#1

_1228919799.doc
[image: image1.bmp]

no transm.

padding

dummy

dummy

SN: �768

256 byte

TB#3

SN: 1024

SN: �512

SN: �256

Idle gap

 256 byte

SN: �0

TB#1

TB#2

TB size: 512 byte

TB size: 512 byte

TB size: 512 byte

PDU#2

padding

dummy

PDU#1

_1228804944.doc

SN: 896

SN: 768

PDU#4

PDU#3

SN: 256

PDU#2

SN: �0

PDU#1

size: 256 byte

size: 128 byte

size: 512 byte

size: 256 byte

PDU#4

PDU#3

PDU#2

PDU#1

