TSG-RAN Working Group 3 Meeting #25
R3-013363

Makuhari, Japan, 26th – 30th November, 2001

Agenda Item:
7.3
Source:
Ericsson
Title:
Bit ordering of PER encoded bitstrings

Document for:
Information and Approval
1 Introduction

At the previous RAN3 meeting, a discussion paper submitted by Siemens (R3-012989) raised the issue that there is a lack of specification with regards to the bit ordering in X.691.

During offline discussions with several companies, Ericsson became aware of the fact that this issue is now acknowledged by ITU-T and that a clarification would be added to the 2002 version of X.691.

This document summarizes the issue and the latest ITU-T developments. More over, it proposes a way forward with regards to the RAN3 specifications, as RAN3 does not make use of the 2002 version of X.691.

A similar contribution was also submitted to the attention of TSG RAN2.

2 Definition of the problem

X.691 (PER encoding rules) clause 6 states that the output of the encoder is an octet string with bits numbered 8 to 1 with bit 8 being the most significant bit. How these bits are transferred across the line depends on lower layer standards.

As regards to the unencoded information, ASN.1 defines which bit of a bit string is the first/ leftmost/ bit zero. E.g. in case of an assignment like:

bitstring BIT STRING ::= '1000'B

the first bit is set to "1", while the trailing bit is set to "0".

One would expect that the first bit is mapped to the most significant bit in the encoded octet string. e.g. in case the above field were the first to appear in a message, the first bit (b(0)) would be mapped to bit 8 of the first octet. This is what has been defined for BER, as can be seen in the following abstract from in X.690 (Basic Encoding Rules):

”...

8.6.2.1
The bits in the bitstring, commencing with the first bit and proceeding to the last bit, shall be placed in bits 8 to 1 of the first subsequent octet, followed by bits 8 to 1 of the second subsequent octet, followed by bits 8 to 1 of each octet in turn, followed by as many bits as are needed of the final subsequent octet, commencing with bit 8.

NOTE - The terms "first bit" and "trailing bit" are defined in ITU-T Rec. X.680 | ISO/IEC 8824-1.

...”

However, it seems that X.691 does not include a similar statement; clause clause 15, which deals with the encoding of bit strings, does neither include a rule nor a reference to the above clause defined for BER.

Therefore, during the last ITU-T meeting held in Paris, Nov 10th–15th , the needed clarifications were added to the 2002 version of X.691 and X.680:

The change that we made is the following to X.680:

21.12 When using the "bstring" notation, the leading bit of the

bitstring value is on the left, and the trailing bit of the bitstring

value is on the right.

And the following to X.691:

15.5 When a bitstring value is placed in a bit-field as specified in

15.6 to 15.11, the leading bit of the bitstring value shall be placed

in the leading bit of the bit-field, and the trailing bit of the

bitstring value shall be placed in the trailing bit of the bit-field.

--
3 Conclusions and recommendations

As explained by the previous clauses, the encoding of a bit string is not properly specified in X.691. This problem may be solved in a later version of X.691 or by means of an addendum. As RAN3 specifications refer to the 1997 version of X.691 the amendment will not apply automatically. Therefore the proposal is to clarify the encoding of bitstrings by adding a statement to the relevant RAN3 specifications. The details of the proposed change are included in the attached example CR. If this approach is agreed, Ericsson is willing to provide the needed change requests for all relevant RAN3 TSs.

[image: image1.wmf]R3-013364NBAP-R99

-PERencoding.doc

Background information (Annex)

A.1 Clause from X.680 dealing with order of bits in a bit string

21
Notation for the bitstring typexe "Notation for the bitstring type"
21.1
The bitstring type (see 3.8.6) shall be referenced by the notation "BitStringType":

BitStringType ::=

BIT STRING

BIT STRING "{" NamedBitList "}"

NamedBitList ::=

NamedBit
 |

NamedBitList "," NamedBit

NamedBit ::=

identifier "(" number ")"
|

identifier "(" DefinedValue ")"

21.2
The first bit in a bit string is called bit zero. The final bit in a bit string is called the trailing bit.

NOTE – This terminology is used in specifying the value notation and in defining encoding rules.

21.3
The "DefinedValue" shall be a reference to a non-negative value of type integer.

21.4
The value of each "number" or "DefinedValue" appearing in the "NamedBitList" shall be different, and is the number of a distinguished bit in a bitstring value.

21.5
Each "identifier" appearing in the "NamedBitList" shall be different.

NOTE 1 – The order of the "NamedBit" production sequences in the "NamedBitList" is not significant.

NOTE 2 – Since an "identifier" that appears within the "NamedBitList" cannot be used to specify the value associated with a "NamedBit", the "DefinedValue" can never be misinterpreted as an "IntegerValue". Therefore in the following case:

a INTEGER ::= 1

T1 ::= INTEGER { a(2) }

T2 ::= BIT STRING { a(3), b(a) }

the last occurrence of "a" denotes the value 1, as it cannot be a reference to the second nor the third occurrence of "a".

21.6
The presence of a "NamedBitList" has no effect on the set of abstract values of this type. Values containing 1 bit other than the named bits are permitted.

21.7
When a "NamedBitList" is used in defining a bitstring type ASN.1 encoding rules are free to add (or remove) arbitrarily many trailing 0 bits to (or from) values that are being encoded or decoded. Application designers should therefore ensure that different semantics are not associated with such values which differ only in the number of trailing 0 bits.

21.8
This type has a tag which is universal class, number 3.

21.9
The value of a bitstring type shall be defined by the notation "BitStringValue":

BitStringValue ::=

bstring
|

hstring
|

"{" IdentifierList "}"
|

"{" "}"

IdentifierList ::=

identifier |

IdentifierList "," identifier

21.10
Each "identifier" in "BitStringValue" shall be the same as an "identifier" in the "BitStringType" production sequence with which the value is associated.

21.11
The "BitStringValue" notation denotes a bitstring value with ones in the bit positions specified by the numbers corresponding to the "identifier"s, and with all other bits zero.

NOTE – The "{" "}" production sequence is used to denote the bitstring which contains no one bits.

21.12
In specifying the encoding rules for a bitstring, the bits shall be referenced by the terms first bitxe "first bit" and trailing bitxe "trailing bit" where the first bit is bit zero (see 21.2).

21.13
When using the "bstring" notation, the first bit is on the left, and the trailing bit is on the right.

21.14
When using the "hstring" notation, the most significant bit of each hexadecimal digit corresponds to the leftmost bit in the bitstring.

NOTE – This notation does not, in any way, constrain the way encoding rules place a bitstring into octets for transfer.

21.15
The "hstring" notation shall not be used unless the bitstring value consists of a multiple of four bits.

EXAMPLE

'A8A'H

and

'1010100110001010'B

are alternative notations for the same bitstring value. If the type was defined using a "NamedBitList", the (single) trailing zero does not form part of the value, which is thus 15 bits in length. If the type was defined without a "NamedBitList", the trailing zero does form part of the value, which is thus 16 bits in length.

A.2 Clause from X.691 dealing with bit strings

15
Encoding the bitstring type

NOTE – (Tutorial) Bitstrings with a constrained length less than or equal to two octets do not cause octet alignment. Larger bitstrings are octet-aligned. If the length is fixed by constraints and the upper bound is less than 64K, there is no explicit length encoding, otherwise a length encoding is included which can take any of the forms specified earlier for length encodings, including fragmentation for large bit strings.

15.1
PER-visible constraints can only constrain the length of the bitstring.

15.2
Where there are no PER‑visible constraints and 21.7 of ITU-T Rec. X.680 | ISO/IEC 8824-1 applies, the value shall be encoded with no trailing 0 bits (note that this means that a value with no 1 bits is always encoded as an empty bit string).

15.3
Where there is a PER‑visible constraint and 21.7 of ITU-T Rec. X.680 | ISO/IEC 8824-1 applies (i.e. the bitstring type is defined with a "NamedBitList"), the value shall be encoded with trailing 0 bits added or removed as necessary to ensure that the size of the transmitted value is the smallest size capable of carrying this value and satisfies the effective size constraint.

15.4
Let the maximum number of bits in the bitstring (as determined by PER-visible constraints on the length) be "ub" and the minimum number of bits be "lb". If there is no finite maximum we say that "ub" is unset. If there is no constraint on the minimum, then "lb" has the value zero. Let the length of the actual bit string value to be encoded be "n" bits.

15.5
If an extension marker is present in the size constraint specification of the bitstring type, a single bit shall be added to the field-list in a bit-field of length one. The bit shall be set to 1 if the length of this encoding is not within the range of the extension root, and zero otherwise. In the former case, 15.10 shall be invoked to add the length as a semi-constrained whole number to the field-list, followed by the bitstring value. In the latter case the length and value shall be encoded as if the extension marker is not present.

15.6
If an extension marker is not present in the constraint specification of the bitstring type, then 15.7 to 15.10 apply.

15.7
If the bitstring is constrained to be of zero length ("ub" equals zero), then it shall not be encoded (no additions to the field-list), completing the procedures of this clause.

15.8
If all values of the bitstring are constrained to be of the same length ("ub" equals "lb") and that length is less than or equal to sixteen bits, then the bitstring shall be placed in a bit-field of the constrained length "ub" which shall be appended to the field-list with no length determinant, completing the procedures of this clause.

15.9
If all values of the bitstring are constrained to be of the same length ("ub" equals "lb") and that length is greater than sixteen bits but less than 64K bits, then the bitstring shall be placed in an octet-aligned-bit-field of length "ub" (which is not necessarily a multiple of eight bits) and shall be appended to the field-list with no length determinant, completing the procedures of this clause.

15.10
If 15.7-15.9 do not apply, the bitstring shall be placed in an octet-aligned-bit-field of length "n" bits and the procedures of 10.9 shall be invoked to add this octet-aligned-bit-field of "n" bits to the field-list, preceded by a length determinant equal to "n" bits as a constrained whole number if "ub" is set and is less than 64K or as a semi-constrained whole number if "ub" is unset. "lb" is as determined above.

NOTE – Fragmentation applies for unconstrained or large "ub" after 16K, 32K, 48K or 64K bits.

1(1)

2(1)

_1067845361.doc

3GPP TSG-RAN3 Meeting #25
R3-013364

Makuhari, Japan, 26th – 30th November, 2001

CR-Form-v4

CHANGE REQUEST

(

25.433

CR

570

(

rev

-

(

Current version:

3.7.0

(

For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

Proposed change affects:
(

(U)SIM

ME/UE

Radio Access Network

X

Core Network

Title:
(

Addition of amendment to clarify the PER encoding of bitstrings

Source:
(

Ericsson

Work item code:
(

TEI

Date: (

November, 2001

Category:
(

F

Release: (

R99

Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

Reason for change:
(

 There is a lack of specification w.r.t. PER encoding of bitstrings in X691. A clarification will appear in the 2002 version of X.691, but as RAN3 specifications refer to the 1997 version, this amendement will not automatically apply to RAN3 specifications. Therefore a specific clarification is needed within the RAN3 TSs. For further reasoning, please refer to document R3-01xxxx.

Summary of change:
(

A clarification was added to subclause 9.4.

Consequences if
(

not approved:

If this CR is not approved, NBAP will still refer to an incomplete specification w.r.t. to the PER encoding of bitstrings.

Impact Analysis:

Impact assessment towards the previous version of the specification (same release):

This CR has no impact on the previous version of the specification (same release) for implementations aligned with the added clarification. For implementations based otherwise on different assumptions, this CR may have isolated/non isolated impact, depending on the single implementation choices. It must be stated that this interpretation is the assumed one in ITU-T and the clarification was added only for completeness.

Clauses affected:
(

9.4

Other specs
(

X

 Other core specifications
(

CR 074 SABP R4, CR 519 RNSAP R99, CR 073 SABP R99, CR 571 NBAP R4, CR 520 RNSAP R4, CR 385 RANAP R99, CR 386 RANAP R4, CR 013 PCAP R5

Affected:

 Test specifications

 O&M Specifications

Other comments:
(

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

9.4
Message Transfer Syntax

NBAP shall use the ASN.1 Basic Packed Encoding Rules (BASIC-PER) Aligned Variant as transfer syntax as specified in ref. [11].

The following encoding rules apply in addition to what has been specified in X.691 [11]:

When a bitstring value is placed in a bit-field as specified in 15.6 to 15.11 in [11], the leading bit of the bitstring value shall be placed in the leading bit of the bit-field, and the trailing bit of the bitstring value shall be placed in the trailing bit of the bit-field.

NOTE - The terms "leading bit" and "trailing bit" are defined in ITU-T Rec. X.680 | ISO/IEC 8824-1. When using the "bstring" notation, the leading bit of the bitstring value is on the left, and the trailing bit of the bitstring value is on the right.

�PAGE \# "'Page: '#'�'" �Page: 6��� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �Page: 6��� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �Page: 6��� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �Page: 6��� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �Page: 6��� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �Page: 6��� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �Page: 6��� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �Page: 6��� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �Page: 6��� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �Page: 6��� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �Page: 6��� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �Page: 6��� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �Page: 6��� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �Page: 6��� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �Page: 6��� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �Page: 6��� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �Page: 6��� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �Page: 6��� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �Page: 6��� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �Page: 6��� This is an example of pop-up text.

