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Introduction
RAN #88-e meeting approved the study on further enhancement for data collection SID [1] to enable AI support in NG-RAN. The following objectives for this study item are agreed:
a) [bookmark: OLE_LINK1][bookmark: OLE_LINK2]Study standardization impacts for the identified use cases including: the data that may be needed by an AI function as input and data that may be produced by an AI function as output, which is interpretable for multi-vendor support.
b) [bookmark: OLE_LINK6][bookmark: OLE_LINK7]Study standardization impacts on the node or function in current NG-RAN architecture to receive/provide the input/output data.
c) Study standardization impacts on the network interface(s) to convey the input/output data among network nodes or AI functions.
[bookmark: OLE_LINK8]It is also specified in [1] that the general objective for the work is that the studies should be focused on the current NG-RAN architecture and interfaces to enable AI support for 5G deployments.
There are various types of learning problems that can leverage AI/ML-based approaches. Depending on the learning problem and the setting, the data exchange between network entities and their impact to network interfaces may be different. While the actual AI/ML algorithm may be use case dependent, and is out of the scope of this SI, it is desirable to study the standardization impact for each type of learning problem and example AI/ML approach(es) that are commonly used to handle it. 
In this contribution, we discuss typical learning problems and their characteristics to understand their impacts to NG-RAN data collection, interfaces and interoperability. Then, we propose to modify the Functional Framework for RAN Intelligence diagram in [2] to be generalized across various learning problems.  
Discussion for AI/ML types
While AI/ML can be categorized in various ways, we can typically group them by the types of learning problems. In this contribution, we discuss machine learning problems and some common learning approaches for each problem type. In general, AI/ML can be grouped into the following types depending on the learning styles:
· Supervised Learning: refers to problems that use AI/ML to learn a mapping between input examples and the target variable(s).
· Unsupervised Learning: refers to problems that use AI/ML to discover or extract the relationships in the data.
· Reinforcement Learning: refers to problems that use AI/ML agent to interact with an environment and the agent has to learn the optimal operation using feedbacks.
· Hybrid Learning: refers to problems that cannot be clearly categorized as either supervised learning or unsupervised learning and typically have characteristics from both types.
Observation 1: In general, AI/ML approaches can be categorized by learning problem types: supervised learning, unsupervised learning, reinforcement learning and hybrid learning. 
In the following, we will discuss each learning type and their unique characteristics separately.
· Supervised learning
According to Pattern Recognition and Machine Learning [3], “Applications in which the training data comprises examples of the input vectors along with their corresponding target vectors are known as supervised learning problems.” Another description from Deep Learning [4] is: “The term supervised learning originates from the view of the target y being provided by an instructor or teacher who shows the machine learning system what to do.” This is because supervised learning tries to make predictions using examples of input data with labels for the target outputs, and the AI/ML models are supervised and corrected via an algorithm to better predict the expected target outputs in the training dataset.
Supervised learning problems typically belong to one of the two types: classification or regression. While some AI/ML algorithms may be specifically designed for classification (e.g., logistic regression) or regression (e.g., linear regression), many others may be used for both types of problems with minor modifications (e.g., random forest and neural networks).
For wireless communication networks, supervised learning problem is probably the most common scenario. In many use-cases, supervised learning can be leveraged, e.g., adaptive performance management automation, future traffic prediction for network planning. As supervised learning requires training data with labels to be collected in order to train the ML model, there is usually a training entity that is responsible for training the ML model using large amount of data, which is then followed by inference and/or decision-making using inputs like estimated network states or real network data. 
For supervised learning, the data/information exchange between network entities typically belongs to two types. The first type is when both model training and model inference are performed on a centralized entity while the inference result is to be used by another entity. In this case, the inference outcome or decision derived from the inference outcome will be delivered to the actual network entity that would perform proper action/change according to the inference. The second type is when model training is performed on an entity which has more computing and/or memory resource while the inference and/or decision is performed on another entity. In this case, the trained ML model needs to be downloaded to the local network entity, which then uses the trained model to perform inference and/or make proper decision. Depending on the use case, each type has its pros and cons, which will not be discussed in this article. Fig. 1(a) and Fig. 1(b) illustrate these two settings of supervised learning.   Fig. 1. Supervised Learning problem: (a) depicts scenario in which both model training and model inference are performed on the same entity, and (b) depicts scenario in which model training is performed on one entity while model inference is performed on another entity. 
Fig. 1(a)
Fig. 1(b)

Observation 2: For Supervised Learning problem, there are at least two typical training and inference settings. 
· First scenario: model training and model inference are both performed on a centralized entity while the inference result will be used by another entity. In this case, the model inference result needs to be delivered to the network entity that will utilize the inference result to determine subsequent action or make final decision.  
· Second scenario: model training is performed on one entity and the trained model is offloaded to another network entity which will then perform the model inference locally utilizing the trained model. 

As discussed above, supervised learning requires training data to be collected and typically the collected data has to be sent to another entity. This causes data privacy concern. Another drawback is that training ML models usually requires large amount of data and sending raw data may introduce significant communication overhead. To address these issues, Federated Learning (FL) approach can be leveraged.
[image: ]Federated learning (FL), also known as collaborated machine learning, refers to a learning setting that enables decentralized FL participating clients to learn collaboratively from a shared model with each client using its local data samples, then the model updates (e.g., gradients) can be sent to the entity that coordinates the FL periodically, without exposing the raw data. After receiving model updates from the clients, the FL coordinator aggregates the new updates and continues to improve the shared model. The updated shared model is then sent back to the clients and the same cycle repeats again. FL differs from standard supervised learning setting, which utilizes centralized training approach. Other more notable characteristics in FL setting include a) the data distributed across lots of participating entities/clients or devices is usually in a highly uneven fashion, and b) those participating training clients may be only intermittently available. Because the local training data is not shared in this setting, FL protects the data privacy. Also, as the shared model is collaboratively trained in a distributed fashion, this alleviates the model training burden on some capacity-limited entities/devices.Fig. 2. Federated Learning example: FL clients collaboratively learn a shared model with each client using its local data samples.

Observation 3: Federated Learning (FL) addresses the data privacy concern and alleviates the demand of computational power on the training entities. FL differs from the other two typical supervised learning settings in terms of types of data to be exchanged between entities.
· FL coordinating entity delivers the initial shared model to each FL participating client.
· Each FL client uses its local data samples to update the model, then sends its model updates (e.g., gradients) back to the FL coordinator.
· FL coordinator combines the updates that it receives and improves the shared model, then the updated model is delivered to the FL clients.
· Unsupervised learning
Unsupervised learning describes a class of problems that involves using a ML model to describe or extract relationships in data. Unlike supervised learning, unsupervised learning operates upon only the input data without labelled outputs or target variables. As such, unsupervised learning does not have a teacher correcting the model and the algorithm must learn to make sense of the data without this guide, as described in [4].
There are many real-world unsupervised learning problems, for example, clustering that involves finding groups in the data and density estimation that involves summarizing the distribution of data. Something common in both of them is that they all try to learn about the patterns in the data. 
In wireless communication networks, unsupervised learning is usually integrated with either supervised learning or reinforcement learning problem (or even hybrid learning problem) scenarios while it can also be used independently to understand the similarity across different network entities or devices. For example, for cell behaviour learning like traffic prediction or feature performance prediction, it may be desirable to collect sample data from similar network entities then use them together to train a cluster-level ML model. This approach can save data collection time and help build a more generalized ML model (as data is collected from multiple entities). In this case, clustering similar network entities together using relevant features is the first step before the modelling phase. A wide variety of clustering methods exist (e.g., partitioning methods, density-based methods, hierarchical clustering, and sub-space clustering), and investigation is needed to determine which clustering method suits better for the targeted problem space. When multiple network entities need to be considered for clustering, it typically requires each network entity to collect needed features and send them to a designated entity to perform similarity study and clustering task. Once the clustering is done, the subsequent ML model training will follow the steps according to either supervised learning, reinforcement learning or other learning problem scenarios. Fig. 3 illustrates the clustering problem scenario. Fig. 3. An unsupervised learning problem example: clustering


Observation 4: When considering clustering as an example for Unsupervised Learning problem, typically, each participating entity will collect identified features at desired granularity and periodically send the collected data to a common entity first. The designated entity will perform similarity study and clustering task (or the collected data can be sent to the data collection entity first). Once the clustering is done, the subsequent model training task will follow the procedures of Supervised Learning, Reinforcement Learning or other learning problems.
· Reinforcement learning
Reinforcement learning (RL) describes a class of problems where an agent operates in an environment and must learn to operate by interacting with the environment and using the feedback(s) received from the environment. Given that an environment is involved, this means that there is no fixed training dataset, instead, the data usually consists of a goal or set of goals that an RL agent is required to achieve, actions that the agent may perform, and feedback(s) about performance toward the goal, as described by [4]:
“Some machine learning algorithms do not just experience a fixed dataset. For example, reinforcement learning algorithms interact with an environment, so there is a feedback loop between the learning system and its experiences.”
RL is most suitable for scenarios that accurate labels for the training data are difficult or not feasible to be obtained as pointed out by [5]:
“In many complex domains, reinforcement learning is the only feasible way to train a program to perform at high levels. For example, in game playing, it is very hard for a human to provide accurate and consistent evaluations of large numbers of positions, which would be needed to train an evaluation function directly from examples. Instead, the program can be told when it has won or lost, and it can use this information to learn an evaluation function that gives reasonably accurate estimates of the probability of winning from any given position.”
Some popular examples of RL algorithms include Q-learning, SARSA (State-Action-Reward-State-Action), DQN (Deep Q-Networks and DDPG (Deep Deterministic Policy Gradients).Fig. 4. A Reinforcement Learning example which includes an offline learning phase and an online fine-tuning phase.

In wireless communication networks, RL is probably a natural fit for network parameter optimization problems given that it is usually difficult to have already collected sufficient amount of performance feedback or labels for different settings of the parameters to be optimized. In this problem space, an RL agent can interact with the environment, e.g., the network entity in which the parameter is to be optimized and learn (based on the feedback) to select a better action (i.e., parameter setting) in the next iteration that will maximize future reward (or accumulated future rewards). In this problem scenario, the RL agent and the environment can be different network entities, thus, the RL agent will collect the states and feedbacks from the environment and determine the optimal action for the next iteration according to its reward calculation, then send the recommended action to the network entity for execution, and this cycle repeats. In some cases, RL may first start from offline learning using existing data collected from simulation or real-world from prior RL runs, then transfer/transition to online fine-tuning phase. In this scenario, the offline learning phase can be done on pre-learning entity (typically, a network entity with more computing/memory resources may be chosen), the learned RL model/policy and sometimes with the interim/processed data as well will be sent to the actual RL agent to perform the online learning.  Note there is a variety of RL methods, and the actual procedures may vary. Fig. 4 illustrates one option of RL that includes offline learning phase and online fine-tuning phase.
Observation 5: For Reinforcement Learning problem scenario, there are at least two possible settings. 
· First setting: The RL agent learns the optimal action, e.g., parameter configuration, in an iterative way by interacting with the environment online. In this setting, the RL agent may reside locally, or the agent may reside on another entity. In the latter case, the feedback from the environment and new states after executing the action will need to be sent to the other entity to continue the learning process.  
· Second setting: The learning first starts from the offline pre-learning phase on a pre-learning entity using either previously collected offline data or simulation data. After the pre-learning, the pre-learned RL model(s) will be offloaded to the online learning entity where the local agent will continue the online fine-tuning phase by interacting with the real-world environment. Note that depending on the use case and implementation, sometimes part of the replay buffer which is utilized in the offline learning phase needs to be made available to the online learning entity as well.  
· Hybrid
Hybrid learning problems are those problems that cannot be cleanly defined as either supervised learning problem or unsupervised learning problem. There are a few variations of this type of learning problem.
· Semi-supervised learning
In this learning problem space, only a small subset of the training data contains labelled examples while majority of the training data contains unlabelled examples. To make use of the unlabelled data, an unsupervised method can be leveraged to discover the patterns in the data, e.g., clustering or density estimation. Once the patterns are learned, supervised methods can be applied to label (some) unlabelled examples, and those examples can be used for training the ML model later.
Many practical problems fall into this type, e.g., natural language processing and computer vision, and they usually cannot be easily solved using standard supervised methods alone directly.
· Self-supervised learning
Self-supervised learning refers to an unsupervised learning problem that is formulated as a supervised learning problem and solved using a supervised learning method. In [6], self-supervised learning is described as:
“The self-supervised learning framework requires only unlabeled data in order to formulate a pretext learning task such as predicting context or image rotation, for which a target objective can be computed without supervision.”
Self-supervised learning problem is commonly seen in computer vision where a corpus of unlabelled data is available and can be used to train a supervised model, e.g., predicting color for grayscale images. 
Examples of self-supervised learning methods include autoencoder which is trained to attempt to copy its input to its output, and generative adversarial networks (GANs) which are trained indirectly via a separate discriminator model that classifies examples of samples (e.g., images) from the domain as real or fake / generated, and the result is then fed back to update the GAN model to learn to generate more realistic samples (images) in the next iteration. Another example which gains popularity recently is contrastive learning, which uses positive sample pairs and negative sample pairs to learn the underlying structure or representation of the underlying data.
For semi-supervised learning, the handling can be a combination of unsupervised learning and supervised learning. The work involved in learning patterns from unlabelled data can leverage unsupervised learning techniques to label those unlabelled samples and afterwards, supervised learning approach can be utilized. 
For self-supervised learning, the actual handling may depend on use case and ML approach. Here we use autoencoder based ML method as an example. In the case that the goal is to reduce the communication overhead, the input can be compressed at the sending entity (where the encoder resides) before transmitting it to the receiving entity (where the decoder resides). A few options may be considered:
· External training approach: another network with more computing/memory capacity can be used to perform the end-to-end training of the autoencoder model. Once the model training is finished, the encoder model is offloaded to the data-sending network entity and the decoder part is offloaded to the data-receiving network entity.
· Training on one of the network entities approach: one of the network entities (either the entity that will act as the encoder or the entity that will act as the decoder) is responsible for training the end-to-end autoencoder model. In this case, the input data that is required in training the model must be made accessible to the training network entity. Once the autoencoder model is trained, the encoder or decoder part can be offloaded to the other entity.
· Depending on the use case, there may be other options or variations of the above. 
Fig. 5 depicts one of the setting options for autoencoder. Fig. 5. An example setting for autoencoder, which includes the end-to-end training phase and encoder/decoder offloading.

Observation 6: For semi-supervised learning, the handling can be treated as a combination of unsupervised learning and supervised learning problem.
Observation 7:  When considering autoencoder as a self-supervised learning example, an end-to-end autoencoder is first trained on a designated network entity. After the training, the encoder part can be offloaded to one entity and the decoder part can be offloaded to another entity.
The above categorization across the different types of RAN-AI learning problems shows the potentially differences in terms of processing power/latency/data availability requirements of network nodes, as well the impacts on the type of data to be exchanged between network entities and the network interfaces and multi-vendor inter-operability. Of course, further sub-categories and comparisons between different approaches may be needed as part of the use case study.
Observation 8:  Based on the study of popular learning problems, we observe different characteristics across these learning problems regardless of use cases:
· Data to be collected or exchanged in the training phase may differ, from raw data, intermediate data, e.g., replay buffer in RL to partially trained model(s) and model updates, e.g., gradients.
· RL requires collecting feedbacks from the environment that the agent is interacting with, which may include network performance and new state(s) after the action execution.
· Some learning problems may require sending part of the learned ML model to another entity to perform end-to-end inference, e.g., autoencoder-based approach in self-supervised learning scenario. 
The above characteristics will introduce different impacts to network interfaces and inter-operability considerations.
Observation 9:  Concerning the four different learning problems, we summarize the data to be exchanged between network entities in a general form as following:
· Data to be exchanged between the data collection entity and the model training/learning entity includes:
· Training data
· Data to be exchanged between the data collection entity and the model inference/fine-tuning entity may include:
· Inference data, and/or 
· Environment feedbacks (in RL case)
· Data to be exchanged between the model training/learning entity and the model inference/fine-tuning entity may include:
· From the training/learning entity to the inference/fine-tuning entity:
· Trained model (in supervised or self-supervised learning case) or partially trained model (in RL case)
Note: trained or partially trained model may include updated model(s).
· Interim data, e.g., replay buffer in RL case  
· From the inference/fine-tuning entity to the training/learning entity:
· Inference results: for model performance calculation
· Model updates (e.g., gradients in FL setting)
· Data to be exchanged between the inference/fine-tuning entity and the actor where the final decision is made includes:
· Inference result(s)
· Data to be exchanged between the actor and the subject of action where the action is to be executed includes:
· Action: determined using the inference result(s)
Note: The wording of “entity” may mean logical entity.
[image: ]Proposal: In order not to limit the RAN intelligence framework only to specific learning problem(s), modify the diagram of “Figure 4.2-1: Functional Framework for RAN Intelligence” in [2] to the following: 

Note: text in red indicates changes.
Conclusion
This contribution provides a general overview of different types of ML/AI problems and popular ML/AI techniques to address these learning problems. In NG-RAN, the actual ML/AI techniques to leverage depend on the learning problem scenario and use case. While ML/AI algorithm may be outside the scope of 3GPP standards, the current NG-RAN architecture and ML/AI infrastructure need to consider supporting a variety of ML/AI learning problems.
It is proposed to approve the following:
Observation 1: In general, AI/ML approaches can be categorized by learning problem types: supervised learning, unsupervised learning, reinforcement learning and hybrid learning. 
Observation 2: For Supervised Learning problem, there are at least two typical training and inference settings. 
· First scenario: the model training and model inference are both performed on a centralized entity while the inference result will be used by another entity. In this case, the model inference result needs to be delivered to the network entity that will utilize the inference result to determine subsequent action or make final decision.  
· Second scenario: the model training is performed on one entity and the trained model is offloaded to another network entity which will then perform the model inference locally utilizing the trained model. 
Observation 3: Federated Learning (FL) addresses the data privacy concern and alleviates the demand of computational power on the training entities. FL differs from the other two typical supervised learning settings in terms of types of data to be exchanged between entities.
· FL coordinating entity delivers the initial shared model to each FL participating client.
· Each FL client uses its local data samples to update the model, then sends its model updates (e.g., gradients) back to the FL coordinator.
· FL coordinator combines the updates that it receives and improves the shared model, then the updated model is delivered to the FL clients.
Observation 4: When considering clustering as an example for Unsupervised Learning problem, typically, each participating entity will collect identified features at desired granularity and periodically send the collected data to a common entity first. The designated entity will perform similarity study and clustering task (or the collected data can be sent to the data collection entity first). Once the clustering is done, the subsequent model training task will follow the procedures of Supervised Learning, Reinforcement Learning or other learning problems.
Observation 5: For Reinforcement Learning problem scenario, there are at least two possible settings. 
· First setting: The RL agent learns the optimal action, e.g., parameter configuration, in an iterative way by interacting with the environment online. In this setting, the RL agent may reside locally, or the agent may reside on another entity. In the latter case, the feedback from the environment and new states after executing the action will need to be sent to the other entity to continue the learning process.  
· Second setting: The learning first starts from the offline pre-learning phase on a pre-learning entity using either previously collected offline data or simulation data. After the pre-learning, the pre-learned RL model(s) will be offloaded to the online learning entity where the local agent will continue the online fine-tuning phase by interacting with the real-world environment. Note that depending on the use case and implementation, sometimes part of the replay buffer which is utilized in the offline learning phase needs to be made available to the online learning entity as well.  
Observation 6: For semi-supervised learning, the handling can be treated as a combination of unsupervised learning and supervised learning problem.
Observation 7:  When considering autoencoder as a self-supervised learning example, an end-to-end autoencoder is first trained on a designated network entity. After the training, the encoder part can be offloaded to one entity and the decoder part can be offloaded to another entity.
Observation 8:  Based on the study of popular learning problems, we observe different characteristics across these learning problems regardless of use cases:
· Data to be collected or exchanged in the training phase may differ, from raw data, intermediate data, e.g., replay buffer in RL to partially trained model(s) and model updates, e.g., gradients.
· RL requires collecting feedbacks from the environment that the agent is interacting with, which may include network performance and new state(s) after the action execution.
· Some learning problems may require sending part of the learned ML model to another entity to perform end-to-end inference, e.g., autoencoder-based approach in self-supervised learning scenario. 
The above characteristics will introduce different impacts to network interfaces and inter-operability considerations.
Observation 9:  Concerning the four different learning problems, we summarize the data to be exchanged between network entities in a general form as following:
· Data to be exchanged between the data collection entity and the model training/learning entity includes:
· Training data
· Data to be exchanged between the data collection entity and the model inference/fine-tuning entity may include:
· Inference data, and/or 
· Environment feedbacks (in RL case)
· Data to be exchanged between the model training/learning entity and the model inference/fine-tuning entity may include:
· From the training/learning entity to the inference/fine-tuning entity:
· Trained model (in supervised or self-supervised learning case) or partially trained model (in RL case)
Note: trained or partially trained model may include updated model(s).
· Interim data, e.g., replay buffer in RL case
· Model updates (e.g., gradients in FL setting)  
· From the inference/fine-tuning entity to the training/learning entity:
· Inference results: for model performance calculation
· Data to be exchanged between the inference/fine-tuning entity and the actor where the final decision is made includes:
· Inference result(s)
· Data to be exchanged between the actor and the subject of action where the action is to be executed includes:
· Action: determined using the inference result(s)
Note: The wording of “entity” may mean logical entity.
[image: ]Proposal: In order not to limit the RAN intelligence framework only to specific learning problem(s), modify the diagram of “Figure 4.2-1: Functional Framework for RAN Intelligence” in [2] to the following: 
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