
3GPP TSG-RAN WG3 #105bis		R3-195319
Chongqing, China, 14th – 18th October 2019

Source:	CATT, China Telecom
[bookmark: Title]Title:	Discussion on out of order issue for split bearer
[bookmark: Source]Agenda Item:	22.2
[bookmark: DocumentFor]Document for:	Discussion and decision

Introduction
In Disaggregated gNB enhancement SI, for user plane enhancement in DC scenario, the following issues needs to be considered [1]:
		In a DC scenario, data transmitted to UE from two legs may arrive out of order, where the amount of out-of-order data exceeds the level that the re-ordering mechanism can handle. This may result in out-of-order delivery to higher layer.

In recent meetings, there were some discussions over this issue, while no consensus is achieved. In this contribution we will analyse this issue again and propose a solution mainly based on an existing IE.
Discussion
At first we want to clarify the initial purpose of the “desired buffer size” (DBS for short below) IE within the DDDS frame.
Assume that there is one DU, one CU, and a DRB delivering downlink user data. The downlink user data comes from the initial data source, with their departure time generally determined by the data source itself and cannot be affected by our RAN. If we wish to shorten the transmission delay, the only thing we can do is to deliver every packet toward the UE as early as possible—this is the very motivation why we wish that “there is a sufficient amount of data buffered” within the DU.
If this were the only demand we needed to consider, we should obvious make the CU deliver any packet toward the DU as early as possible—no need for any report from the DU back to the CU. But in fact we introduce the DBS over the F1-U. Hence we can deduce that DBS is introduced not only considering packet delay, but considering some other issue as well.
The problem is buffer capacity: if the packets arrive at the DU too late, its buffer may be empty and radio resources are not fully utilised, which finally lengthens the packet delay; if the packets arrive at the DU too early, its buffer may overflow, resulting in packet loss. The CU need to trade-off between the two extremes, considering the DBS reported from the DU.
Observation 1: “Desired data rate” is designed to ensure that there is there is a sufficient amount of data buffered in the corresponding node, while not exceeding its buffer capacity.
Observation 2: As long as there is a sufficient amount of data buffered in the corresponding node, any additional data sent to DU and buffered there does not affect the packet delay either positively or negatively.
Now we shall look back to the out-of-order issue. We shall firstly check whether this issue can be handled using existing IEs. Although analysed upon different understanding, we agree with the conclusion of §2 in [2] that DBS is “next to useless” when handling the out-of-order issue. If we really want to use this IE to resolve the out of order problem, then other information i.e. target buffer dwell timer needs to be introduced as proposed in [2][3]
Solution 1: The hosting node informs the corresponding node of the target buffer dwell timer and the corresponding node calculate the DBS according to the buffer dwell timer received.
Solution 2: When the corresponding node reports the DBS to the hosting node, it also informs the hosting node of the buffer dwell target timer.
For solution 1,the hosting node does not know the buffer ability of the corresponding node,the requested buffer dwell timer may exceed the maximum buffer ability of the corresponding node.This may either need the introduction of another IE to coordinate on total buffer ability or still leave the out of order issue unresolved since the corresponding node could not request the DBS based on hosting node’s command
[bookmark: _GoBack]For solution 2, the corresponding node sent both the target buffer dwell timer and DBS to the corresponding node,the intention is to let the hosting node estimate the data rate in Uu interface.However,currently,there already exists one IE i.e. Desired data rate in DDDS which intends to inform the hosting node the expected data rate received.So,we further try to analyze whether the current “desired data rate” (DDR for short below) could already facilitate the CU to split the downlink flow properly into the two RLC legs i.e. resolve the out of order issue.
For convenience, assume that the two legs are Leg 1 and Leg 2 respectively. What the CU needs to do is to deliver the downlink PDCP PDUs toward the two legs adequately, so that the PDCP PDUs with succeeding SNs are delivered over the Uu at two time points not too far from each other.
Assume that currently it is . From the “Highest successfully delivered NR PDCP Sequence Numbers” contained in the DDDS frames, the CU can deduce the amount of data over the two legs, either within their buffer or on-the-fly over the F1-U interface. Assume that they are and respectively. It is clearly that any packet sent toward Leg 1 right now is to be sent over the Uu when the is “emptied”, while any packet sent toward Leg 2 right now is to be sent over the Uu when the is “emptied”
If the CU (at least approximately) knows the time when and are “emptied” respectively—assume that they are and respectively—and some more prediction information, it can decide optimally on what packet to deliver over the F1-U toward each leg.
Specifically, if , the CU should send toward Leg 1 the PDCP PDU which is with the lowest SN among the ones yet not sent to any leg. What packet to deliver toward Leg 2 is a bit complex: at , Leg 1 has delivered many packets which departs from the CU after (i.e. sent over Uu after)—assume that this amount is . Obviously these should be the “lowest unsent” PDCP PDUs from the perspective of the CU. Hence the packet sent toward Leg 2 at present should be the PDCP PDU which is one after the “lowest unsent” PDCP PDU sent toward Leg 1 at present.

Figure 1: What SN the CU can align.
In common implementation, the Uu data rate is not predicted to change over granularity of one second or more, i.e. at the predicted Uu data rate for is a constant, irrelevant of . Assume that the Uu data rates of the two legs for predicted at are and respectively. We would find that , , and . On the other hand, and should be the exact DDR values reported toward the CU in order to keep the amount of data buffered in the DU as constant as possible. Therefore, DDR is already sufficient enough to prevent out-of-order delivery as possible.
Observation 3: The “desired data rate” IE could be used to prevent out-of-order delivery.
Let’s give an example. Assume that at each DU can deliver 10 packets per second and each DU hosts a desired buffer of ~20 packets, however the exact buffer tend to be less as some packets may be still on the F1-U. The current packet delivered over Uu is about #100.

Figure 2: Example at t = 0s.
One second passed and . Each leg has delivered 10 packets toward the DU. At present DU2 find that the radio condition worsen, and it can only deliver 5 packets per second. Hence it sends an DDDS toward the CU with a DDR value of 5.

Figure 3: Example at t = 1s.
Now the CU can easily calculate that , , , and . It thus sends the packet about #160 toward DU1, and sends the packet about #180 toward DU2 (if it do not has #180 now, it can simply wait and stop to deliver any packet toward DU2—which will make the situation even easier to handle as analysed in [2]). At we can see its result. (Note that the out-of-order phenomenon between and is inevitable, as incurred by what the CU has already done prior to .)

Figure 4: Example at t = 2s till t = 6s.
At , DU2 find that its radio condition recovered, capable to deliver 10 packets per second. The CU will then adjust its implementation instantly:

Figure 5: Example at t = 7s till t = 9s.
The issue to resolve the out of order problem via DDR is that the DDR is an optional IE within the DDDS frame, and DU is unaware of whether the RLC bearer the CU requested to establish is a split leg or not. It is just the decision of corresponding node itself on whether include the DDR or not while only the hosting node know whether this information is essential or not,e.g.the information is important to split bearer since it help to avoid the out of order problem.Based on that,we propose to add a polling mechanism to facilitate the hosting node to implement the abovementioned mechanism, in the form of adding an indication bit within the DL USER DATA frame.So,solution 3 is just to add a polling bit for DDR in DL USER DATA frame to command the corresponding node report the DDR if needed.
Proposal : We propose RAN3 to discuss solutions on resolving out of order issue and agree on add a polling mechanism to enable the hosting node asking the corresponding node to include a “desired data rate” within its DDDS frame.
Conclusion
Observation 1: “Desired data rate” is designed to ensure that there is there is a sufficient amount of data buffered in the corresponding node, while not exceeding its buffer capacity.
Observation 2: As long as there is a sufficient amount of data buffered in the corresponding node, any additional data sent to DU and buffered there does not affect the packet delay either positively or negatively.
Observation 3: The “desired data rate” IE could be used to prevent out-of-order delivery.
Proposal: We propose RAN3 to discuss solutions on resolving out of order issue and agree on add a polling mechanism to enable the hosting node asking the corresponding node to include a “desired data rate” within its DDDS frame.
The TP for the corresponding TR is as below:
Reference
[1] RP-191481; Revised SID: Enhancement for Disaggregated gNB Architecture.
[2] R3-191784; Making the DBS useful for Dual Connectivity; Ericsson.
[3] R3-193695 Discussion on desired buffer size in DC scenario CATT

5 TP for 38.823
[bookmark: _Toc16769911]5	Further Enhancements on Flow Control Mechanism
[bookmark: _Toc16769912]5.1	Scenarios
Scenario1:
In Rel-15, fast retransmission was introduced. For this case, data unsuccessfully transmitted in one leg would be re-transmitted in another leg based on the DDDS from the corresponding node. The current DDDS reports the sequence number of the in-sequence successfully delivered PDCP PDUs, which may lead to re-transmission in another leg of some already delivered PDCP PDUs.
For example, Figure 5.1-1 depicts the transmission status for one specific UE in gNB-DU1, i.e. all PDCP PDU with sequence number below 207 are successfully sent to UE except for PDCP PDU with SN 201. In this case, the gNB-DU1 would only report to gNB-CU-UP that its highest in-sequence successful transmitted PDCP SN as 200 and gNB-CU would request gNB-DU2 to re-transmit the PDCP PDU whose SN is above 200, among which some are already delivered to the UE.

 Figure 5.1-1 PDCP PDU transmission status in gNB-DU1 for Scenario 1
Scenario 2:
For re-transmission, there may be two kinds of re-transmissions, i.e. retransmission because of the data missing on F1/Xn interface and fast re-transmission mechanism. When the two kinds of re-transmission data arrive at corresponding node, the corresponding node may do re-ordering while sending them to UE. At the same time, the data sent from hosting node may arrive at corresponding node out of order. In this case, the hosting node could not get the accurate information on the status of re-transmission packets.

Scenario 3:
In case of split bearer,the hosting node makes the decision on how to split the data between the two corresponding nodes.It may happen that the data sent to the UE will arrive out-of-order. Even though the UE can handle a certain level of out-of-order delivery by means of a reordering procedure controlled by a reordering timer in the UE, if the data that arrives from each leg in a DC scenario is not sufficiently well aligned in time, the UE’s reordering timer will expire, and data will be delivered to higher layer out-of-order, leading to throughput degradations or loss of higher layer control data.(Refer to R3-190631)
5.2	Possible Solutions
5.2.3 Solutions for scenario 3
Solution 1:The hosting node informs the corresponding node of the target buffer dwell timer and the corresponding node calculate the DBS according to the buffer dwell timer received.
Solution 2: When the corresponding node reports the DBS to the hosting node, it also informs the hosting node of the buffer dwell target timer.
Solution 3: Reuse the current existing Desired Data Rate IE in DDDS and add a polling bit for DDR in DL USER DATA frame to command the corresponding node report the DDR if needed.
[bookmark: _Toc16769913]5.3	Evaluations
5.3.3 Evaluation on solutions for scenario 3
For solution 1,the hosting node does not know the buffer ability of the corresponding node,the requested buffer dwell timer may exceed the maximum buffer ability of the corresponding node.This may either need the introduction of another IE to coordinate on total buffer ability or still leave the out of order issue unresolved since the corresponding node could not request the DBS based on hosting node’s command.
Based on that, solution 1 should be precluded
For solution 2, the corresponding node sent both the target buffer dwell timer and DBS to the corresponding node,the intention is to let the hosting node estimate the data rate in Uu interface.So,it has the similar effect as solution 3.
The detailed way that solution 3 resolve the out of order problem is as below:
Assume that the two legs are Leg 1 and Leg 2 respectively. What the hosting node needs to do is to deliver the downlink PDCP PDUs toward the two legs adequately, so that the PDCP PDUs with succeeding SNs are delivered over the Uu at two time points not too far from each other.
Assume that currently it is . From the “Highest successfully delivered NR PDCP Sequence Numbers” contained in the DDDS frames, the hosting node can deduce the amount of data over the two legs, either within their buffer or on-the-fly over the F1-U interface. Assume that they are and respectively. It is clearly that any packet sent toward Leg 1 right now is to be sent over the Uu when the is “emptied”, while any packet sent toward Leg 2 right now is to be sent over the Uu when the is “emptied”
If the hosting node (at least approximately) knows the time when and are “emptied” respectively—assume that they are and respectively—and some more prediction information, it can decide optimally on what packet to deliver over the F1-U toward each leg.
Specifically, if , the hosting node should send toward Leg 1 the PDCP PDU which is with the lowest SN among the ones yet not sent to any leg. What packet to deliver toward Leg 2 is a bit complex: at , Leg 1 has delivered many packets which departs from the hosting node after (i.e. sent over Uu after)—assume that this amount is . Obviously these should be the “lowest unsent” PDCP PDUs from the perspective of the hosting node. Hence the packet sent toward Leg 2 at present should be the PDCP PDU which is one after the “lowest unsent” PDCP PDU sent toward Leg 1 at present.

Figure 5.3-1: Explaination on solution 3
In common implementation, the Uu data rate is not predicted to change over granularity of one second or more, i.e. at the predicted Uu data rate for is a constant, irrelevant of . Assume that the Uu data rates of the two legs for predicted at are and respectively. We would find that , , and . On the other hand, and should be the exact DDR values reported toward the hosting node in order to keep the amount of data buffered in the corresponding node as constant as possible. Therefore, DDR is already sufficient enough to prevent out-of-order delivery as possible.
Based on the analysis above,solution 3 is the simplest solution to resolve the problem.So,it is proposed to adopt solution 3 for scenario 3.

4
[bookmark: OLE_LINK9][bookmark: OLE_LINK10][bookmark: OLE_LINK11][bookmark: _Hlk493690069][bookmark: _Hlk493690070]R3-195318
oleObject1.bin
V 1

V 1,a

V 2

V 1,s

V 2,s

Leg 1

Leg 2

Predicted Uu data rate

Predicted Uu data rate

t

t 0

t 1

t 2

Data already delivered to one leg (maybe on-the-fly over F1-U)

Data yet not delivered to either leg

We wish to align the SN sent over Uu at t 2

image2.emf
Leg 1Leg 2

t= 0s

100

Data Buffered in the DU

Packet on-the-fly over F1-U

102104106108

110112114116118

120122124126128

130132134136138

101103105107109

111113115117119

121123125127129

131133135137139

oleObject2.bin
102

104

106

108

110

112

114

116

Leg 1

Leg 2

118

120

t = 0s

122

124

126

128

130

100

Data Buffered in the DU

Packet on-the-fly over F1-U

132

134

136

138

101

103

105

107

109

111

113

115

117

119

121

123

125

127

129

131

133

135

137

139

image3.emf
Leg 1Leg 2

t= 1s

Data Buffered in the DU

Packet on-the-fly over F1-U

120122124126128

130132134136138

121123125127129

131133135137139

140142144146148

150152154156158

141143145147149

151153155157159

oleObject3.bin
140

142

144

146

148

150

152

154

Leg 1

Leg 2

156

120

t = 1s

122

124

126

128

130

158

Data Buffered in the DU

Packet on-the-fly over F1-U

132

134

136

138

141

143

145

147

149

151

153

155

157

159

121

123

125

127

129

131

133

135

137

139

image4.emf
Leg 1Leg 2

t= 2s

Data Buffered in the DU

Packet on-the-fly over F1-U

131133135137139140142144146148

150152154156158141143145147149

151153155157159160161162163164

165166167168169181184187190193

oleObject4.bin
140

142

144

146

148

150

152

154

Leg 1

Leg 2

156

160

t = 2s

161

162

163

164

165

158

Data Buffered in the DU

Packet on-the-fly over F1-U

166

167

168

169

141

143

145

147

149

151

153

155

157

159

181

184

187

190

193

131

133

135

137

139

image5.emf
Leg 1Leg 2

t= 3s

Data Buffered in the DU

Packet on-the-fly over F1-U

141143145147149

151153155157159

160161162163164

165166167168169

181184187190193170171172173174

175176177178179196199202205208

oleObject5.bin
170

171

172

173

174

175

176

177

Leg 1

Leg 2

178

160

t = 3s

161

162

163

164

165

179

Data Buffered in the DU

Packet on-the-fly over F1-U

166

167

168

169

141

143

145

147

149

151

153

155

157

159

181

184

187

190

193

196

199

202

205

208

image6.emf
Leg 1Leg 2

t= 4s

Data Buffered in the DU

Packet on-the-fly over F1-U

151153155157159

181184187190193

170171172173174

175176177178179

196199202205208180182183185186

188189191192194211214217220223

oleObject6.bin
170

171

172

173

174

175

176

177

Leg 1

Leg 2

178

180

t = 4s

182

183

185

186

188

179

Data Buffered in the DU

Packet on-the-fly over F1-U

189

191

192

194

211

214

217

220

223

151

153

155

157

159

181

184

187

190

193

196

199

202

205

208

image7.emf
Leg 1Leg 2

t= 5s

Data Buffered in the DU

Packet on-the-fly over F1-U

181184187190193

196199202205208

180182183185186

188189191192194

211214217220223195197198200201

203204206207209226229232235238

oleObject7.bin
195

197

198

200

201

203

204

206

Leg 1

Leg 2

207

180

t = 5s

182

183

185

186

188

209

Data Buffered in the DU

Packet on-the-fly over F1-U

189

191

192

194

211

214

217

220

223

226

229

232

235

238

181

184

187

190

193

196

199

202

205

208

image8.emf
Leg 1Leg 2

t= 6s

Data Buffered in the DU

Packet on-the-fly over F1-U

196199202205208

211214217220223

195197198200201

203204206207209

226229232235238210212213215216

218219221222224241244247250253

oleObject8.bin
195

197

198

200

201

203

204

206

Leg 1

Leg 2

207

210

t = 6s

212

213

215

216

218

209

Data Buffered in the DU

Packet on-the-fly over F1-U

219

221

222

224

211

214

217

220

223

226

229

232

235

238

241

244

247

250

253

196

199

202

205

208

image9.emf
Leg 1Leg 2

t= 7s

Data Buffered in the DU

Packet on-the-fly over F1-U

226229232235238210212213215216

218219221222224241244247250253

225228231234237

240243246249252

227230233236239

242245248251254

oleObject9.bin
225

228

231

234

237

240

243

246

Leg 1

Leg 2

249

210

t = 7s

212

213

215

216

218

252

Data Buffered in the DU

Packet on-the-fly over F1-U

219

221

222

224

227

230

233

236

239

226

229

232

235

238

241

244

247

250

253

242

245

248

251

254

image10.emf
Leg 1Leg 2

t= 8s

Data Buffered in the DU

Packet on-the-fly over F1-U

225228231234237

240243246249252

227230233236239

242245248251254

255257259261263

265267269271273

256258260262264

266268270272274

oleObject10.bin
225

228

231

234

237

240

243

246

Leg 1

Leg 2

249

255

t = 8s

257

259

261

263

265

252

Data Buffered in the DU

Packet on-the-fly over F1-U

267

269

271

273

227

230

233

236

239

256

258

260

262

264

266

268

270

272

274

242

245

248

251

254

image11.emf
Leg 1Leg 2

t= 9s

Data Buffered in the DU

Packet on-the-fly over F1-U

255257259261263

265267269271273

256258260262264

266268270272274

275277279281283

285287289291293

276278280282284

286288290292294

oleObject11.bin
275

277

279

281

283

285

287

289

Leg 1

Leg 2

291

255

t = 9s

257

259

261

263

265

293

Data Buffered in the DU

Packet on-the-fly over F1-U

267

269

271

273

276

278

280

282

284

256

258

260

262

264

266

268

270

272

274

286

288

290

292

294

image12.emf
...196197198199200202203204205206207201

PDCP PDU

transmitted

successfully

PDCP PDU

without ACK

received

oleObject12.bin
...

196

197

198

199

200

202

203

204

205

206

207

201

PDCP PDU transmitted successfully

PDCP PDU without ACK received

oleObject13.bin
V 1

V 1,a

V 2

V 1,s

V 2,s

Leg 1

Leg 2

Predicted Uu data rate

Predicted Uu data rate

t

t 0

t 1

t 2

Data already delivered to one leg (maybe on-the-fly over F1-U)

Data yet not delivered to either leg

We wish to align the SN sent over Uu at t 2

image1.emf
V

1,s

V

2,s

Leg 1Leg 2

Predicted Uu

data rate

t

V

1

V

1,a

V

2

t

0

t

1

t

2

Data already delivered to one leg

(maybe on-the-fly over F1-U)

Data yet not delivered to either leg

We wish to align

the SN sent over

Uu at t

2

Predicted Uu

data rate

