
1(26)

TSG-RAN Working Group 3, meeting 2 TSGW3#2(99)184
Nynäshamn, Sweden, 15-19 March 1999

Agenda Item: 6.2 (or other)

Source: Nokia

Title: Change request for R2.01: Use of ASN.1 for definition of abstract syntaxes
of protocol messages. Specification of default and special encoding.

Document for: Decision

2(26)

TSG-RAN Working Group 2 (Radio layer 2 and Radio layer 3) TSGR2#2(99)087
Stockholm 8th to 11th March 1999

Agenda Item: 9.0 Specification methodology

Source: Nokia

Title: Change request for R2.01: Use of ASN.1 for definition of abstract syntaxes
of protocol messages. Specification of default and special encoding.

Document for: Decision

OVERVIEW

This document contains proposals for the R2.01, Guidelines and Principles for protocol
description and error handling [7].

This document provides proposals for the following items specified in [7]:

1. use subset of ASN.1 (compatible with Z.105) for definition of abstract syntax of protocol
messages.

2. there is a need for a default encoding, which can be applied in most cases

3. there is a need for a special encoding e.g. by means of CSN.1

The clause 10. describes the subset of ASN.1. The clause 11. contains rules for default
encoding and specification of specialised encoding.

Proposal:

Add the clauses 10 and 11 of this document to R2.01.

REFERENCES

[1] X.680, Abstract Syntax Notation One (ASN.1): Specification of the basic
notation.

[2] X.681, Abstract Syntax Notation One (ASN.1): Information Object
Specification.

[3] X.682, Abstract Syntax Notation One (ASN.1): Constraint Specification.

[4] X.690, ASN.1 Encoding rules: Specification of basic encoding rules (BER),
canonical encoding rules (CER) and distinguished encoding rules (DER)

[5] X.691, ASN.1 Encoding Rules - Specification of packed encoding rules (PER)

[6] CSN.1 specification, version 2.0.

[7] 3GPP TSG RAN WG2 R2.01, Guidelines and Principles for protocol
description and error handling.

3(26)

10. MESSAGE ABSTRACT SYNTAX SPECIFICATIONUSAGE OF ASN.1

The following clauses specify how abstract syntaxes for protocol message are specified
using ASN.1.The following clauses contain guidelines for specification of protocol
messages with ASN.1.The purpose of ASN.1 is to make it possible to specify abstract
syntax of a message (i.e. what is the contents of a message) separately from its transfer
syntax (i.e. how a message is encoded for transmission). The features that ASN.1 provides
include specification of:

• Extensibility (both structural and extension of value set)

• Optional IEs and values (see the clauses 10.2.2. and 10.3.10.)

• Default values (see the clauses 10.2.2. and 10.3.10.)

• Comprehension required (see the clause 10.2.4.)

• Inter/Intra IE dependency (see the clause 10.3.10.)

• Specification of partial decoding (see the clause 10.2.5.)

The clause 11 specifies how message transfer syntax is specified. It should be noted that
importance of some transfer syntax properties must be determined early during
specification because of their effect on message abstract syntax specification possibilities.
The properties are compactness and extensibility. If extreme compactness is required
then extensibility must be restricted. If good extensibility is required then compromises
must be done regarding compactness. The sections concerning these issues are marked
in the following clauses as COMPACTNESS and EXTENSIBILITY.

10.1. Message level

10.1.1. Messages

It is presumed that messages share the same structure, namely that they contain an
identification part and a contents part. An identification part contains an IE that identifies a
message among all messages in some context. A contents part contains message specific
IEs.

Example: A protocol layer XYZ contains three messages: A, B and C. The structure of the
messages is as presented in the figure 3-1.

Message A

Message B

Message C

Id

Id

Id

IE 1

IE 1

IE 2

IE 4IE 3

IE 5 IE 6

Figure 3-1: Three example messages

Messages are specified using ASN.1 [1]. There are three ASN.1 types, MessageA,
MessageB and MessageC, which contain definitions for the contents of the above
messages. The mapping between the message contents types and message identifiers is
as follows:

4(26)

Message id Type of message contents
1 MessageA
2 MessageB
3 MessageC

New message types will be introduced in the future.

In cases where different PDUs have different identification schemes it is possible to apply
this categorisation for a set of PDUs that share the same identification scheme.

10.1.2. Message definition

In order to capture information in the previous clause the following three things must be
defined:

1. A structure for the table

2. The table itself

3. A generic message structure which can contain both message identifier IE and
message contents IEs (i.e. id 1 + MessageA, id 2 + MessageB, id 3 + MessageC)

The table structure is defined as follows using ASN.1 classes [2]:

XYZ-MESSAGE ::= CLASS {
&id MessageId,
&Type

}
WITH SYNTAX {

&id &Type
}

MessageId ::= INTEGER (0..63)

The table is defined as follows:

XYZ-Messages XYZ-MESSAGE ::= {
{ messageA-id MessageA } |
{ messageB-id MessageB } |
{ messageC-id MessageC } |
... -- Extension marker => additional messages

-- can be introduced.
}

messageA-id MessageId ::= 1
messageB-id MessageId ::= 2
messageC-id MessageId ::= 3

The following type represents the generic message structure that can carry values of the
messages specified in the XYZ-Messages table.

5(26)

XYZ-Message ::= SEQUENCE {
id XYZ-MESSAGE.&id ({XYZ-Messages)},

-- MessageId: 1, 2 or 3

contents XYZ-MESSAGE.&Type ({XYZ-Messages}{@id})
-- id=1 => MessageA, id=2 => MessageB, id=3 => MessageC

}

The above definition means that if id is 1 then the Message type is equivalent to the
following type:

XYZ-Message ::= SEQUENCE {
id MessageId, -- 1
contents SEQUENCE {

ie1 IE1,
ie2 IE2

}
}

If id is 2 then the type is equivalent to the following type:

XYZ-Message ::= SEQUENCE {
id MessageId, -- 2
contents SEQUENCE {

ie3 IE3,
ie4 IE4

}
}

6(26)

10.1.3. Messages and ASN.1 modules

ASN.1 definitions shall be placed in ASN.1 modules such that definitions in a module form
a logical unit. For example PDUs definitions for one protocol layer could be in one ASN.1
module and IE definitions in another.

The tagging mode for the modules shall be "AUTOMATIC TAGS".

Example: A message definition module for the XYZ protocol layer.

XYZ-Messages DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

XYZ-Messages XYZ-MESSAGE ::= {
{ messageA-id MessageA } |
{ messageB-id MessageB } |
{ messageC-id MessageC } |
... -- Additional messages can be introduced.

}

MessageA ::= SEQUENCE {
-- Message contents

}

messageA-id MessageId ::= 1

MessageB ::= SEQUENCE {
-- Message contents

}

messageB-id MessageId ::= 2

MessageC ::= SEQUENCE {
-- Message contents

}

messageC-id MessageId ::= 3

END

10.1.4. Messages and SDL

The identifiers messageA-id, MessageA, messageB-id, etc. can be used in descriptive SDL
when protocol behaviour is specified. Note that classes and objects can not (yet) be
referenced in SDL. Types and values however can be imported to SDL definitions. The
figures below contain some examples about usage of ASN.1 in SDL specifications.

imports
 MessageA, messageA_id,
 MessageId
from SomeASN1Module;

signal XYZ_MessageA(
 MessageId, MessageA);

dcl aVariable MessageA;

Figure 3-2: Import and use of ASN.1 definitions in SDL.

7(26)

XYZ_MessageA(
 messageA_id,
 aVariable)

Figure 3-3: Sending of a message id and contents.

10.2. Information element level

Messages consist of information elements.

The following ASN.1 message types are used in the following clauses.

MessageA ::= SEQUENCE {
ie1 IE1, -- A mandatory IE.

ie2 IE2 OPTIONAL, -- An optional IE.

... -- An extension marker.
}

MessageB ::= SEQUENCE {
ie3 IE3

(CONSTRAINED BY {-- ComprehensionRequired(is for receiver) --}
!comprehensionRequiredFailure),

ie4 IE4 DEFAULT 0, -- An optional IE with a default value.

...
}

MessageC ::= SEQUENCE {
ie1 IE1

(CONSTRAINED BY {-- PartialDecoding(OnErrorIgnoreRest) --}
!partialDecodingFailure)
OPTIONAL,

ie5 IE5
(CONSTRAINED BY {-- PartialDecoding(OnErrorIgnoreRest) --}
!partialDecodingFailure)
OPTIONAL,

... , -- An extension marker

ie6 IE6
 (CONSTRAINED BY {-- PartialDecoding(OnErrorIgnoreRest) --}

!partialDecodingFailure)
OPTIONAL -- A new IE

}

-- Error codes
comprehensionRequiredFailure INTEGER ::= 1
partialDecodingFailure INTEGER ::= 2

10.2.1. Message contents

A message contents structure is defined using a sequence type (10.3.10.).

Example: MessageA, MessageB and MessageC are message contents structures.

10.2.2. Optional IEs and default values

An IE can be marked as optional.

8(26)

COMPACTNESS: Optional IEs shall be after mandatory ones.

Example: MessageA.ie2 is an optional IE.

ie2 IE2 OPTIONAL

An IE can be marked as being optional and having a default value. In those cases a
missing optional IE may be understood as having a certain value hence a defined
meaning.

Example: MessageB.ie4 is an optional IE with a default value.

ie4 IE4 DEFAULT 0

10.2.3. New IEs

EXTENSIBILITY: If new IEs will be added to a message then the message contents structure
must be specified as extensible using the ellipsis notation (...). New IEs shall be added
after the extension marker. New IEs shall be optional or shall have default values.

Example: MessageC.ie6 is an additional optional IE.

... ,
ie6 IE6 OPTIONAL

10.2.4. Comprehension required

"Comprehension required" requirement can be associated with an IE. It means that after
an IE value has been decoded then the value is validated. Failure in validation causes
rejection of the message.

The requirement is specified as an extension to ASN.1 by using user defined constraints
[3]. The comment part of the constraint shall be of the form:

ComprehensionRequired(<additional constraint>)

where <additional constraint> specifies the rule that the IE must satisfy.

Example: The MessageB is a broadcast message. The ie3 IE contains recipient
addresses. It is not until the addresses have been decoded when a receiver can decide
whether it should decode the rest of the message or not.

ie3 IE3
(CONSTRAINED BY {-- ComprehensionRequired(is for receiver) --}
!comprehensionRequiredFailure),

10.2.5. Partial decoding

"Partial decoding" means that a PDU can be decoded in parts. One part forms a complete
value that can be separated from other parts. A decoding error in a part does not invalidate
previously decoded parts. Subsequent parts are however invalidated.

"Partial decoding" is specified as an extension to ASN.1 using user defined constraints.
The comment of constraint shall be of the form:

PartialDecoding(<OnErrorClause>)

where <OnErrorClause> specifies action in case of a decoding error. The possible
alternatives are:

• OnErrorIgnoreRest: End decoding, ignore rest of the message

9(26)

 Example: The MessageC is a multipurpose message. The IEs ie1, ie5 and ie6 are
independent of each other.

 ie1 IE1
 (CONSTRAINED BY {-- PartialDecoding(OnErrorIgnoreRest) --}
 !partialDecodingFailure)

 10.2.6. Error specification

 An error specification can be associated with user defined constraints.

 A simple integer value can be associated with an exception specification or as elaborate
structured value as needed.

 Example: If decoding of ie1 fails then decoder returns the error code
partialDecodingFailure.

 ie1 IE1
 (CONSTRAINED BY {-- PartialDecoding(OnErrorIgnoreRest) --}
 !partialDecodingFailure)

 10.3. Value level

 Information elements consist of values.

 If the CSN.1 specified default syntax (see the clause 11.) is used as a transfer syntax then
only the following ASN.1 types can be used in the value level:

• Boolean (10.3.4.)
• Integer (10.3.5.)
• Enumerated (10.3.6.)
• Bit string (10.3.7.)
• Octet string (10.3.8.)
• Null (10.3.9.)
• Sequence (10.3.10.)
• Sequence-of (10.3.11.)
• Choice (10.3.12.)
• Character string types (10.3.13.)

 Otherwise there are no restrictions on usage of ASN.1 types.

 10.3.1. Extensibility

 COMPACTNESS: In the value level use of ASN.1 extensibility is forbidden unless otherwise
stated in the following clauses.

 10.3.2. Comprehension required

 "Comprehension required" can be applied to components of sequence types, alternatives
of choice types and elements of sequence-of types. See 10.2.4.

 10.3.3. Partial decoding

 "Partial decoding" can be applied to components of sequence types, alternatives of choice
types and elements of sequence-of types. See 10.2.5.

10(26)

 10.3.4. Boolean

 Example: A simple boolean type.

 Flag ::= BOOLEAN

 setFlag Flag ::= TRUE

 10.3.5. Integer

 An integer type should be constrained.

 COMPACTNESS: An integer type shall be constrained to have a finite value set. The value set
can be either continuous or non-continuous.

 Named numbers can be associated with an integer type.

 COMPACTNESS, EXTENSIBILITY: If an integer type needs to be extended in the future then two
value sets must be defined:

• A value set that specifies the values that can be sent in the current protocol version.

• A value set that specifies all the possible values that can be received now and in the
future.

 The former value set is specified in a user-defined constraint. The comment part shall be of
the form:

 Send(<value set>)

 The latter form is specified using a normal constraint, e.g. a value range constraint.

 Examples: Integer types and values.

 Counter ::= INTEGER (0..255) -- 0 <= Counter value <= 255

 SparseValueSet ::= INTEGER (0|3|5|6|8|11)

 SignedInteger ::= INTEGER (-10..10)

 -- idle stands for value 0.
 Status ::= INTEGER { idle(0), veryBusy(3) } (0..3)

 -- Send values 0..3 but be prepared to receive values 0..15.
 Extensible ::= INTEGER (0..15)(CONSTRAINED BY {-- Send(0..3) --})

 initialCounter Counter ::= 0

 zero SparseValueSet ::= 0

 initialStatus Status ::= idle

 10.3.6. Enumerated

 An enumerated type shall have a continuous finite value set. The enumeration value of the
smallest enumeration shall be 0. The list of enumerated values specifies the value set for
an enumerated type.

 COMPACTNESS, EXTENSIBILITY: If an enumerated type needs to be extended in the future then
two value sets must be defined as in case of integer types.

11(26)

 Note: An integer type with named numbers can be used as on alternative to an
enumerated type.

 Example: Enumerated types and value.

 Enum ::= ENUMERATED { a, b, c, d }

 -- Send values a, b, c or d but be prepared to receive values
 -- a, b, c, d, spare4, spare5, spare6 and spare7.
 ExtendedEnum ::= ENUMERATED { a, b, c, d, spare4, spare5, spare6, spare7 }
 (CONSTRAINED BY {-- Send(a|b|c|d) --})

 aEnum Enum ::= a

 10.3.7. Bit string

 A size constraint shall be specified. It shall be finite.

 Named bits can be associated with a bit string type.

 Example: Bit string types and values.

 FixedLengthBitStr ::= BIT STRING (SIZE (10))

 VariableLengthBitStr ::= BIT STRING (SIZE (0..10))

 BitFlags ::= BIT STRING { a(0), b(1), c(2), d(3)} (SIZE (4))

 fix FixedLengthBitStr ::= '0001101100'B

 var VariableLengthBitStr ::= '0'B

 flg BitFlags ::= { a, c, d } -- '1011'B

 10.3.8. Octet string

 A size constraint shall be specified. It shall be finite.

 Example: Octet string types and values.

 FixedLengthOctetStr ::= OCTET STRING (SIZE (10))

 VariableLengthOctetStr ::= OCTET STRING (SIZE (0..10))

 UpperLayerPDUSegment ::= OCTET STRING (SIZE (1..512))

 fix FixedLengthOctetStr ::= '0102030405060708090A'H

 var VariableLengthOctetStr ::= 'FF'H

12(26)

 10.3.9. Null

 A null type has only one value, NULL.

 Example: Null type as an alternative type of a choice type.

 IE ::= CHOICE {
 doThis ThisArg,
 doThat ThatArg,
 doNothing NULL
 }

 10.3.10. Sequence

 A sequence type is a record. Components of a sequence type can be optional or they can
have default values. Optional components and components with default values should be
after mandatory components.

 Inner subtyping can be used to force an optional component to be present or absent in a
derived type.

 If an optional component is conditionally present or absent then the condition shall be
specified in a user defined constraint of the form:

 Condition(<condition expression>)

 <condition expression> shall be such that both sender and receiver are able to evaluate it
before a conditional component is encoded or decoded.

 "Comprehension required" can be associated with a component of a sequence type.

 "Partial decoding" can be associated with a component of a sequence type.

 EXTENSIBILITY: A sequence type can be marked as extensible.

13(26)

 Example: Sequence types and values.

 Record ::= SEQUENCE {
 flag Flag,
 counter Counter,
 bitFlags BitFlags OPTIONAL,
 extEnum ExtendedEnum DEFAULT a
 }

 DerivedRecord ::= Record (WITH COMPONENTS {
 bitFlags PRESENT
 })

 RecordWithConditionalComponent ::= SEQUENCE {
 mand INTEGER (0..7),
 opt BOOLEAN OPTIONAL,
 cond BOOLEAN
 (CONSTRAINED BY {--Condition(field 'mand' is 7)--})
 OPTIONAL
 }

 aRecord Record ::= {
 flag TRUE,
 counter 100
 }

 anotherRecord DerivedRecord ::= {
 flag TRUE,
 counter 1000,
 bitFlags '0101'B -- bitFlags must be present
 }

 10.3.11. Sequence-of

 A sequence-of type is a list of some element type. A size constraint shall be specified. It
shall be finite.

 "Comprehension required" can be associated with an element of a sequence-of type.

 "Partial decoding" can be associated with an element of a sequence-of type.

 Example: Sequence-of types and values.

 FixedLengthList ::= SEQUENCE (SIZE (10)) OF Record

 VariableLengthList ::= SEQUENCE (SIZE (0..10)) OF Status

 UpperLayerPDUSegments ::= SEQEUNCE (SIZE (1..10)) OF UpperLayerPDUSegment

 aList VariableLengthList ::= { idle, 1, 2, veryBusy, 2, 1, idle }

 10.3.12. Choice

 A choice type is a variant record. Only one alternative component can be selected.

 Inner subtyping can be used to force an alternative to be selected in a derived type.

 "Comprehension required" can be associated with an alternative component of a choice
type.

 "Partial decoding" can be associated with an alternative component of a choice type.

14(26)

 EXTENSIBILITY: A choice type can be marked as extensible.

 Example: Choice type and value.

 VariantRecord ::= CHOICE {
 flag Flag,
 counter Counter,
 extEnum ExtendedEnum
 }

 aVariantRecord variantRecord ::= flag : FALSE

 10.3.13. Restricted character string types

 A size constraint shall be specified. It shall be finite.

 Example: Character string types.

 FixedStr ::= IA5String (SIZE (10))

 VarStr ::= IA5String (SIZE (1..10))

 FixedWStr ::= BMPString (SIZE (10))

 VarWStr ::= BMPString (SIZE (1..10))

 10.3.14 IEs and ASN.1 modules

 If an IE or a value field within an IE is a parameter from another protocol layer then type for
such a field should be defined in another module. In this way there is a clear separation of
definitions that are specific to different protocol layers.

 Example: The XYZ protocol message MessageC contains an IE, which contains an OPQ
protocol layer specific field parameter1. Type for the field is imported from OPQ specific
module.

 XYZ-Messages DEFINITIONS AUTOMATIC TAGS ::=

 BEGIN

 IMPORTS
 OPQParameter -- OPQParameter is not defined within XYZ-Messages
 -- module.
 FROM OPQ-DataTypes;

 MessageC ::= SEQUENCE {
 -- Other IEs.
 ie6 IE6 OPTIONAL
 }
 -- Other definitions ...

 IE6 ::= SEQUENCE {
 parameter1 OPQParameter, -- Imported definitions can be
 -- referred to.
 parameter2 XYZParameter
 }

 XYZParameter ::= INTEGER (0..255)

 END

15(26)

 Example: The OPQ protocol layer specific module exports OPQParameter type so that
other modules can refer it.

 OPQ-DataTypes DEFINITIONS AUTOMATIC TAGS ::=

 BEGIN

 EXPORTS
 OPQParameter
 ;

 OPQParameter ::= INTEGER (0..7)

 END

16(26)

 11. MESSAGE TRANSFER SYNTAX SPECIFICATION

 11.1. Default encodingSelection of transfer syntax specification method

 11.1.1 Transfer syntax specification method alternatives

 There are three the following alternatives for specification of default encodingmessage
transfer syntax. One transfer syntax specification method shall be selected for all the
messages of a given protocol.

• BER (Basic Encoding Rules, X.690) [4] (including CER and DER)

• PER (Packed Encoding Rules, X691) [5]

• CSN.1 specified encoding, see the following clauses.

• Tabular format

 BER and PER are standard ASN.1 encoding rules. BER produces large octet oriented
encodings.

 CSN.1 is not standardised but it is publicly available. Use of CSN.1 with ASN.1 is
presented in the clause 11.2.

 There are no formal rules for specification of tabular format transfer syntax.

 11.1.2 Comparison of methods

 The following table contains comparison of transfer syntax specification methods. The
numbers indicate the rank of a method.

 Criteria BER PER CSN.1 Tabular format

 Compactness 4 2 1 3

 Extensibility 1 1 2 * 2 *

 BER produces large octet oriented encodings with a lot of extra control information. For
radio protocol messages encodings are too large. Thus BER should not be used.

 PER produces small bit oriented encodings. BASIC UNALIGNED PER produces the most
compact encodings whereas BASIC OCTET-ALIGNED PER pads some fields. PER
provides good support for extensibility. The support causes some growth of messages.
PER produced encodings are self-delimiting.

 CSN.1 produces smallest encodings. If the CSN.1 alternative is selected then the
COMPACTNESS and COMPACTNESS, EXTENSIBILITY sections in the clause 10. shall be followed.
The following clauses do not support the EXTENSIBILITY sections. Such support is for FFS. If
message level extensibility is specified then CSN.1 produced encodings are not self-
delimiting because no length information is encoded for extended fields. If message level
extensibility is not used then CSN.1 produces self-delimiting encodings.

 PER and CSN.1 are best suited for cases when the structure of a message is complex,
e.g. there are many IEs/value fields, some fields are optional or alternative or repetitive etc.

 * The relative order of these two methods can not be definitely stated because they do not
provide one fixed way for specification of extensibility.

17(26)

PER and CSN.1 produce similar encodings. Selection between PER and CSN.1 should be
done according to the following criteria:

 PER and CSN.1 produce small bit oriented encodings.Selection of encoding rules for
default encoding depends of the following two factors:

• Extensibility

• Compactness of encoding

• If compactness of encoding is the most important requirement and the restricted
extensibility is adequate (message extensions are always added to end of a message
as new IEs) then the CSN.1 alternative should be selected.

• If extensibility is the most important requirement and compactness is the second then
BASIC UNALIGNED PER (or BASIC OCTET ALIGNED PER) should be selected.

 If new extensions should be able to be inserted in middle of a message and
compactness is important then BASIC UNALIGNED PER should be selected.

 If new extensions should be able to be inserted in middle of a message and compactness
is not so important then BASIC OCTET-ALIGNED PER (or BER) should be selected

 In case of tabular format properties of encoding depend on how a message is specified.
This is because there are no formal rules for specification of tabular format transfer syntax.
Tabular format is best suited for cases when there are few IEs/value fields and the
structure of a message is simple.

 11.1.1 Other issues

 If there is definite size limit for a message (e.g. a broadcast message must fit into one
lower layer message) then the COMPACTNESS sections in the clause 10. must be followed. 1

 11.2. CSN.1 encoding for ASN.1 types

 The following clauses specify the CSN.1 [6] specific default encoding for ASN.1 types. The
rules specify one-to-one mapping from an abstract syntax to a transfer syntax.2

 11.2.1. Message structures

 Message structures shall be encoded as follows:

• A choice of all the messages specified in a message table.

 1 Note that it is the responsibility of a specifier to make sure that an abstract syntax
produces a transfer syntax with wanted properties. Additional user defined constraint
specifications should be considered.

 2 Note that it is possible to specify one set of of bits in multiple ways in CSN.1. For example
the following descriptions denote the same set of bits:

 {000|001|010|011}

 0 {0|1} {0|1}]

 0 bit(2)

 This document contains a mapping from an ASN.1 type to an CSN.1 description. Other
CSN.1 descriptions that denote the same bit set as presented in the document are also
valid.

18(26)

• Selection is done according to the identifier field values.

 Example: Encoding of the XYZ-Message type in 10.1.2.

 <XYZ_Message> ::=
 { <id : 000001> <MessageA>
 | <id : 000002> <MessageB>
 | <id : 000003> <MessageC>
 }
 ;

 11.2.2. Boolean

 A boolean type maps to one bit.

 Example: Encoding for the boolean type in 10.3.4.

 <Flag> ::=
 <BOOLEAN>
 ;

 <BOOLEAN> ::=
 bit
 ;

 11.2.3. Integer

 An integer type is encoded as an UNALIGNED variant of a constrained whole number as
specified in PER [5].

 Explanation: Let "lb" be lower bound and "ub" be the upper bound of an integer type. A
value "n" will be encoded as a value e = ("n" - "lb") using the minimum number of bits
necessary to represent the values in range.

 Named numbers do not affect encoding.

 If an integer type is marked as extensible as specified in 10.3.5. then the reception and
emission value sets are defined separately.

 Example: Encodings for integer types in 10.3.5.

 <Counter> ::=
 <INTEGER(8)> -- n = 0..255, e = n-0 = 0..255
 ;

 <SparseValueSet> ::=
 <INTEGER(4)> -- n = 0|3|5|6|8|11, e = n-0 = 0|3|5|6|8|11
 exclude {
 0001|0010|0100|0111|1001|1010|1100|1101|1111
 }
 ;

 <SignedInteger> ::= -- n = -10..10, e = n-(-10) = 0..20
 <INTEGER(5)>
 exclude {
 10101|10110|10111|11000|11001|11010|11011|11100|11101|11110|11111
 }
 ;

19(26)

 <Status> ::= -- n = 0..3, e = n-0 = 0..3
 <INTEGER(2)>
 ;

 <Extensible> ::= -- n = 0..3, e = n-0 = 0..3, two spare bits
 <INTEGER(4)> = 00 <INTEGER(2)>
 ;

 <INTEGER(nBits)> ::=
 bit(nBits)
 ;

 See also 11.3. for specialised encoding.

 11.2.4. Enumerated

 Enumeration values form a value set of 0..(number of enumerations-1). Each enumeration
item is encoded as its corresponding numeric value. A value "n" will be encoded using the
minimum number of bits necessary to represent all the values in a value set.

 If an enumerated type is marked as extensible as specified in 10.3.6. then the reception
and emission value sets are defined separately.

 Example: Encodings for enumerated types in 10.3.6.

 <Enum> ::=
 { <a : 00>
 | <b : 01>
 | <c : 10>
 | <d : 11>
 }
 ;

 <ExtendedEnum> ::=
 { <a : 000>
 | <b : 001>
 | <c : 010>
 | <d : 011>
 | <spare4 : 100>
 | <spare5 : 101>
 | <spare6 : 110>
 | <spare7 : 111>
 } =
 { <a : 000>
 | <b : 001>
 | <c : 010>
 | <d : 011>
 }
 ;

 11.2.5. Bit string

 A bit string is mapped to a string of bits. If the number of bits may vary then a length field
precedes the bit string.

 A length field is encoded as an integer field of type INTEGER (lb..ub) where "lb" is the
lower bound the of size constraint and "ub" is the upper bound.

 Named bits do not affect encoding.

20(26)

 Example: Encodings for bit string types in 10.3.7.

 <FixedLengthBitStr> ::=
 bit(10)
 ;

 -- length = 0..10, e = length-0 = 0..10
 <VariableLengthBitStr> ::=
 <length : <INTEGER(4)> exclude {1011|1100|1101|1110|1111}>
 bit * val(length)
 ;

 <BitFlags> ::=
 bit(4)
 ;

 11.2.6. Octet string

 An octet string is mapped to a string of bits. If the number of octets may vary then a length
field precedes the octet string.

 A length field is encoded as an integer field of type INTEGER (lb..ub) where "lb" is the
lower bound the of size constraint and "ub" is the upper bound.

 Example: Encodings for octet string types in 10.3.8.

 <FixedLengthOctetStr> ::=
 <octet>(10)
 ;

 -- length = 0..10, e = length-0 = 0..10
 <VariableLengthBitStr> ::=
 <length : <INTEGER(4)> exclude {1011|1100|1101|1110|1111}>
 <octet> * val(length)
 ;

 -- length = 1..512, e = length-1 = 0..511
 <UpperLayerPDUSegment> ::=
 <length : <INTEGER(9)>>
 <octet> * val(length)
 ;

 11.2.7. Null

 The null type is mapped to an empty bit string.

 Example: Encoding for the choice type with nested null type in 10.3.9.

 <IE> ::=
 { 00 <doThis : <ThisArg>>
 | 01 <doThat : <ThatArg>>
 | 10 <doNothing : null>
 }
 ;

21(26)

 11.2.8. Sequence

 Component values are encoded using rules for component types.

 Presence or absence of an optional component or a component with a default value is
indicated with a heading bit. Default values do not affect encoding.

 If an optional component is forced to be present or absent in a derived type then the
heading bit is omitted for the derived type.

 If an optional component is conditionally present or absent then the heading bit is omitted.
Presence of a conditional component depends on the associated condition expression.

 If a sequence type is a message contents type then

• If there is an extension marker then spare bits description follows the last component
description.

• Truncation of omitted trailing optional components is allowed.

Example: Encodings for sequence types in 10.3.10.

<MessageA> ::=
 <ie1 : <IE1>>
 {
 { 0
 | 1 <ie2 : <IE2>>
 }

 <spare bit>(*)
 } // -- Truncation of optional components is allowed
;

<MessageB> ::=
 <ie3 : <IE3>>
 -- ComprehensionRequired(is for receiver)
 -- !comprehensionRequiredFailure

 {
 { 0 -- DEFAULT 0
 | 1 <ie4 : <IE4>>
 }

 <spare bit>(*)
 } // -- Truncation of optional components is allowed
;

<MessageC> ::=
 {
 { 0
 | 1 { <ie1 : <IE1>> ! <PartialDecodingFailure : bit(*) = <no string>>}
 }

 { 0
 | 1 { <ie5 : <IE5>> ! <PartialDecodingFailure : bit(*) = <no string>>}
 }

 { 0
 | 1 { <ie6 : <IE6>> ! <PartialDecodingFailure : bit(*) = <no string>>}
 }

 <spare bit>(*)
 } // -- Truncation of optional components is allowed
;

22(26)

<Record> ::=
 <flag : <Flag>>
 <counter : <Counter>>
 { 0
 | 1 <bitFlags : <BitFlags>>
 }
 { 0
 | 1 <extEnum : <ExtendedEnum>>
 }
;

<DerivedRecord> ::=
 <flag : <Flag>>
 <counter : <Counter>>
 <bitFlags : <BitFlags> -- Note: no heading bit as in <Record>
 { 0
 | 1 <extEnum : <ExtendedEnum>>
 }
;

<RecordWithConditionalComponent> ::=
 <mand : <INTEGER(3)>> -- 0..7
 { 0
 | 1 <opt : <BOOLEAN>>
 }
 { null -- Note: no heading bit
 | <cond : <BOOLEAN>> -- if 'mand' is 7 then this field is present
}
;

11.2.9. Sequence-of

Element values are encoded using rules for the element type. If the number of elements
may vary then a length field precedes the element values.

A length field is encoded as an integer field of type INTEGER (lb..ub) where "lb" is the
lower bound the of size constraint and "ub" is the upper bound.

Example: Encodings for sequence-of types in 10.3.11.

<FixedLengthList> ::=
 <Record>(10)
;

-- length = 0..10, e = length-0 = 0..10
<VariableLengthList> ::=
 <length : <INTEGER(4)> exclude {1011|1100|1101|1110|1111}>
 <Status>*val(length)
;

-- length = 1..10, e = length-1 = 0..9
<UpperLayerPDUSegments> ::=
 <length : <INTEGER(4)> exclude {1010|1011|1100|1101|1110|1111}>
 <UpperLayerPDUSegment >*val(length)
;

See also 11.3.

11.2.10. Choice

A choice value is encoded with a preceding tag, which indicates which alternative has been
selected. A tag is encoded as an integer value in range 0..(number of alternatives-1).

23(26)

Example: Encoding for choice type in 10.3.12.

<VariantRecord> ::=
 { 00 <flag : <Flag>>
 | 01 <counter : <Counter>>
 | 10 <extEnum : <ExtendedEnum>>
 }
;

See also 11.3.

11.2.11. Restricted character strings

A character string is mapped to a string of octets (or double octets in case of BMPString).
If the number of characters may vary then a length field precedes the character string.

A length field is encoded as an integer field of type INTEGER (lb..ub) where "lb" is the
lower bound the of size constraint and "ub" is the upper bound.

Example: Encodings for character string types in 10.3.13.

<FixedStr> ::=
 <Char>(10)
;

-- length = 1..10, e = length-1 = 0..9
<VarStr> ::=
 <length : <INTEGER(4)> exclude {1010|1011|1100|1101|1110|1111}>
 <Char>*val(length)
;

<FixedWStr> ::=
 <WChar>(10)
;

-- length = 1..10, e = length-1 = 0..9
<VarWStr> ::=
 <length : <INTEGER(4)> exclude {1010|1011|1100|1101|1110|1111}>
 <WChar>*val(length)
;

<Char> ::=
 bit(8)
;

<WChar> ::=
 bit(16)
;

11.3. Specialised encoding

Speciaised encoding can be specified only if the default encoding is specified in CSN.1. If
standard ASN.1 encoding rules (BER and PER) are used then specialised encoding
definitions have no effect on encoding.

24(26)

11.3.1. General notation

There are three alternatives for specification of specialised encoding:

1. Definition is within ASN.1 definition in a user-defined constraint. The constraint is of the
form

 Encoding(<special encoding>)

2. Definition is stand-alone and there is a reference to it within ASN.1 definition in a user-
defined constraint:

 Encoding(<reference to specialised encoding>)

3. Definition is stand-alone and there is a reference to the corresponding ASN.1 definition

Specialised encoding is defined in CSN.1.

Example of specialised encoding, specialisation within ASN.1 definition:
B ::= BOOLEAN

(CONSTRAINED BY {-- Encoding(::= 0|1;--)}

Example of specialised encoding, reference to specialisation within ASN.1 definition:

B ::= BOOLEAN
(CONSTRAINED BY {-- Encoding(specialisation in the clause 2.3.4.5)--)}

 ::= 0|1;

Example of specialised encoding, reference to abstract syntax within CSN.1 definition:

B ::= BOOLEAN

-- Specialisation for type B specified in the clause 1.2.3.4
 ::= 0|1;

The specialised encoding shall be such that all the values of a type can be represented
with it, i.e. there shall be a mapping from each abstract value to an encoded value.

Example: An integer value set is not continuous but it is evenly distributed.

SparseEvenlyDistributedValueSet ::= INTEGER (0|2|4|6|8|10|12|14)
(CONSTRAINED BY {

-- Encoding(
-- <SparseEvenlyDistributedValueSet> ::=
-- <INTEGER(3)>
-- ;
--)
-- Mapping: e = n/2

}

25(26)

Example: An integer value set is not continuous and evenly distributed.

SparseValueSet ::= INTEGER (0|3|5|6|8|11)
(CONSTRAINED BY {

-- Encoding(
-- <SparseValueSet> ::=
-- 000|001|010|011|100|101
-- ;
--)
-- 0 => 000, 3 => 001, etc.

})

Example: A list type is encoded using more bits instead of explicit length.

VariableLengthList ::= SEQUENCE (SIZE (0..10))
(CONSTRAINED BY {

-- Encoding(
-- <VariableLengthList> ::=
-- { 1 <Status> }(*)
-- 0
-- ;
--)

})
OF Status

Example: Some alternatives of a choice type are used more frequently as others.
Therefore the tags for the frequently used alternatives are specified to be shorter than
others.

VariantRecord ::= CHOICE {
flag Flag, -- The two first alternatives are mostly used
counter Counter,
extEnum ExtendedEnum,
status Status,
list VariableLengthList

}
(CONSTRAINED BY {

-- Encoding(
-- <VariantRecord> ::=
-- { 00 <flag : <Flag>>
-- | 01 <counter : <Counter>>
-- | 100 <extEnum : <ExtendedEnum>>
-- | 101 <status> : <Status>>
-- | 110 <List : <VariableLengthList>>
-- }
-- ;

})

11.3.2. Shorthand notation

Some specialised encodings can be specified using a shorthand notation.

If an integer value set is not continuous then the encoding can be compressed by
specifying the following shorthand:

Encoding(compressed)

26(26)

Let there be m values in a value set. For each value ni, ni < ni+1, 0 = i < m. Value ni is
encoded as value i of type INTEGER (0..m-1).

Example: A value set is not continuous but it is evenly distributed.

SparseEvenlyDistributedValueSet ::= INTEGER (0|2|4|6|8|10|12|14)
(CONSTRAINED BY {-- Encoding(compressed) --})

-- Value is encoded as INTEGER (0..7)
-- 0 => 000, 2 => 001, 4 => 010, 6 => 011, 8 => 100, 10 => 101,
-- 12 => 110, 14 => 111

Example: A value set is not continuous and evenly distributed.

SparseValueSet ::= INTEGER (0|3|5|6|8|11)
(CONSTRAINED BY {-- Encoding(compressed) --})

-- Value is encoded as INTEGER (0..5)
-- 0 => 000, 3 => 001, 5 => 010, 6 => 011, 8 => 100, 11 => 101

A list type can be encoded using more bits instead of explicit length indicator by specifying
the following shorthand:

Encoding(morebit)

Example: A list type is encoded using more bits instead of explicit length.

VariableLengthList ::= SEQUENCE (SIZE (0..10))
(CONSTRAINED BY { -- Encoding(morebit) --})
OF Status

-- Value is encoded as:
-- <VariableLengthList> ::=
-- { 1 <Status> }(*)
-- 0
-- ;
--

More shorthand notations are for FFS.

