[bookmark: _Toc193024528][bookmark: _GoBack]3GPP TSG-RAN WG2 NR ASN.1 adhoc meeting	R2-2204342
Online, 20 - 22 April 2022

Title: 	[E108] Usage of extension markers
Source: 	Huawei, HiSilicon
Agenda item:	4
Document Type:	Discussion and Decision
1. Introduction
In ASN.1 review, the following comment was raised:
"The use of extension marker such as “…” is extensively used in parent and child IEs, even if something is not needed. One needs to understand that the extension marker is not something “on paper” to indicate that an IE can be extended, but it also bring a cost in terms of size. It would be good to have an exercise and try to delete unnecessary extension marker in the spec."
This document further discusses that topic.
[bookmark: OLE_LINK2][bookmark: OLE_LINK1]2. Discussion
2.1	Signalling size
First, we would like to make one point that every new top-level field in an extension is to be OPTIONAL, which means there will be one bit to indicate its presence or absence.
This applies not only to new fields included after ... but in any field included in a nonCriticalExtension SEQUENCE or in a lateNonCriticalExtension OCTET STRING.
Observation 1: In any extension method, every new field requires 1 bit to indicate its presence or absence.
The effect of extension markers on the RRC PDU encoding is as follows:
Case 1: No extension is defined after "..."
In this case, the effect of "..." is to add one bit set to zero.
Case 2: One or more [[]] are defined after "..." no field in any [[]] is present
In this case, the effect of "..." is to add one bit set to zero.
Case 3: n fields in p [[]] are defined after "..." are included, the last [[]] in which a field is included is the q-th [[]] after ..., each [[]] has X fields defined
In this case, the encoding is as follows:
-	8 bits: 1 bit set to 1 (extension present), 1 bit set to zero and 6 bits to encode q -1 (case q<=64)
-	Q bits: each bit indicates presence or absence of each [[]]
-	P times
-	8 bits: length in bytes of the contents of [[]] (assuming length <=127 bytes, 16 bits if 127 < length <= 16KB)
-	X bits: presence/absence of each element inside [[]]
-	0 to 7 bits: octet alignment
We can compare this with the usage of nonCriticalExtension SEQUENCE, where a SEQUENCE instead of a [[]]:
-	Q times
-	1 bit (for the SEQUENCE presence)
-	X bits: presence/absence of each element inside the SEQUENCE
Observation 2: As long as no extension is defined and used after an occurrence of ..., the overhead is 1 bit.
Below, we consider an example with 3 structures, A, B and C, that contain exactly the same fields, but:
-	A has all fields directly at top level
-	B has 2 extensions after ...
-	C has 2 extensions at the end, using the non-critical extension mechanism used at the end of messages
A ::= SEQUENCE {
 field01 BIT STRING (SIZE(12)),
 field02 INTEGER(1..65536) OPTIONAL,
 field03 ENUMERATED {n1, n6, n10, n22} OPTIONAL,
 field04 BOOLEAN OPTIONAL,
 field05 ENUMERATED {true} OPTIONAL,
 field06 INTEGER(32..63) OPTIONAL,
 field07 SEQUENCE (SIZE(1..12)) OF INTEGER (1..128) OPTIONAL,
 field08 ENUMERATED {n1, n6, n10, n22} OPTIONAL,
 field09 BOOLEAN OPTIONAL,
 field10 ENUMERATED {true} OPTIONAL,
 field11 INTEGER(1..65536) OPTIONAL,
 field12 ENUMERATED {n1, n6, n10, n22} OPTIONAL,
 field13 BOOLEAN OPTIONAL,
 field14 ENUMERATED {true} OPTIONAL,
 field15 BOOLEAN OPTIONAL,
 field16 ENUMERATED {true} OPTIONAL,
 field17 INTEGER(1..1024) OPTIONAL
}

B ::= SEQUENCE {
 field01 BIT STRING (SIZE(12)),
 ...,
 [[-- First extension
 field02 INTEGER(1..65536) OPTIONAL,
 field03 ENUMERATED {n1, n6, n10, n22} OPTIONAL,
 field04 BOOLEAN OPTIONAL,
 field05 ENUMERATED {true} OPTIONAL,
 field06 INTEGER(32..63) OPTIONAL,
 field07 SEQUENCE (SIZE(1..12)) OF INTEGER (1..128) OPTIONAL,
 field08 ENUMERATED {n1, n6, n10, n22} OPTIONAL,
 field09 BOOLEAN OPTIONAL,
 field10 ENUMERATED {true} OPTIONAL,
 field11 INTEGER(1..65536) OPTIONAL,
 field12 ENUMERATED {n1, n6, n10, n22} OPTIONAL,
 field13 BOOLEAN OPTIONAL,
 field14 ENUMERATED {true} OPTIONAL,
]],
 [[-- Second extension
 field15 BOOLEAN OPTIONAL,
 field16 ENUMERATED {true} OPTIONAL,
 field17 INTEGER(1..1024) OPTIONAL,
]]
}

C ::= SEQUENCE {
 field01 BIT STRING (SIZE(12))
 extension C-v2 OPTIONAL
}

C-v2 ::= SEQUENCE {
 field02 INTEGER(1..65536) OPTIONAL,
 field03 ENUMERATED {n1, n6, n10, n22} OPTIONAL,
 field04 BOOLEAN OPTIONAL,
 field05 ENUMERATED {true} OPTIONAL,
 field06 INTEGER(32..63) OPTIONAL,
 field07 SEQUENCE (SIZE(1..12)) OF INTEGER (1..128) OPTIONAL,
 field08 ENUMERATED {n1, n6, n10, n22} OPTIONAL,
 field09 BOOLEAN OPTIONAL,
 field10 ENUMERATED {true} OPTIONAL,
 field11 INTEGER(1..65536) OPTIONAL,
 field12 ENUMERATED {n1, n6, n10, n22} OPTIONAL,
 field13 BOOLEAN OPTIONAL,
 field14 ENUMERATED {true} OPTIONAL,
 extension C-v3 OPTIONAL
}

C-v3 ::= SEQUENCE {
 field15 BOOLEAN OPTIONAL,
 field16 ENUMERATED {true} OPTIONAL,
 field17 INTEGER(1..1024) OPTIONAL,
 extension SEQUENCE {} OPTIONAL
}

With the above definitions, we consider the case where field01 and field17 are present:
-	A is 12 + 16 (field presence bitmap) + 10 (field17) = 38 bits
-	B is 1 (extension presence) + 12 (field01) +8 (2 extensions) + 2 (extension presence bitmap) + 8 (length of 2nd extension) + 3 (2nd extension fields presence bitmap) + 10 (field17) + 3 bits (byte alignment of 2nd extension) = 47 bits.
-	C is 1 (C fields presence bitmap) + 12 (field01) + 14 (C-v2 fields presence bitmap) + 4 (C-v3 fields presence bitmap) + 10 (field17) = 41 bits
Observation 3: Even though "..." with a single extension addition group (i.e. one "[[]]") has 2 to 3 bytes overhead, with multiple addition groups and fields present in few of them, the overhead is significantly reduced.
2.2	Usefulness of extension markers
There are nonCriticalExtension containers at the end of every RRC message.
From that perspective, every extension marker is unnecessary: should an extension of TypeX be needed, it is possible to define a TypeX-vxy that is added at the end of every RRC message that includes TypeX. If what is in RRC messages is not TypeX but TypeY, that includes a field of type TypeX, it is possible to define TypeY-vxy that includes TypeX-vxy.
Of course, this is additional work and this spreads the changes required in multiple places in the specification, while with extension markers, it would be possible to keep all changes to a single place.
Observation 4: Strictly speaking, all extension markers are unnecessary but they can make 38.331 more readable, allowing to improve maintenance and reduce errors.
We would like to further illustrate the benefits of having "..." and the drawbacks of not having it, in the case of ToAddModList.
Here is the definition of PDCCH-Config:
PDCCH-Config ::= SEQUENCE {
 controlResourceSetToAddModList SEQUENCE(SIZE (1..3)) OF ControlResourceSet OPTIONAL, --Need N
 controlResourceSetToReleaseList SEQUENCE(SIZE (1..3)) OF ControlResourceSetId OPTIONAL, --Need N
 searchSpacesToAddModList SEQUENCE(SIZE (1..10)) OF SearchSpace OPTIONAL, --Need N
 searchSpacesToReleaseList SEQUENCE(SIZE (1..10)) OF SearchSpaceId OPTIONAL, --Need N
 downlinkPreemption SetupRelease { DownlinkPreemption } OPTIONAL, --Need M
 tpc-PUSCH SetupRelease { PUSCH-TPC-CommandConfig } OPTIONAL, --Need M
 tpc-PUCCH SetupRelease { PUCCH-TPC-CommandConfig } OPTIONAL, --Need M
 tpc-SRS SetupRelease { SRS-TPC-CommandConfig} OPTIONAL, --Need M
 ...,
 [[
 controlResourceSetToAddModListSizeExt-v1610 SEQUENCE (SIZE (1..2)) OF ControlResourceSet OPTIONAL, -- Need N
 controlResourceSetToReleaseListSizeExt-r16 SEQUENCE (SIZE (1..5)) OF ControlResourceSetId-r16 OPTIONAL, -- Need N
 searchSpacesToAddModListExt-r16 SEQUENCE(SIZE (1..10)) OF SearchSpaceExt-r16 OPTIONAL, -- Need N
 uplinkCancellation-r16 SetupRelease { UplinkCancellation-r16 } OPTIONAL, -- Need M
 monitoringCapabilityConfig-r16 ENUMERATED { r15monitoringcapability,r16monitoringcapability } OPTIONAL, -- Need M
 searchSpaceSwitchConfig-r16 SearchSpaceSwitchConfig-r16 OPTIONAL -- Need R
]],
 [[
 sfnScheme-r17 ENUMERATED {sfnSchemeA,sfnSchemeB} OPTIONAL, -- Need R
 searchSpacesToAddModListExt-v1700 SEQUENCE(SIZE (1..10)) OF SearchSpaceExt-v1700 OPTIONAL, -- Need N
 monitoringCapabilityConfig-r17 ENUMERATED { r15monitoringcapability, r16monitoringcapability, r17monitoringcapability }
 OPTIONAL, -- Need M
 searchSpaceSwitchTimer-r17 INTEGER (1..800) OPTIONAL, -- Need R
 pdcch-SkippingDurationList-r17 SEQUENCE(SIZE (1..3)) OF PDCCH-SkippingDuration-r17 OPTIONAL -- Need R
]]
}

SearchSpaceSwitchConfig-r16 ::= SEQUENCE {
 cellGroupsForSwitchList-r16 SEQUENCE(SIZE (1..4)) OF CellGroupForSwitch-r16 OPTIONAL, -- Need R
 searchSpaceSwitchDelay-r16 INTEGER (10..52) OPTIONAL -- Need R
}

CellGroupForSwitch-r16 ::= SEQUENCE(SIZE (1..16)) OF ServCellIndex

PDCCH-SkippingDuration-r17 ::= INTEGER (1..800)

ControlResourceSet was defined with "..." and extended in Rel-16 and in Rel-17.
However, no IE was defined with controlResourceSetToAddModList and controlResourceSetToReleaseList.
SearchSpace was not defined with "..." and extended in Rel-16 and in Rel-17.
We can see that:
-	extending the contents of ControlResourceSet has no impact to PDCCH-Config
-	extending the contents of SearchSpace requires one new list in PDCCH-Config, for each extension
-	extending the size of any of these two lists has impact to PDCCH-Config
Proposal 1: For Rel-17 ASN.1 review, focus on adding extension markers where they may be missing (rather than try to remove some since anyway, the overhead of extension markers with no extension specified is low).
Proposal 2: Add extension markers to every new Rel-17 IE or IE extension that is a SEQUENCE.
Proposal 3: For every new list using ToAddModList/ToReleaseList, or every extension of an existing list using ToAddModList/ToReleaseList, consider defining an IE that includes the ToAddModList and ToReleaseList fields (so that there is no need to add yet more fields to higher level IEs in a later release).
[bookmark: _Toc423020296][bookmark: _Toc423019950][bookmark: _Toc423020279]3. Conclusion
We made the following observations:
Observation 1: In any extension method, every new field requires 1 bit to indicate its presence or absence.
Observation 2: As long as no extension is defined and used after an occurrence of ..., the overhead is 1 bit.
Observation 3: Even though "..." with a single extension addition group (i.e. one "[[]]") has 2 to 3 bytes overhead, with multiple addition groups and fields present in few of them, the overhead is significantly reduced.
Observation 4: Strictly speaking, all extension markers are unnecessary but they can make 38.331 more readable, allowing to improve maintenance and reduce errors.
Following these observations, we have the following proposals:
Proposal 1: For Rel-17 ASN.1 review, focus on adding extension markers where they may be missing (rather than try to remove some since anyway, the overhead of extension markers with no extension specified is low).
Proposal 2: Add extension markers to every new Rel-17 IE or IE extension that is a SEQUENCE.
Proposal 3: For every new list using ToAddModList/ToReleaseList, or every extension of an existing list using ToAddModList/ToReleaseList, consider defining an IE that includes the ToAddModList and ToReleaseList fields (so that there is no need to add yet more fields to higher level IEs in a later release).

3GPP
