3GPP TSG-RAN WG2 NR AH1807 Meeting
R2-1810950
Montreal, Canada, 2nd - 6th July 2018

(update of R2-1810922)
Agenda Item:
10.4.1.8.1
Source:
Huawei, HiSilicon
Title:
Optimization of Access Control configuration in NR
Document for:
Discussion and decision
1 Introduction
In the RAN2 #102 meeting [1], following agreements were achieved:
Agreements for NR

1
All access control info will be contained in SIB1. (We need to find a way to ensure the size is constrained)

Working assumption for NR and LTE/5GC

2
Support an encoding option 2b from the mail discussion (AC are explicitly indicated). ASN.1 for this approach will be included in the CR for SA. Further optimisations can still be considered next meeting,
In this paper, we discuss a possible optimization of the signalling of access barring configuration so as to reduce the size of the information that needs to be signalled via SIB1 for access control. The proposed solution has minimal impact to currently agreed ASN.1 encoding and RRC procedures.
2 Discussion
Per the agreement above the following encoding was adopted as the baseline for access control info in SIB1:

[image: image1]
According to this approach a list is provided (UAC-BarringPerCatList), and each entry of the list contains an AC (AccessCategory) and a pointer to the corresponding access barring parameter set (uac-barringInfoSetIndex).
The advantage of this approach is that access barring parameters do not need to be associated with each possible value of access category. Hence, UAC-BarringPerCatList only needs to contain as many entries of access categories as the operator wants to configure for the given PLMN. Thus, if the operator defines a few operator defined access categories for example, then only these access categories would have entries in the table.

On the other hand, each entry of the table includes the value of AccessCategory, which is a 6 bit field per the current encoding. This is in addition to the 3 bits needed to encode the uac-barringInfoSetIndex field, bringing the total size of each UAC-BarringPerCat to 9 bits. Clearly the size of UAC-BarringPerCatList can grow very quickly, as the number of configured access categories is increased. As analysed in [2], for the worst case of 64 access categories, the size of UAC-BarringPerCatList would be 6+63*9=573 bits per configured PLMN. Compared to this, if UAC-BarringPerCatList were encoded as per option 2a of the previous e-mail discussion [3], the size of UAC-BarringPerCatList would only be 63*3=189 bits per PLMN [2].

It is easy to calculate that option 2a encoding is more efficient that option 2b encoding, if access barring for more than 20 access categories is configured. It is conceivable that with operator defined access categories, and the probable addition of more standardized access categories in future releases, this threshold could be exceeded quite often.
Figure 1 below illustrates how the size of UAC-BarringAccessCategories varies depending on the number of access catagories for which access barring parameters are configured, for different encoding schemes as proposed in [5]:
[image: image2.emf]0

100

200

300

400

500

600

0 16 32 48 64

Size of

UAC

-

BarringAccessCategories

(bits)

Number of Configure Access Categories

2a encoding

2b encodinng

encoding with fixed size AC bitmap

encoding with optimized AC bitmap

encoding with 2 optimized AC bitmaps

(Standerdized + Operator Defined)

Figure 1, size of UAC-BarringAccessCategories as a function of number of Access Categories for which barring parameters are configure, and for different ASN.1 encoding schemes
Observation1: Encoding of UAC-BarringPerCat per option 2b (agreed in RAN2 #102) is extremely inefficient if barring parameters for more than a few access categories are configured.
As discussed in both the previous e-mail discussion [3] and in previous contributions [2] [4], for a moderate to large number of access categories it is more desirable not to use a variable length list UAC-BarringPerCatList (2b encoding), but rather use a list of fixed size (2a encoding). Therefore, we propose to add a single bit in SIB1 to enable an operator to select either of these 2 methods.

Observation1: Operators should be able to select fixed or variable length list of access barring set indices according to their deployment requirements.
Proposal 1: SIB1 supports selecting either a fixed length list of access barring set indices (2a encoding), or a variable length list with explicit access category indication (2b encoding).
The following ASN.1 snippet illustrates the encoding for this approach:

[image: image3]
RAN2 is kindly requested to agree this proposal.
3 Conclusion

The paper proposes a simple solution to optimize the size of information needed to communicate access barring parameters in SIB1. We have the following proposals:

Proposal 1: SIB1 supports selecting either a fixed length list of access barring set indices (2a encoding), or a variable length list with explicit access category indication (2b encoding).

Proposal 2: Capture the text proposal in the annex into appropriate sections of 38.331

4 References
[1] RAN2#102 chairman notes
[2] R2-1806762, “Further reducing the size of access barring information”, Ericsson, RAN2 #102
[3] R2-1808597, “[101bis#45][NR] TP on AC (LG)”, LG Electronics Inc. (Email discussion Rapporteur), RAN2 #102
[4] R2-1809082, ”Optimization of Access Control configuration in NR”, Huawei, HiSilicon, RAN2 #102
[5] R2-1810922, ”Optimization of Access Control configuration in NR”, Huawei, HiSilicon, NR AH1807
5 Annex: ASN.1 for optimization of barring information signalling of 5G Unified Access Control

6.2.1
General message structure

…

–

SIB1

Editor’s Note: Targeted for completion in September 2018. Not used in EN-DC.

SIB1 contains information relevant when evaluating if a UE is allowed to access a cell and defines the scheduling of other system information. It also contains radio resource configuration information that is common for all UEs and barring information applied to the unified access control.

Signalling radio bearer: N/A

RLC-SAP: TM

Logical channels: BCCH
Direction: Network to UE

SIB1 message

-- ASN1START

-- TAG-SIB1-START

SIB1 ::=

SEQUENCE {

cellSelectionInfo

SEQUENCE {

q-RxLevMin

Q-RxLevMin,

q-RxLevMinSUL

Q-RxLevMin

OPTIONAL,

-- Need N

q-QualMin

Q-QualMin

OPTIONAL

-- Need N

}

OPTIONAL,

cellAccessRelatedInfo

CellAccessRelatedInfo,

connectionEstablishmentFailureControl
ConnectionEstablishmentFailureControl

OPTIONAL,

si-SchedulingInfo

SI-SchedulingInfo

OPTIONAL,

servingCellConfigCommon

ServingCellConfigCommonSIB

OPTIONAL,

ims-EmergencySupport

ENUMERATED {true}

OPTIONAL,

eCallOverIMS-Support

ENUMERATED {true}

OPTIONAL, -- Cond Absent

ue-TimersAndConstants

UE-TimersAndConstants

OPTIONAL,

uac-BarringInfo

SEQUENCE {

uac-BarringForCommon

UAC-BarringPerCatList

OPTIONAL,

uac-BarringPerPLMN-List

UAC-BarringPerPLMN-List

OPTIONAL,

uac-BarringInfoSetList

UAC-BarringInfoSetList

}

OPTIONAL,

lateNonCriticalExtension

OCTET STRING

OPTIONAL,

nonCriticalExtension

SEQUENCE{}

OPTIONAL
}

UAC-BarringPerPLMN-List ::=

SEQUENCE (SIZE (1.. maxPLMN)) OF UAC-BarringPerPLMN

UAC-BarringPerPLMN ::=

SEQUENCE {

plmn-IdentityIndex

INTEGER (1..maxPLMN),

uac-ACBarringListType

CHOICE{

uac-ImplicitACBarringList

SEQUENCE (SIZE(maxAccessCat-1)) OF UAC-BarringInfoSetIndex,

uac-ExplicitACBarringList

UAC-BarringPerCatList

}

}

UAC-BarringPerCatList ::= SEQUENCE (SIZE (1..maxAccessCat-1)) OF UAC-BarringPerCat

UAC-BarringPerCat ::= SEQUENCE {

 accessCategory

INTEGER (1..maxAccessCat-1),

 uac-barringInfoSetIndex
 UAC-BarringInfoSetIndex
}

UAC-BarringInfoSetIndex ::=

INTEGER (1..maxBarringInfoSet)
UAC-BarringInfoSetList ::= SEQUENCE (SIZE(maxBarringInfoSet)) OF UAC-BarringInfoSet

UAC-BarringInfoSet ::= SEQUENCE {

uac-BarringFactor

ENUMERATED {

p00, p05, p10, p15, p20, p25, p30, p40,

p50, p60, p70, p75, p80, p85, p90, p95},

uac-BarringTime

ENUMERATED {s4, s8, s16, s32, s64, s128, s256, s512},

uac-BarringForAccessIdentity

BIT STRING (SIZE(7))

}

-- TAG-SIB1-STOP

-- ASN1STOP

5.3.14.2
Initiation

Upon initiation of the procedure, the UE shall:

1>
if timer [T30x] is running for the Access Category:

Editor’s note: FFS whether T302 (i.e. wait time) is also checked here.
2>
consider the access attempt as barred;
1>
else:

2>
if the UE is resuming an RRC connection [for RNA update] as specified in 5.3.3:
3>
select [the Access Category corresponding to RNA update];

Editor’s note: FFS whether indication/selection of the Access Category for RRC Resume is described in this section or not.
Editor’s note: FFS whether to use access category 3 for MO-signalling or a standardised RAN specific access category for RNA update.

2>
if the Access Category is ‘0’:

3>
consider the access attempt as allowed;

2>
else:

3>
if SIB1 includes uac-BarringPerPLMN-List and the uac-BarringPerPLMN-List contains an UAC-BarringPerPLMN entry with the plmn-IdentityIndex corresponding to the PLMN selected by upper layers (see TS 24.501 [23]):

4>
select the UAC-BarringPerPLMN entry with the plmn-IdentityIndex corresponding to the PLMN selected by upper layers;

4>
in the remainder of this procedure, use the selected UAC-BarringPerPLMN entry (i.e. presence or absence of access barring parameters in this entry) irrespective of the common access barring parameters included in SIB1;
3>
else

4>
in the remainder of this procedure use the common access barring parameters (i.e. presence or absence of these parameters) included in SIB1;

3>
if the uac-ACBarringListType indicated that uac-ExplicitACBarringList is used:
4>
if the corresponding UAC-BarringPerCatList contains a UAC-BarringPerCat entry corresponding to the Access Category:
5>
select the UAC-BarringPerCat entry and the corresponding value of UAC-BarringInfoSetIndex;
5>
perform access barring check for the Access Category as specified in 5.3.14.5, using uac-BarringInfo corresponding to UAC-BarringInfoSetIndex in the UAC-BarringPerCat as "UAC barring parameter";

4>
else:

5> consider the access attempt as allowed;
3>
select the UAC-BarringInfoSetIndex entry from uac-ImplicitACBarringList entry corresponding to the Access Category;
5>
perform access barring check for the Access Category as specified in 5.3.14.5, using uac-BarringInfo corresponding to UAC-BarringInfoSetIndex as "UAC barring parameter";
1>
if the access barring check was requested by upper layers:

2>
if the access attempt is considered as barred:

3>
inform upper layers that the access attempt for the Access Category is barred, upon which the procedure ends;

2>
else:

3>
inform upper layers that the access attempt for the Access Category is allowed, upon which the procedure ends;

1>
else:

2>
the procedure ends;
UAC-BarringPerCatList ::= SEQUENCE (SIZE (1..maxAccessCat-1)) OF UAC-BarringPerCat 	

UAC-BarringPerCat ::= SEQUENCE {

	AccessCategory				INTEGER (1..maxAccessCat-1),

	uac-barringInfoSetIndex			INTEGER (1.. maxBarringInfoSet)

}

UAC-BarringPerPLMN-List ::= 		SEQUENCE (SIZE (1.. maxPLMN)) OF UAC-BarringPerPLMN

UAC-BarringPerPLMN ::=			SEQUENCE {

		plmn-IdentityIndex					INTEGER (1..maxPLMN),

		uac-ACBarringListType		CHOICE{

				uac-ImplicitACBarringList		SEQUENCE (SIZE(maxAccessCat-1)) OF UAC-BarringInfoSetIndex,

				uac-ExplicitACBarringList				UAC-BarringPerCatList

				}

}

UAC-BarringPerCatList ::= SEQUENCE (SIZE (1..maxAccessCat-1)) OF UAC-BarringPerCat

UAC-BarringPerCat ::= SEQUENCE {

	 accessCategory 		INTEGER (1..maxAccessCat-1),

	 uac-barringInfoSetIndex 	 UAC-BarringInfoSetIndex

}

UAC-BarringInfoSetIndex ::=				INTEGER (1..maxBarringInfoSet)

UAC-BarringInfoSetList ::= SEQUENCE (SIZE(maxBarringInfoSet)) OF UAC-BarringInfoSet

3GPP

