3GPP TSG-RAN WG2 NR AdHoc Meeting
R2-1707017
Qingdao, China, 27 – 29 June 2017

Agenda item:

10.3.2.3
Source:
Intel Corporation

Title:
RLC UM operation in NR
Document for:

Discussion and Decision
1 Introduction
In RAN2#97bis meeting, following was agreed regarding RLC UM operation.
	=>
If a segment is detected to be missing, then all stored segments associated to the RLC SDU can be discarded. FFS how a missing segment is detected if a timer mechanism is used (e.g T-reassembly).

=>
Duplicate detection functionality is kept as a baseline. FFS if duplicate detection can be removed.

=>
RLC UM receive window operation is maintained similar to LTE. If duplicate detection is removed from RLC UM then the need for the window will depend on the mechanism use to discard.

There are different options to discard RLC SDU segments that cannot be reassembled into RLC SDUs, e.g. based on receive window, based on timer, or both.
This issue was discussed in RAN2#98 meeting together with the issue of whether SN should be included in every PDU. Email discussion [98#39][NR/UP] – RLC UM was held to understand companies’ preferences.
In this contribution, we discuss whether to include SN in every PDU and how to support the discard functionality in RLC UM.
2 Discussion
2.1 Whether to include SN in every PDU?
There were proposals to only include SN for the segments e.g. [5]

 REF Ref_Nokia \h
 * MERGEFORMAT [6]. The main benefit is the reduced overhead for RLC header. However one aspect that should be considered is the impact on the transmitter and receiver side processing.
When SN is included in every RLC PDU, there are only two RLC header formats. In each format, both FI and SN fields are included. For complete RLC SDU and the first segment, there is no SO field. For the middle or the end segment, there is SO field.

When SN is omitted for the complete SDU, there are three header formats:

· For the complete SDU, the header size is one byte containing FI field.
· For the first segment, SO field is not needed. Therefore RLC header contains fields FI and SN.
· For the middle or the end segment, SO field is needed. Therefore RLC header contains fields FI, SN and SO.

If SN field is less than or equal to 6 bits, then 1 byte is required for RLC header. Therefore the RLC header for complete SDU and the first segment are shown in Figure 1 below (adapted from [5])

	
[image: image1.emf]FI R

Data

...

Oct N

Oct 1

Oct 2

Complete SDU

	
[image: image2.emf]FI SN

Data

...

Oct N

Oct 1

Oct 2

First SDU segment

Figure 1: RLC SDU format (6 bit SN, adapted from [5])
Having the same header size for complete SDU and first SDU segment has less impact on both transmitter and receiver. From transmitter perspective, pre-processing is one important solution to satisfy the challenging transmitter side processing. In previous discussion on RLC header format, one of the reasons to agree on omitting SO field for the 1st segment is its friendliness to the transmitter side processing. The reason is that when segmentation is performed, transmitter side only needs to modify FI field in place, without moving the memory content due to the header size change (which is needed if the header size of the 1st segment is different from the complete SDU). The same reasoning is also applicable for the discussion here. When the header size for complete SDU and first SDU segment is 1 byte, there is no impact to the pre-processing compared with the case that SN is always transmitted. From receiver processing perspective, there is also less impact to receiver complexity if header size for complete SDU and first SDU segment is the same. The reason is that if header size for complete SDU and first SDU segment is different, then for each RLC header format, the header size is different, which means that there are totally 3 sizes for RLC headers. On the contrary, if header size for complete SDU and first SDU segment is the same, there are only 2 sizes in total for RLC headers.
Proposal 1: In RLC UM, it is preferable that SN is included in every RLC PDU. Omitting SN for the complete RLC SDU is only acceptable if the header size for complete SDU and first SDU segment is the same.
2.2 Segment discard operation
In RAN2#97bis meeting, there are several contributions discussing how to discard RLC SDU segments that cannot be reassembled into RLC SDUs, e.g. [1]

 REF Ref_QC \h
[2]

 REF Ref_Xiaomi \h
[3]

 REF Ref_Huawei \h
[4].
Before discussing which option to consider for the discard functionality, it is better to recap the reason to support such discard functionality. The main motivation is to avoid the wrong reassembly of segments belonging to different RLC SDUs having the same RLC SN since there is no window mechanism in the RLC UM TX side. An example is shown in Figure 2 below. Suppose that the first segment of RLC SDU with SN=1 is received but other segments are not received. As RLC SN is continuously increasing, eventually RLC SN wraps around. It is possible that the second segment of next RLC PDU with SN=1 (i.e. with SO=x) is received and reassembled together with the previous segment. Such wrong reassembly can happen even with Segmentation Offset (SO) checking if both SOs happen to be the same.
[image: image3.png]SN=1 | SN=1
SO=0 | SO=x
X M

Reassembled

Figure 2: Necessity to discard segments cannot be reassembled
There are basically three approaches to support such discard functionality: window based option, timer base option, or both.
Window based option

In this option, the reordering window and corresponding state variable UR(VH) in LTE RLC UM is used to discard the segments. In this option, a SN falls within the reassembly window if (VR(UH) – UM_Window_Size) <= SN < VR(UH). The state variable UR(VH) is updated whenever a RLC PDU with SN outside of the window is received, therefore the window is updated accordingly. Whenever the window is updated, RLC SDU segments with the SN that falls outside of the reassembly window are discarded. Note that there is no need to keep the state variable UR(VX) which is only needed for t-Reordering functionality. This approach can naturally support duplicate discard of the full SDUs (for PDCP control PDUs) if such functionality is needed.
Timer based option
In this option, one sub-option is to have one timer per RLC UM entity, e.g. like LTE RLC UM t-Reordering timer. For the 1st RLC SDU segment received, the discard timer is started. If RLC reassembles a RLC SDU/PDCP PDU from the corresponding RLC SDU segments, corresponding discard timer is stopped. When the discard timer expires, all the associated RLC SDU segments are discarded. In both cases (timer stopped or expiry), suppose VR(UX) is the SN corresponding to the RLC SDU segments. Then for the first RLC SDU segment in the buffer with SN > VR(UX), restart the discard timer. Another sub-option is to have one timer associated with each RLC SN, which is then similar to the PDCP discard timer.
Using both window and timer based option
In [2], it was proposed to use both window and timer as a safer approach, since receiver window might not move due to the reasons like PDCP discard. Given that in RLC UM, window is pulled whenever a new packet is received, the only case that wrong RLC SDUs can be combined is shown in Figure 3 below. Assuming some but not all segments of SN corresponding to the lower edge of the receiving/reassembly window VR(UH) – UM_Window_Size are received. Then the wrong reassembly can only happen when the following conditions are satisfied simultaneously:
· None of the segments with SNs from VR(UH) to VR(UH) – UM_Window_Size – 1 (after wrap around) are received, either due to SDU discard in the transmitter side, or due to the receiver side error (e.g. low channel quality).

· Another segment with SN of VR(UH) - UM_Window_Size (from a different SDU) is received.

Such probability will be really low. And even if it happens, the QoS is already greatly impacted, and therefore it does not matter much whether there is correct or wrong reassembly.

[image: image4.emf]VR(UH)

VR(UH)–UM_Window_Size

reassembly

window

X

X

X

X

X

X

X

X

X

X

X

X

Figure 3: Wrong RLC SDU segment combining
Observation 1: There is no clear benefit of supporting both window and timer based approaches for segment discarding.
When comparing window vs. timer based approach, window based approach has the following benefits:
· Timer based approach has different variations e.g. whether a single timer is used (like in LTE RLC UM), or multiple timers are used (like LTE PDCP discard timers). Therefore more standardization efforts are needed.
· If discard of whole SDUs is to be supported, then a window based approach is needed anyway. In this case, purely window based approach is simpler compared with window+timer based approach.
During the email discussion [98#39][NR/UP] – RLC UM, there were comments that window based approach might delay the delivery to upper layers, and segments might stuck in the RLC buffer. It should be noted that RLC layer only delivers reassembled RLC SDU to PDCP layer. Therefore there is no difference in terms of delay for all the options discussed above. Regarding the segments stuck in the RLC buffer, it should be noted that at RLC receiver side, there won’t be many RLC segments kept in the receiver buffer. The reason is that typically HARQ residual BLER is 1%. Assuming a 12 bit RLC SN, then in the worst case, there will be around 211 * 1% = 20.48 RLC PDUs in the buffer. For timer based approach, there could be also some segments in the buffer, and the exact number depends on the setting of the related timer. Another aspect to note is that the segments remaining in the buffer will be eventually released once RLC entity is released or re-established.
Observation 2: There is no issue regarding latency and buffer management for the window based option.
In summary, it is proposed to consider window based option to support discard of SDU segments.

Proposal 2: In RLC UM, window based option is used to discard RLC SDU segments which cannot be reassembled into a RLC SDU.

One example of RLC UM receiver operation is shown below, with the assumption that every RLC PDU has an SN.
	The receiving UM RLC entity shall maintain a reassembly window according to state variable VR(UH) as follows:

-
a SN falls within the reassembly window if (VR(UH) – UM_Window_Size) <= SN < VR(UH);

-
a SN falls outside of the reassembly window otherwise.

When receiving an UMD PDU with SN = x from lower layer, where the UMD PDU contains byte segment numbers y to z of a RLC SDU, the receiving UM RLC entity shall:

-
if byte segment numbers y to z of the RLC SDU with SN = x is stored:
-
discard the received UMD PDU;

-
else:

-
place the received UMD PDU in the reception buffer;

- if all byte segments of the UMD PDU with SN = x are received:

-
reassemble RLC SDU from byte segments of UMD PDUs with SN = x, remove RLC headers when doing so and deliver the reassembled RLC SDU to upper layer;
-
if x falls outside of the reassembly window:

-
update VR(UH) to x + 1;
-
discard UMD PDUs with SN that falls outside of the reassembly window due to the update of VR(UH).

3 Conclusion
In this contribution, we discuss whether to include SN in every PDU and how to support the discard functionality in RLC UM. We have the following observation:
Observation 1: There is no clear benefit of supporting both window and timer based approaches for segment discarding.
Observation 2: There is no issue regarding latency and buffer management for the window based option.
We propose the following:
Proposal 1: In RLC UM, it is preferable that SN is included in every RLC PDU. Omitting SN for the complete RLC SDU is only acceptable if the header size for complete SDU and first SDU segment is the same.
Proposal 2: In RLC UM, window based option is used to discard RLC SDU segments which cannot be reassembled into a RLC SDU.
References
[1] R2-1703434, Intel, “RLC UM operation in NR”
[2] R2-1702948, Qualcomm, “RLC UM with t-reassembly”
[3] R2-1702526, Xiaomi, “Consideration on RLC UM functionality”
[4] R2-1702608, Huawei et al, “Assembly Timer for RLC Segments”
[5] R2-1704261, CATT, “NR RLC UM SN removal”
[6] R2-1704274, Nokia et al, “SN for RLC UM”
2

_1558354547.vsd
�

FI�

SN�

�

Data�

...

Oct N

Oct 1

Oct 2

First SDU segment

_1558354597.vsd
�

Complete SDU

FI�

R�

�

Data�

...

Oct N

Oct 1

Oct 2

VR(UH)
VR(UH)–UM_Window_Size
reassembly
window
X
X
X
X
X
X
X
X
X
X
X
X
X

