[bookmark: _GoBack][bookmark: _Ref452454252]3GPP TSG-RAN WG2 NR Adhoc #2	R2-1706599
Qingdao, China, 27 - 29 June 2017

Agenda item:	10.4.1.2
Source:	Nokia, Alcatel-Lucent Shanghai Bell
Title:	Tagging of ASN.1 in NR RRC
WID/SID:	NR_newRAT-Core - Release 15
Document for:	Discussion and Decision
1	Introduction
RAN2#97bis agreed on the following basic principles of NR RRC, as well as the basic skeleton of NR RRC in R2-1705815.
Agreements
A: The following guidelines should be adopted for NR RRC:
1.	Do not use tabular in NR RRC
2.	No UE requirements for network error cases are specified
3.	Exact ASN.1 field/message/IE names are used in procedural text
4.	NR RRC should support modular structure. Exact modules to be used are FFS.
5.	Need codes defined for NR RRC should be clearer and unambiguous. (More discussion needed on when modules are used)
6.	Graceful release of optional fields shall be supported in NR RRC (More discussion needed on details)
7.	Extension mechanisms should be as simple as possible in NR RRC (preferably simpler than in LTE)
8.	The UE capability design should be improved compared to LTE, especially wrt. Extensions
9.	The spare value handling for any UL messages is made clear
B: Discuss further if any of the following guidelines should be adopted for NR RRC:
1.	Procedures and ASN.1 shall be separated into different sections
2.	Automatic ASN.1 syntax checking of CRs should be supported by NR RRC (more discussion needed on detail of how this is achieved)
3.	The UE requirements in specification should be clear
4.	NOTEs (except NOTEs in tables) never specify normative behaviour (as per TR 21.801)
5.	Procedural text should be improved for different UE types
6.	Obvious actions or text should be avoided
8.	Consider whether we need critical extensions for all RRC messages
9.	NR RRC specifications should employ hyperlinking

In this contribution, we further discuss the automatic ASN.1 syntax checking as shown in the guidelines above with yellow highlighting.
2	Tagging of ASN.1 within NR RRC
2.2	ASN.1 tagging in LTE RRC
ASN.1 code in LTE RRC has so far been tagged with the “ASN1START” and “ASN1STOP” comment markers to enable automatic extraction of the ASN.1 code directly from a text file. This allows both the ASN.1 code and the corresponding field descriptions and textual explanations to be listed in the word-document to allow human-readable code. For example, the ASN.1 for the message RRCConnectionRequest looks as shown below:
	RRCConnectionRequest message
-- ASN1START

RRCConnectionRequest ::=			SEQUENCE {
	criticalExtensions					CHOICE {
		rrcConnectionRequest-r8				RRCConnectionRequest-r8-IEs,
		criticalExtensionsFuture			SEQUENCE {}
	}
}

RRCConnectionRequest-r8-IEs ::=		SEQUENCE {
	ue-Identity							InitialUE-Identity,
	establishmentCause					EstablishmentCause,
	spare								BIT STRING (SIZE (1))
}

InitialUE-Identity ::=				CHOICE {
	s-TMSI								S-TMSI,
	randomValue							BIT STRING (SIZE (40))
}

EstablishmentCause ::=				ENUMERATED {
										emergency, highPriorityAccess, mt-Access, mo-Signalling,
										mo-Data, delayTolerantAccess-v1020, mo-VoiceCall-v1280, spare1}

-- ASN1STOP

Table 1. Example of LTE RRC ASN.1 tagging
The tagging is actually not defined in ASN.1 specifications: It’s merely a comment line with a fixed format that allows easy pattern-matching and extraction of the code. Therefore, in principle any tagging can be done within the comments, as long as it’s properly defined.
Observation 1: The tagging of ASN.1 segments with ASN1START/ASN1STOP is done via comment fields, i.e. it doesn’t affect compiling of the final ASN.1.
2.2	IE-specific TAGs in NR RRC
When CRs are created, they are required to fully indicate the relevant parts of the modified sections, as per the 3GPP drafting rules defined in TR21.801. Notably, the convention with RRC CRs has been that the full ASN.1 of the modified section is included. For example, should the final spare bit of the EstablishmentCause of LTE RRC be modified, it would have to contain the entire ASN.1 code block related to the modifications.
Observation 2: When ASN.1 is changed in an RRC CR, the contents of the ASN.1 block (marked with the ASN1START and ASN1STOP) are always (supposed to be) included.
Considering the goal of allowing doing automatic syntax checking of CRs: There are three things that would be required:
1) Extraction of code of the ASN.1 of the CR from the Word-document
2) Locating the changed location within the current ASN.1 of RRC
3) Merging the change of the CR to the RRC
4) Compiling the resulting modified version of RRC
Currently, the steps 1) and 4) are already easily possible: Scripts extracting the ASN.1 and compiling the ASN.1 code is straightforward. However, steps 2 and 3 are the difficult ones: First, figuring out which exact parts to replace in RRC is possible but not trivial. For example, errors may occur because the IE names could be similar across different messages. Further, doing the merge itself require to identify the possibly multiple changes in the CR, and figuring out where one change ends and another begins.
Observation 3: Automatically identifying which RRC parts to replace with each CR changes requires uniquely identifying the changed parts.
One possibility to would be to use IE-specific tagging, i.e. using extra tags that uniquely identify each IE-block, using the same ASN.1 comments as are used for identifying the ASN.1 code blocks. For example, taking the above example, there are at least two simple ways to do this:
1) Using the existing ASN.1 tag but adding identifier with the IE name, e.g. “-- ASN1START TAG_NAME”
2) Adding a new comment after/before ASN1START/ASN1STOP, e.g. using “-- TAG_NAME_START” and
“-- TAG_NAME_END”
To make these examples concrete, we show the example of RRCConnectionRequest with the proposed two alternatives in Table 2 and 3 below.
	RRCConnectionRequest message
-- ASN1START	TAG_RRCConnectionRequest_START

RRCConnectionRequest ::=			SEQUENCE {
	criticalExtensions					CHOICE {
		rrcConnectionRequest-r8				RRCConnectionRequest-r8-IEs,
		criticalExtensionsFuture			SEQUENCE {}
	}
}

RRCConnectionRequest-r8-IEs ::=		SEQUENCE {
	ue-Identity							InitialUE-Identity,
	establishmentCause					EstablishmentCause,
	spare								BIT STRING (SIZE (1))
}

InitialUE-Identity ::=				CHOICE {
	s-TMSI								S-TMSI,
	randomValue							BIT STRING (SIZE (40))
}

EstablishmentCause ::=				ENUMERATED {
										emergency, highPriorityAccess, mt-Access, mo-Signalling,
										mo-Data, delayTolerantAccess-v1020, mo-VoiceCall-v1280, spare1}

-- ASN1STOP		TAG_RRCConnectionRequest_STOP

Table 2. Alt.1: Adding IE tags to existing comment
	RRCConnectionRequest message
-- ASN1START
-- TAG_RRCConnectionRequest_START

RRCConnectionRequest ::=			SEQUENCE {
	criticalExtensions					CHOICE {
		rrcConnectionRequest-r8				RRCConnectionRequest-r8-IEs,
		criticalExtensionsFuture			SEQUENCE {}
	}
}

RRCConnectionRequest-r8-IEs ::=		SEQUENCE {
	ue-Identity							InitialUE-Identity,
	establishmentCause					EstablishmentCause,
	spare								BIT STRING (SIZE (1))
}

InitialUE-Identity ::=				CHOICE {
	s-TMSI								S-TMSI,
	randomValue							BIT STRING (SIZE (40))
}

EstablishmentCause ::=				ENUMERATED {
										emergency, highPriorityAccess, mt-Access, mo-Signalling,
										mo-Data, delayTolerantAccess-v1020, mo-VoiceCall-v1280, spare1}

-- TAG_RRCConnectionRequest_STOP
-- ASN1STOP

Table 3. Alt.2: Adding IE tags as separate comments
However, since the ASN1START/ASN1STOP comments are typically removed in the extraction process, the tags will be removed in Alt.1 from the final ASN.1, whereas with Alt.2 the tags would (typically) remain in the code. Therefore, once the ASN.1 has been extracted, Alt.1 doesn’t help much as it’s not possible to identify the replaceable code parts at all – that would have to be done already before the ASN.1 extraction. With Alt.2, the separate comment lines remain even after ASN.1 extraction, so the location of the IE positions is easily possible at any phase.
Observation 4: The ASN1START/ASN1STOP comment lines are usually removed from the final ASN.1 code.
With the tags, the process of automatically doing syntax checking for a CR becomes the following:
1) Run ASN.1 extract process for the CR
2) Identify each ASN.1 block within the CR: pattern match ASN.1 between “--TAG_NAME_START” and “--TAG_NAME_STOP” and identify the “NAME”
3) For each NAME
a. Fully replace the ASN.1 code in the NR RRC ASN.1 that is located between TAG_NAME_START and TAG_NAME_STOP with the ASN.1 from the CR.
4) Compile the resulting NR RRC and output the results (success/fail + compiler output)
Observation 5: Tagging each ASN.1 section allows automatic syntax checking.
Therefore, using the tags would allow doing automatic syntax checking, so we propose to adopt them.
Proposal 1: Use the ASN.1 comments with IE name tags to identify each IE definition.
Proposal 2: For each ASN.1 block in NR RRC, add the tags as separate comment lines to ASN.1 code between the ASN1START and ASN1STOP.
3	Conclusions
We have discussed the tagging of ASN.1 and observed the following:
Observation 1: The tagging of ASN.1 segments with ASN1START/ASN1STOP is done via comment fields, i.e. it doesn’t affect compiling of the final ASN.1.
Observation 2: When ASN.1 is changed in an RRC CR, the contents of the ASN.1 block (marked with the ASN1START and ASN1STOP) are always (supposed to be) included.
Observation 3: Automatically identifying which RRC parts to replace with each CR changes requires uniquely identifying the changed parts.
Observation 4: The ASN1START/ASN1STOP comment lines are usually removed from the final ASN.1 code.
Observation 5: Tagging each ASN.1 section allows automatic syntax checking.
 Based on these, we propose to use tagging of IEs to allow automatic ASN.1 syntax checking:
Proposal 1: Use the ASN.1 comments with IE name tags to identify each IE definition.
Proposal 2: For each ASN.1 block in NR RRC, add the tags as separate comment lines to ASN.1 code between the ASN1START and ASN1STOP.
Based on this, Annex A shows a text proposal for the RRC to capture this naming convention for the Annex A of 38.331.
Proposal 3: Agree to the TP to RRC specification as shown in Annex A.
As an example of how RRC would look like with the tags, we show this in Annex B in the form of a pCR to show how the tags would be placed for certain ASN.1 sections.

Annex A: TP to 38.331 on ASN.1 tagging

[bookmark: _Toc478016070]Annex A (informative):	Guidelines, mainly on use of ASN.1
[bookmark: _Toc478016075]A.X	PDU specification
[bookmark: _Toc478016076]A.X.1	General principles
[bookmark: _Toc478016077]A.X.1.1	ASN.1 sections
The RRC PDU contents are formally and completely described using abstract syntax notation (ASN.1), see X.680 [13], X.681 (02/2002) [14].
The complete ASN.1 code is divided into a number of ASN.1 sections in the specifications. In order to facilitate the extraction of the complete ASN.1 code from the specification, each ASN.1 section begins with the following:
-	a first text paragraph consisting entirely of an ASN.1 start tag, which consists of a double hyphen followed by a single space and the text string "ASN1START" (in all upper-case letters).
-	a second text paragraph consisting entirely of anSECTION/ block start tag is included, which consists of a double hyphen followed by a single space and the text string “TAG_NAME_START” (in all upper case letters) or “SECTION_START” (all in upper case letters), where the “NAME” refers to the main name of the paragraph (in all upper-case letters) and “SECTION” refers to the section that doesn’t contain IEs (e.g. IMPORT).
Similarly, each ASN.1 section ends with the following:
-	a first text paragraph consisting entirely of an SECTION/IE stop tag, which consists of a double hyphen followed by a single space and the text string “TAG_NAME_STOP” (in all upper-case letters), where the “NAME” refers to the main name of the paragraph (in all upper-case letters).
-	a second paragraph consisting entirely of an ASN.1 stop tag, which consists of a double hyphen followed by a single space and the text "ASN1STOP" (in all upper-case letters).
This results in the following tags:
-- ASN1START
-- TAG_NAME_START

-- TAG_NAME_STOP
-- ASN1STOP

The text paragraphs containing either of the start and stop tags should not contain any ASN.1 code significant for the complete description of the RRC PDU contents. The complete ASN.1 code may be extracted by copying all the text paragraphs between an ASN.1 start tag and the following ASN.1 stop tag in the order they appear, throughout the specification.
NOTE:	A typical procedure for extraction of the complete ASN.1 code consists of a first step where the entire RRC PDU contents description (ultimately the entire specification) is saved into a plain text (ASCII) file format, followed by a second step where the actual extraction takes place, based on the occurrence of the ASN.1 start and stop tags.

Annex B: Example of CR against 36.331 to illustrate the ASN.1 tagging
The examples below show how the tags would be added to various different ASN.1 code blocks existing in 36.331.
<Next change>
[bookmark: _Toc478015553][bookmark: _Toc478015871]6.2.1	General message structure
[bookmark: _Toc478015554]–	EUTRA-RRC-Definitions
This ASN.1 segment is the start of the E‑UTRA RRC PDU definitions.
-- ASN1START
-- TAG_EUTRA_RRC_DEFINITIONS_START

EUTRA-RRC-Definitions DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

-- TAG_EUTRA_RRC_DEFINITIONS_STOP
-- ASN1STOP
[bookmark: _Toc478015555]
–	BCCH-BCH-Message
The BCCH-BCH-Message class is the set of RRC messages that may be sent from the E‑UTRAN to the UE via BCH on the BCCH logical channel.
-- ASN1START
-- TAG_BCCH_BCH-MESSAGE_START

BCCH-BCH-Message ::= SEQUENCE {
	message					BCCH-BCH-MessageType
}

BCCH-BCH-MessageType ::=						MasterInformationBlock

-- TAG_BCCH_BCH-MESSAGE_STOP
-- ASN1STOP

<Next change>
[bookmark: _Toc478015567]6.2.2	Message definitions
[bookmark: _Toc478015568]–	CounterCheck
The CounterCheck message is used by the E-UTRAN to indicate the current COUNT MSB values associated to each DRB and to request the UE to compare these to its COUNT MSB values and to report the comparison results to E-UTRAN.
Signalling radio bearer: SRB1
RLC-SAP: AM
Logical channel: DCCH
Direction: E‑UTRAN to UE
CounterCheck message
-- ASN1START
-- TAG-COUNTERCHECK_START

CounterCheck ::=			SEQUENCE {
	rrc-TransactionIdentifier			RRC-TransactionIdentifier,
	criticalExtensions					CHOICE {
		c1									CHOICE {
			counterCheck-r8						CounterCheck-r8-IEs,
			spare3 NULL, spare2 NULL, spare1 NULL
		},
		criticalExtensionsFuture			SEQUENCE {}
	}
}

CounterCheck-r8-IEs ::=	SEQUENCE {
	drb-CountMSB-InfoList				DRB-CountMSB-InfoList,
	nonCriticalExtension				CounterCheck-v8a0-IEs				OPTIONAL
}

CounterCheck-v8a0-IEs ::= SEQUENCE {
	lateNonCriticalExtension			OCTET STRING						OPTIONAL,
	nonCriticalExtension				SEQUENCE {}							OPTIONAL
}

DRB-CountMSB-InfoList ::=		SEQUENCE (SIZE (1..maxDRB)) OF DRB-CountMSB-Info

DRB-CountMSB-Info ::=	SEQUENCE {
	drb-Identity					DRB-Identity,
	countMSB-Uplink					INTEGER(0..33554431),
	countMSB-Downlink				INTEGER(0..33554431)
}

-- TAG-COUNTERCHECK_STOP
-- ASN1STOP

	CounterCheck field descriptions

	count-MSB-Downlink
Indicates the value of 25 MSBs from downlink COUNT associated to this DRB.

	count-MSB-Uplink
Indicates the value of 25 MSBs from uplink COUNT associated to this DRB.

	drb-CountMSB-InfoList
Indicates the MSBs of the COUNT values of the DRBs.

<Next change>
[bookmark: _Toc478015761]6.3.5	Measurement information elements
[bookmark: _Toc478015762]–	AllowedMeasBandwidth
The IE AllowedMeasBandwidth is used to indicate the maximum allowed measurement bandwidth on a carrier frequency as defined by the parameter Transmission Bandwidth Configuration "NRB" TS 36.104 [47]. The values mbw6, mbw15, mbw25, mbw50, mbw75, mbw100 indicate 6, 15, 25, 50, 75 and 100 resource blocks respectively.
AllowedMeasBandwidth information element
-- ASN1START
-- TAG_AlLLOWEDMEASBANDWIDTH_START

AllowedMeasBandwidth ::=				ENUMERATED {mbw6, mbw15, mbw25, mbw50, mbw75, mbw100}

-- TAG_ALLOWEDMEASBANDWIDTH_STOP
-- ASN1STOP

<Next change>

6.4	RRC multiplicity and type constraint values
[bookmark: _Toc478015872]–	Multiplicity and type constraint definitions
-- ASN1START
-- TAG_MULTIPLICITY_START

maxACDC-Cat-r13				INTEGER ::=	16	-- Maximum number of ACDC categories (per PLMN)
maxAvailNarrowBands-r13		INTEGER ::=	16	-- Maximum number of narrowbands
maxBandComb-r10				INTEGER ::=	128	-- Maximum number of band combinations.
maxBandComb-r11				INTEGER ::=	256	-- Maximum number of additional band combinations.
maxBandComb-r13				INTEGER ::=	384 -- Maximum number of band combinations in Rel-13
maxBands					INTEGER ::= 64	-- Maximum number of bands listed in EUTRA UE caps
maxBandwidthClass-r10		INTEGER ::=	16	-- Maximum number of supported CA BW classes per band
maxBandwidthCombSet-r10		INTEGER ::=	32	-- Maximum number of bandwidth combination sets per
											-- supported band combination
maxCBR-Level-r14			INTEGER ::= 16	-- Maximum number of CBR levels
maxCBR-Report-r14			INTEGER ::= 72	-- Maximum number of CBR results in a report
maxCBR-Level-1-r14			INTEGER ::= 15
maxCDMA-BandClass			INTEGER ::= 32	-- Maximum value of the CDMA band classes
maxCE-Level-r13				INTEGER ::=	4	-- Maximum number of CE levels
maxCellBlack				INTEGER ::= 16	-- Maximum number of blacklisted physical cell identity
											-- ranges listed in SIB type 4 and 5
maxCellHistory-r12			INTEGER ::= 16	-- Maximum number of visited EUTRA cells reported
maxCellInfoGERAN-r9 		INTEGER ::=	32	-- Maximum number of GERAN cells for which system in-
											-- formation can be provided as redirection assistance
maxCellInfoUTRA-r9			INTEGER ::=	16	-- Maximum number of UTRA cells for which system
											-- information can be provided as redirection
											-- assistance
maxCombIDC-r11				INTEGER ::= 128	-- Maximum number of reported UL CA combinations
maxCSI-IM-r11				INTEGER ::= 3	-- Maximum number of CSI-IM configurations
											-- (per carrier frequency)
maxCSI-IM-r12				INTEGER ::= 4	-- Maximum number of CSI-IM configurations
											-- (per carrier frequency)
minCSI-IM-r13				INTEGER ::= 5	-- Minimum number of CSI IM configurations from which
											-- REL-13 extension is used
maxCSI-IM-r13				INTEGER ::= 24	-- Maximum number of CSI-IM configurations
											-- (per carrier frequency)
maxCSI-IM-v1310				INTEGER ::= 20	-- Maximum number of additional CSI-IM configurations
											-- (per carrier frequency)
maxCSI-Proc-r11				INTEGER ::= 4	-- Maximum number of CSI processes (per carrier
											-- frequency)
maxCSI-RS-NZP-r11			INTEGER ::= 3	-- Maximum number of CSI RS resource
											-- configurations using non-zero Tx power
											-- (per carrier frequency)
minCSI-RS-NZP-r13			INTEGER ::= 4	-- Minimum number of CSI RS resource from which
											-- REL-13 extension is used
maxCSI-RS-NZP-r13			INTEGER ::= 24	-- Maximum number of CSI RS resource
											-- configurations using non-zero Tx power
											-- (per carrier frequency)
maxCSI-RS-NZP-v1310			INTEGER ::= 21	-- Maximum number of additional CSI RS resource
											-- configurations using non-zero Tx power
											-- (per carrier frequency)
maxCSI-RS-ZP-r11			INTEGER ::= 4	-- Maximum number of CSI RS resource
											-- configurations using zero Tx power(per carrier
											-- frequency)
maxCQI-ProcExt-r11			INTEGER ::= 3	-- Maximum number of additional periodic CQI
											-- configurations (per carrier frequency)
maxFreqUTRA-TDD-r10			INTEGER ::=	6	-- Maximum number of UTRA TDD carrier frequencies for
											-- which system information can be provided as
											-- redirection assistance
maxCellInter				INTEGER ::= 16	-- Maximum number of neighbouring inter-frequency
											-- cells listed in SIB type 5
maxCellIntra				INTEGER ::= 16	-- Maximum number of neighbouring intra-frequency
											-- cells listed in SIB type 4
maxCellListGERAN			INTEGER ::= 3	-- Maximum number of lists of GERAN cells
maxCellMeas					INTEGER ::= 32	-- Maximum number of entries in each of the
											-- cell lists in a measurement object
maxCellReport				INTEGER ::= 8	-- Maximum number of reported cells/CSI-RS resources
maxConfigSPS-r14			INTEGER ::= 8	-- Maximum number of simultaneous SPS configurations
maxCSI-RS-Meas-r12			INTEGER ::= 96	-- Maximum number of entries in the CSI-RS list
											-- in a measurement object
maxDRB						INTEGER ::= 11	-- Maximum number of Data Radio Bearers
maxDS-Duration-r12			INTEGER ::= 5	-- Maximum number of subframes in a discovery signals
											-- occasion
maxDS-ZTP-CSI-RS-r12		INTEGER ::= 5	-- Maximum number of zero transmission power CSI-RS for
											-- a serving cell concerning discovery signals
maxEARFCN					INTEGER ::= 65535	-- Maximum value of EUTRA carrier frequency
maxEARFCN-Plus1				INTEGER ::= 65536	-- Lowest value extended EARFCN range
maxEARFCN2					INTEGER ::= 262143	-- Highest value extended EARFCN range
maxEPDCCH-Set-r11			INTEGER ::= 2	-- Maximum number of EPDCCH sets
maxFBI						INTEGER ::= 64	-- Maximum value of fequency band indicator
maxFBI-Plus1					INTEGER ::= 65	-- Lowest value extended FBI range
maxFBI2						INTEGER ::= 256	-- Highest value extended FBI range
maxFreq						INTEGER ::= 8	-- Maximum number of carrier frequencies
maxFreqIDC-r11				INTEGER ::= 32	-- Maximum number of carrier frequencies that are
											-- affected by the IDC problems
maxFreqMBMS-r11				INTEGER ::= 5	-- Maximum number of carrier frequencies for which an
											-- MBMS capable UE may indicate an interest
maxFreqV2X-r14				INTEGER ::= 8	-- Maximum number of carrier frequencies for which V2X
											-- sidelink communication can be configured
maxFreqV2X-1-r14				INTEGER ::= 7	-- Highest index of frequencies
maxGERAN-SI					INTEGER ::= 10	-- Maximum number of GERAN SI blocks that can be
											-- provided as part of NACC information
maxGNFG						INTEGER ::= 16	-- Maximum number of GERAN neighbour freq groups
maxLCG-r13					INTEGER ::= 4	-- Maximum number of logical channel groups
maxLogMeasReport-r10		INTEGER ::= 520	-- Maximum number of logged measurement entries
											-- that can be reported by the UE in one message
maxMBSFN-Allocations		INTEGER ::= 8	-- Maximum number of MBSFN frame allocations with
											-- different offset
maxMBSFN-Area				INTEGER ::= 8
maxMBSFN-Area-1				INTEGER ::= 7
maxMBMS-ServiceListPerUE-r13	INTEGER ::= 15	-- Maximum number of services which the UE can
										-- include in the MBMS interest indication
maxMeasId					INTEGER ::= 32
maxMeasId-Plus1 			INTEGER ::= 33
maxMeasId-r12				INTEGER ::= 64
maxMultiBands				INTEGER ::= 8	-- Maximum number of additional frequency bands
											-- that a cell belongs to
maxNS-Pmax-r10				INTEGER ::= 8	-- Maximum number of NS and P-Max values per band
maxNAICS-Entries-r12			INTEGER ::= 8	-- Maximum number of supported NAICS combination(s)
maxNeighCell-r12				INTEGER ::= 8	-- Maximum number of neighbouring cells in NAICS
											-- configuration (per carrier frequency)
maxNeighCell-SCPTM-r13		INTEGER ::=	8	-- Maximum number of SCPTM neighbour cells
maxObjectId					INTEGER ::= 32
maxObjectId-Plus1-r13		INTEGER ::= 33
maxObjectId-r13				INTEGER ::= 64
maxP-a-PerNeighCell-r12		INTEGER ::= 3	-- Maximum number of power offsets for a neighbour cell
											-- in NAICS configuration
maxPageRec					INTEGER ::= 16	--
maxPhysCellIdRange-r9 		INTEGER ::= 4	-- Maximum number of physical cell identity ranges
maxPLMN-r11					INTEGER ::=	6	-- Maximum number of PLMNs
maxPLMN-AltCell-r14			INTEGER ::=	5	-- Maximum number of PLMNs for alternative cell access
											-- related info
maxPNOffset					INTEGER ::=	511	-- Maximum number of CDMA2000 PNOffsets
maxPMCH-PerMBSFN			INTEGER ::= 15
maxPSSCH-TxConfig-r14		INTEGER ::= 16	-- Maximum number of PSSCH TX configurations
maxQCI-r13					INTEGER ::= 6	-- Maximum number of QCIs
maxRAT-Capabilities			INTEGER ::= 8	-- Maximum number of interworking RATs (incl EUTRA)
maxRE-MapQCL-r11			INTEGER ::= 4	-- Maximum number of PDSCH RE Mapping configurations
											-- (per carrier frequency)
maxReportConfigId			INTEGER ::= 32
maxReservationPeriod-r14	INTEGER ::= 16	-- Maximum number of resource reservation periodicities
											-- for sidelink V2X communication
maxRSTD-Freq-r10			INTEGER ::= 3	-- Maximum number of frequency layers for RSTD
											-- measurement
maxSAI-MBMS-r11				INTEGER ::= 64	-- Maximum number of MBMS service area identities
											-- broadcast per carrier frequency
maxSCell-r10				INTEGER ::= 4	-- Maximum number of SCells
maxSCell-r13				INTEGER ::= 31	-- Highest value of extended number range of SCells
maxSC-MTCH-r13				INTEGER ::= 1023	-- Maximum number of SC-MTCHs in one cell
maxSC-MTCH-BR-r14			INTEGER ::= 128	-- Maximum number of SC-MTCHs in one cell for feMTC
maxSL-CommRxPoolNFreq-r13	INTEGER ::= 32	-- Maximum number of individual sidelink communication
											-- Rx resource pools on neighbouring freq
maxSL-CommRxPoolPreconf-v1310	INTEGER ::= 12	-- Maximum number of additional preconfigured
												-- sidelink communication Rx resource pool entries
maxSL-TxPool-r12Plus1-r13	INTEGER ::= 5	-- First additional individual sidelink
												-- Tx resource pool
maxSL-TxPool-v1310			INTEGER ::= 4	-- Maximum number of additional sidelink
												-- Tx resource pool entries
maxSL-TxPool-r13			INTEGER ::= 8	-- Maximum number of individual sidelink
												-- Tx resource pools
maxSL-CommTxPoolPreconf-v1310	INTEGER ::= 7	-- Maximum number of additional preconfigured
												-- sidelink Tx resource pool entries
maxSL-Dest-r12			INTEGER ::= 16			-- Maximum number of sidelink destinations
maxSL-DiscCells-r13		INTEGER ::= 16			-- Maximum number of cells with similar sidelink
												-- configurations
maxSL-DiscPowerClass-r12	INTEGER ::= 3		-- Maximum number of sidelink power classes
maxSL-DiscRxPoolPreconf-r13		INTEGER ::= 16	-- Maximum number of preconfigured sidelink
												-- discovery Rx resource pool entries
maxSL-DiscSysInfoReportFreq-r13	INTEGER ::= 8	-- Maximum number of frequencies to include in a
												-- SidelinkUEInformation for SI reporting
maxSL-DiscTxPoolPreconf-r13		INTEGER ::= 4	-- Maximum number of preconfigured sidelink
												-- discovery Tx resource pool entries
maxSL-GP-r13			INTEGER ::= 8	-- Maximum number of gap patterns that can be requested
										-- for a frequency or assigned
maxSL-PoolToMeasure-r14 	INTEGER ::= 72	-- Maximum number of TX resource pools for CBR
												-- measurement and report
maxSL-Prio-r13			INTEGER ::= 8	-- Maximum number of entries in sidelink priority list
maxSL-RxPool-r12			INTEGER ::= 16	-- Maximum number of individual sidelink Rx resource pools
maxSL-SyncConfig-r12		INTEGER ::= 16	-- Maximum number of sidelink Sync configurations
maxSL-TF-IndexPair-r12	INTEGER ::= 64	-- Maximum number of sidelink Time Freq resource index
											-- pairs
maxSL-TxPool-r12			INTEGER ::= 4	-- Maximum number of individual sidelink Tx resource pools
maxSL-V2X-RxPool-r14 		INTEGER ::= 16	-- Maximum number of RX resource pools for
												-- V2X sidelink communication
maxSL-V2X-RxPoolPreconf-r14	INTEGER ::= 16		-- Maximum number of RX resource pools for
												-- V2X sidelink communication
maxSL-V2X-TxPool-r14 		INTEGER ::= 8	-- Maximum number of TX resource pools for
												-- V2X sidelink communication
maxSL-V2X-TxPoolPreconf-r14	INTEGER ::= 8		-- Maximum number of TX resource pools for
												-- V2X sidelink communication
maxSL-V2X-SyncConfig-r14 	INTEGER ::= 16	-- Maximum number of sidelink Sync configurations
												-- for V2X sidelink communication
maxSL-V2X-CBRConfig-r14		INTEGER ::= 4	-- Maximum number of CBR range configurations
												-- for V2X sidelink communication congestion control
maxSL-V2X-CBRConfig-1-r14	INTEGER ::= 3
maxSL-V2X-TxConfig-r14		INTEGER ::= 64	-- Maximum number of TX parameter configurations for
												-- V2X sidelink communication congestion control
maxSL-V2X-TxConfig-1-r14	INTEGER ::= 63
maxSL-V2X-CBRConfig2-r14		INTEGER ::= 8	-- Maximum number of CBR range configurations in
												-- pre-configuration for V2X sidelink communication
												-- congestion control
maxSL-V2X-CBRConfig2-1-r14	INTEGER ::= 7
maxSL-V2X-TxConfig2-r14		INTEGER ::= 128	-- Maximum number of TX parameter configurations in
												-- pre-configuration for V2X sidelink communication
						 						-- congestion control
maxSL-V2X-TxConfig2-1-r14	INTEGER ::= 127
maxSTAG-r11					INTEGER ::= 3	-- Maximum number of STAGs
maxServCell-r10				INTEGER ::= 5	-- Maximum number of Serving cells
maxServCell-r13				INTEGER ::= 32	-- Highest value of extended number range of Serving cells
maxServiceCount 			INTEGER ::= 16	-- Maximum number of MBMS services that can be included
											-- in an MBMS counting request and response
maxServiceCount-1			INTEGER ::= 15
maxSessionPerPMCH			INTEGER ::= 29
maxSessionPerPMCH-1			INTEGER ::= 28
maxSIB						INTEGER ::= 32	-- Maximum number of SIBs
maxSIB-1					INTEGER ::= 31
maxSI-Message				INTEGER ::= 32	-- Maximum number of SI messages
maxSimultaneousBands-r10	INTEGER ::= 64	-- Maximum number of simultaneously aggregated bands
maxSubframePatternIDC-r11	INTEGER ::= 8	-- Maximum number of subframe reservation patterns
											-- that the UE can simultaneously recommend to the
											-- E-UTRAN for use.
maxTrafficPattern-r14		INTEGER ::= 8	-- Maximum number of periodical traffic patterns
											-- that the UE can simultaneously report to the
											-- E-UTRAN.
maxUTRA-FDD-Carrier			INTEGER ::= 16	-- Maximum number of UTRA FDD carrier frequencies
maxUTRA-TDD-Carrier			INTEGER ::= 16	-- Maximum number of UTRA TDD carrier frequencies
maxWLAN-Id-r12				INTEGER ::=	16	-- Maximum number of WLAN identifiers
maxWLAN-Bands-r13			INTEGER ::= 8	-- Maximum number of WLAN bands
maxWLAN-Id-r13				INTEGER ::= 32	-- Maximum number of WLAN identifiers
maxWLAN-Channels-r13		INTEGER ::= 16	-- maximum number of WLAN channels used in
											-- WLAN-CarrierInfo
maxWLAN-CarrierInfo-r13 	INTEGER ::= 8	-- Maximum number of WLAN Carrier Information
maxWLAN-Id-Report-r14		INTEGER ::= 32	-- Maximum number of WLAN IDs to report

-- TAG_MULTIPLICITY_STOP
-- ASN1STOP
NOTE: The value of maxDRB aligns with SA2.

