3GPP TSG RAN WG2 LTE AdHoc
Cannes, france, 27-31 June, 2006
 R2-061942
Source:
 InterDigital Communications Corporation
Title:
Retransmission: HARQ-ARQ Interactions
Agenda Item:

14
Document for:
Discussion
1. Introduction

HARQ assisted ARQ mechanisms have been proposed and discussed in various contributions, e.g. [1-5]. This contribution discusses HARQ-ARQ interactions, and provides simulation results to quantify and highlight the issues and advantages.
2. HARQ-ARQ Interactions
2.1. Background

In HARQ assisted ARQ, the basic idea is to have the transmitting node utilize HARQ ACK/NACK feedback to generate Local ACK/NACK to the transmitting ARQ entity(ies), hence minimizing the need for ARQ level STATUS reporting.
2.2. Advantages & Potential Issues of Local ACK/NACK
The advantages and potential issues of the Local ACK and Local NACK mechanisms are summarized in the next table.
	HARQ assisted ARQ Mechanism:
	Local ACK
	Local NACK

	Used to:
	· Move ARQ send window.

	· Identify packets to recover by ARQ.

	Advantages:
	1. ARQ window can be moved FASTER

2. Potentially lower resource consumption (e.g. smaller window/ memory) due to faster feedback (lower RTT).
3. Minimize ARQ STATUS reporting.

	1. Packet recovery can be achieved FASTER
2. Potentially improved application performance (e.g. TCP) due to faster error recovery.

3. Minimize ARQ STATUS reporting.

	Robustness Issues:
	· If undetected, False Local ACKs (NACK/DTX(ACK errors) will result in irrecoverable packet loss, which can be detrimental to some applications (e.g. TCP)

	· If not minimized, False Local NACKs (ACK(NACK errors) will result in unnecessary retransmissions, which can degrade the throughput performance.

Note: DTX(NACK error is not listed as a robustness issue, since a DTX should be treated as a NACK in any case.
2.2.1. Discussion of HARQ assisted ARQ Advantages
Smaller window size and lower memory requirements:
Local ACK enables moving the ARQ window faster, without needing/incurring the overhead of increased STATUS reporting frequency. To move the window as fast as possible using existing UTRAN mechanisms, the transmitter has to poll for and receive an ARQ STATUS every TTI in order to minimize the average RTT (i.e. the average time from transmitting the PDU till receiving the acknowledgement feedback), which is impractical and inefficient. In contrast, the Local ACK mechanism of HARQ assisted ARQ will minimize the average RTT since it can provide acknowledgement feedback every TTI, without incurring the burden of polling/receiving ARQ STATUS reports. The lower average RTT implies that the ARQ window size required to sustain a given data rate can be smaller, which leads to lower memory requirements and lower costs for LTE devices.
We believe that such advantage could be quite substantial, considering that the required window size is directly proportional to [(Data Rate) * (Average RTT)].
Faster recovery yet minimal ARQ STATUS reporting:

One of the potential advantages for HARQ assisted ARQ is faster error recovery, hence enhanced performance. In this section, we examine via simulations whether improving the error recovery feedback speed has a significant impact on TCP throughput performance (see appendix section 5 for a description of the simulation parameters).
In Figure 1, we varied the frequency at which ARQ STATUS reports are polled, and disabled the automatic generation of STATUS reports by the ARQ receiver upon the detection of a missing ARQ SN. As Figure 1 shows, the TCP performance significantly improves as the ARQ STATUS reporting frequency is increased from 2 to 5 to 20 to 100 STATUS Polls/Sec, and reaches the theoretical throughput limit of 90% (since the link experiences 10% errors).

HARQ assisted ARQ should provide similar performance to the 100 STATUS Poll/Sec case (i.e. will reach the 90% throughput limit) since the feedback speed will be higher (once per TTI i.e. 2000/sec), but without incurring any ARQ STATUS reporting overhead. Note: HARQ assisted ARQ was not explicitly modeled in the simulator, but its behavior was fairly emulated using the proper RLC and HARQ configuration parameters.
[image: image1.png]
Figure 1: TCP Throughput Performance when ARQ Missing SN Detection is OFF

In Figure 2, we varied the frequency at which ARQ STATUS reports are polled, and enabled the automatic generation of STATUS reports by the ARQ receiver upon the detection of a missing ARQ SN. As Figure 2 shows, the TCP performance does not considerably improve as the ARQ STATUS reporting frequency is increased from 2 to 5 to 20 to 100 STATUS Polls/Sec, and instead remains close to the theoretical throughput limit of 90%, when the HARQ residual error is varied from 10-4 to 10-2. Note: In the simulations, we tried to eliminate transmit window stalling (i.e. RLC reaching maximum window size due to a packet error that is not yet recovered by ARQ) via utilizing the large window size of 4096 PDUs, but there has probably been some stalling for the 10-2 case which could explain the slight improvement in TCP throughput as we increased the STATUS reporting frequency.
Even though TCP throughput has not greatly improved with faster STATUS polling when the automatic generation of STATUS reports upon the detection of a missing ARQ SN is ON, HARQ assisted ARQ should be able to eliminate/minimize the ARQ STATUS reporting overhead that’s plotted in Figure 3.
In summary, HARQ assisted ARQ should provide similar performance to that in Figure 2 (i.e. will reach the 90% throughput limit) since the HARQ assisted ARQ feedback speed will be the highest (once per TTI i.e. 2000/sec), but without incurring any of the ARQ STATUS reporting overhead that’s shown in Figure 3.
Conclusion: The faster ACK/NACK feedback that HARQ assisted ARQ can provide may not significantly improve the TCP throughput performance when compared to existing mechanisms, but has the important advantage of eliminating/minimizing the overhead generated by ARQ STATUS reporting.

[image: image2.png]
Figure 2: TCP Throughput Performance when ARQ Missing SN Detection is ON

[image: image3.png]
Figure 3: Actual ARQ STATUS reports when ARQ Missing SN Detection is ON

2.2.2. Discussion of HARQ assisted ARQ Robustness Issues

False Local ACKs, arising from NACK(ACK errors or DTX(ACK errors, can cause irrecoverable packet loss and serious TCP performance degradation, if undetected and un-recovered.
In this section, we investigate how harmful NACK(ACK errors can be from HARQ/ARQ perspective. In order to do so, we made minor changes to the error model to have all the data errors fully recovered by HARQ (i.e. HARQ residual error rate is Zero (i.e. Probability of {1,2,3,4} HARQ transmissions = {90%,9%,0.9%,0.1%} respectively). In other words, 100% of packet retransmissions that are due to data errors will be conducted by HARQ, and there’s no need for ARQ retransmissions. Therefore, the only other source of error that cannot be recovered by HARQ is the HARQ NACK(ACK feedback error.

In Figure 4, we varied the HARQ NACK(ACK feedback error rate from 0% to 1%:

· The blue curve (circles) represents the case where we turned ON the automatic generation of STATUS reports by the ARQ receiver upon the detection of a missing ARQ SN (i.e. the packets lost because of NACK(ACK errors were detected/recovered by ARQ).

· The red curve (triangles) represents the case where we turned off ARQ re-transmissions which is equivalent in outcome to turning OFF the automatic generation of STATUS reports upon the detection of a missing ARQ SN (i.e. the packets lost because of NACK(ACK errors were missed/irrecoverable by ARQ).

Note: One would expect the TCP throughput curves plotted in Figure 4 to start from and to not exceed the 90% level, since there’s a 10% data error rate. That was indeed the case, but the curves were re-normalized (relative to the reference case of 10% data error and 0% NACK(ACK error) in order to show the percentage difference between the two curves.

As Figure 4 shows, a mere 10-4 NACK(ACK error that goes undetected can cause more than 3% loss in TCP throughput. Interestingly however, a 1% NACK(ACK error rate does not have a significant impact on TCP throughput if there is a detection mechanism in place (i.e. the blue curve). Hence a higher NACK(ACK target error rate can in principle be considered, but one has to first conduct an in-depth analysis that examines the tradeoffs between the gain in system capacity and the loss of HARQ soft combining gain in the receiver.
Conclusion: NACK(ACK and DTX(ACK error detection and recovery mechanisms should be supported. The NACK(ACK and DTX(ACK error targets may even be relaxed when such mechanisms are in place, but a tradeoff analysis that examines potential HARQ inefficiencies (e.g. loss in soft combining gains) will need to be done first.
[image: image4.png]
Figure 4: TCP Throughput Performance when NACK-to-ACK errors are present

On the other hand, False Local NACKs, arising from ACK(NACK errors, can cause unnecessary retransmissions and a loss in throughput/efficiency, if not minimized.

In this section, we confirm the simple analytical understanding which suggests that ACK(NACK errors will cause an equivalent amount of extra retransmissions, and hence a loss in throughput efficiency that’s equivalent to the ACK(NACK error rate. This is confirmed by the TCP throughput simulation results provided in Figure 5.

Conclusion: The loss in efficiency caused by HARQ ACK(NACK error is commensurate with the ACK(NACK error rate; the ACK(NACK error target should hence be minimized.

[image: image5.png]
Figure 5: TCP Throughput Performance when ACK-to-NACK errors are present
3. Conclusion
HARQ assisted ARQ mechanisms have been shown to offer significant advantages should be supported:
1) Local NACK: Utilize HARQ NACK to promptly identify packets for retransmission by ARQ
2) Local ACK: Utilize HARQ ACK (or the absence of HARQ NACK or error reports) after some ‘safety time’ to move the ARQ window and free up the retransmit buffer.
Additionally, HARQ assisted ARQ robustness issues should be adequately addressed via supporting NACK/DTX(ACK error detection and recovery mechanisms, such as:
1) Support NACK(ACK Error detection and error reporting by the HARQ Receiver (e.g. based on unexpected NDI toggle, or using a timer after the receiver sends NACK). Error reporting should preferably be carried using control PDU (as in [2]), and should be robust and protected with CRC.
2) Support ARQ STATUS reporting which is needed to recover from DTX(ACK errors (e.g. based on missing sequence number detection by the ARQ Receiver), or to detect errors on last or isolated packets via polling (as in [3])
With efficient and robust error detection and reporting mechanisms at the HARQ level, the need for ARQ STATUS reporting will be minimized and confined to the corner cases. Hence, the ARQ mechanism can be simplified by eliminating the unnecessary STATUS reporting modes, such as periodic STATUS reporting and STATUS Prohibit timers.

Finally, we propose that the HARQ feedback error targets (e.g. 10-4 for NACK(ACK error and 10-2 for ACK(NACK) can be revisited/re-established, as the support for NACK(ACK error detection/recovery mechanisms entails that the NACK(ACK error rate target may be relaxed (see Figure 4). A tradeoff analysis should nevertheless be performed to evaluate the optimum HARQ feedback error targets that will minimize the overall system’s inefficiency (e.g. system capacity loss, loss in HARQ soft combining gains, etc.)
4. References

[1] R2-060907, MAC functions: ARQ, Samsung, March 2006

[2] R2-060826, HARQ-ARQ interaction, Nokia, March 2006

[3] R2-061398, HARQ-ARQ Interaction, Ericsson, May 2006

[4] R2-060909, Robustness of HARQ assisted ARQ operation, Samsung, March 2006

[5] R2-060848, Consideration of (H)ARQ layers for LTE, Philips, March 2006

5. Appendix: Simulations Parameters

We utilized an OPNET-based simulation environment for UTRAN, where RLC and HARQ are modeled. HARQ assisted ARQ was not explicitly modeled, but its behavior was emulated using the proper RLC and HARQ configuration parameters. The following table describes the key simulation parameters.
	Key Simulation Parameters

	Traffic Source
	FTP application (single file with practically infinite file size)

	TCP Parameters
	TCP Segment Size 536Byte; Window Size 64KBytes

	RLC Parameters
	SDU Size 576Bytes; PDU Size = 4978bits; Window Size 4096PDUs

	
	Max PDU retransmissions = 10 (i.e. highly reliable RLC)

	
	Poll for RLC STATUS = {every 10ms, 50ms, 200ms, 500ms}

	
	Trigger RLC STATUS via Missing RLC SN Detection {ON, OFF}

	HARQ Parameters
	Synchronous HARQ: Retransmissions after 10TTI’s

	
	Up to 4 HARQ transmissions (i.e. 3 retransmissions)

	Data Error Model
	Probability of {1,2,3,4} HARQ transmissions = {90%,9%,0.9%,0.09%} i.e. HARQ Residual Error = {10%,1%,0.1%,0.01%} after {1,2,3,4} Tx.

	PHY Parameters
	TTI = 0.5ms; TB Size = 5000bits (i.e. 10Mbps PHY data rate)

