3GPP TSG-RAN WG2 #99bis	R2-1711542
Prague, Czech Republic, October 9– October 13, 2017	

[bookmark: Source]Agenda item:	10.3.2.3 (NR_newRAT-Core)
Source:	Qualcomm Inc.
Title:	Report of email discussion [99#35][NR UP] Reassembly for RLC UM
[bookmark: DocumentFor]Document for:	Discussion and Decision

1.	Introduction
RAN2 has discussed how to perform RLC UM reassembly during RAN2#99 and made the following agreements:
Agreements:
1. 	Window mechanism with a single timer is adopted. Baseline is gap based timer
2.	T-reassembly timer terminology will be used

This document aims to provide an agreeable Text Proposal to the RAN2#99bis for window mechanism with a single timer using a gap based timer baseline following the e-mail discussion:
[99#35][NR UP] Reassembly for RLC UM - Qualcomm
	Intended outcome: Agreeable text proposal
	Deadline: Thursday 2017-09-21

2.	RLC UM state variables
LTE RLC UM state variables
In LTE, the state variable definitions are as follows:
Each transmitting UM RLC entity shall maintain the following state variables and constants [1]:
a) VT(US)
This state variable holds the value of the SN to be assigned for the next newly generated UMD PDU. It is initially set to 0, and is updated whenever the UM RLC entity delivers an UMD PDU with SN = VT(US).
Each receiving UM RLC entity shall maintain the following state variables:
a) VR(UR) – UM receive state variable
This state variable holds the value of the SN of the earliest UMD PDU that is still considered for reordering. It is initially set to 0.For RLC entity configured for STCH, it is initially set to the SN of the first received UMD PDU.
b) VR(UX) – UM t-Reordering state variable
This state variable holds the value of the SN following the SN of the UMD PDU which triggered t-Reordering.
c) VR(UH) – UM highest received state variable
This state variable holds the value of the SN following the SN of the UMD PDU with the highest SN among received UMD PDUs, and it serves as the higher edge of the reordering window. It is initially set to 0.For RLC entity configured for STCH, it is initially set to the SN of the first received UMD PDU.
The receiving UM RLC entity also maintains the following constant:
a) UM_Window_Size
This constant is used by the receiving UM RLC entity to define SNs of those UMD PDUs that can be received without causing an advancement of the receiving window. UM_Window_Size = 16 when a 5 bit SN is configured, UM_Window_Size = 512 when a 10 bit SN is configured and UM_Window_Size = 0 when the receiving UM RLC entity is configured for MCCH, MTCH, SC-MCCH, SC-MTCH or STCH.
NR RLC UM state variables
As discussed in RAN2#99 meeting, similar to LTE,window mechanism with a single timer solution in NR also needs several state variables. Following the naming convention currently adopted in TS 38.322 [2], the rapporteur suggests the following initial TP for state variables and constant below.
	[bookmark: _Toc454281578][bookmark: _Toc488395862]7.1	State variables
<Skipping existing text>
Each transmitting UM RLC entity shall maintain the following state variables:
a) TX_UM_Next
This state variable holds the value of the SN to be assigned for the next newly generated UMD PDU with segment. It is initially set to 0, and is updated before the UM RLC entity delivers a UMD PDU with the first segment of a RLC SDU.
Each receiving UM RLC entity shall maintain the following state variables and constant:
a) RX_Next_Reassembly – UM receive state variable
This state variable holds the value of the earliest SN that is still considered for reassembly. It is initially set to 0.
b) RX_Reassembly_Trigger – UM t-Reassembly state variable
This state variable holds the value of the SN which triggered t-Reassembly.
c) RX_UM_Next_Highest_Rcvd – UM receive state variable
The state variable holds the value of the next expected SN to be received. It serves as the higher edge of the reassembly window. It is initially set to 0.
[bookmark: _Toc454281579][bookmark: _Toc488395863]7.2	Constants
<Skipping existing text>
b) UM_Window_Size
This constant is used by the receiving UM RLC entity to define SNs of those UMD SDUs that can be received without causing an advancement of the receiving window. UM_Window_Size = 32 when a 6 bit SN is configured, UM_Window_Size = 2048 when a 12 bit SN is configured.

For the ease of reading, a comparison of LTE and NR state variable/constant names are provided in the table below:
	LTE state variable/constant
	NR state variable/constant

	Name
	Meaning
	Name
	Meaning

	VT(US)
	The value of the SN to be assigned for the next newly generated UMD PDU
	TX_UM_Next

	The value of the SN to be assigned for the next newly generated UMD PDU with segment. It is updated after the UM RLC entity delivers a UMD PDU including the last segment of a RLC SDU.

	VR(UR)
	The value of the earliest SN that is still considered for reordering.
	RX_Next_Reassembly
Alternative 1: RX_Reassembly
	The value of the earliest SN that is still considered for reassembly.

	VR(UX)
	The value of the SN following the SN which triggered t-Reordering.
	RX_Reassembly_Trigger
Alternative 1: RX_Reassembly
Alternative 2:
RX_Discard_Trigger
Alternative 3:
RX_Timer_Trigger
	The value of the SN which triggered t-Reassembly.

	VR(UH)
	The value of the SN following the SN of the UMD PDU with the highest SN among received UMD PDUs. It serves as the higher edge of the receiving window.
	RX_UM_Next_Highest_Rcvd
Alternative 1: RX_UM_Highest
Alternative 2:
RX_UM_Next_Highest
	Option 1:
The value of the next expected SN. It serves as the higher edge of the reassembly window.
Option 2:
The value of the SN following the SN of the UMD PDU with the highest SN among received UMD PDUs. It serves as the higher edge of the reassembly window.

	UM_Window_Size
	This constant is used by the receiving UM RLC entity to define SNs of those UMD PDUs that can be received without causing an advancement of the receiving window.
	UM_Window_Size
	This constant is used by the receiving UM RLC entity to define SNs of those UMD SDUs that can be received without causing an advancement of the reassembly window.

Question 1: Do companies agree the state variable and constant names and definitions above?
	Company
	Suggestions on the initial TP

	CATT
	The meaning of VR(UX) should be updated to “The value of the SN following the SN which triggered t-Reordering”.

	Nokia
	We could just use RX_Reassembly instead of having the “Next” in between RX_Next_Reassembly which seems to give no additional information about the variable. Also the “Highest” in the RX_UM_Next_Highest_Rcvd seems to make the variable quite lengthy also giving not really additionally information about the variable.
We note that with gap based timer solution the SO needs to be recorded as well to track which byte of the RLC SDU started the timer so that the reception of that byte can stop the timer run.

	OPPO
	For RX_Next_Reassembly, we also think the “Next” in between make the definitions confused, since this value is the earliest SN still considered for reassembly. Tend to agree Nokia’s proposal to use RX_Reassembly.
We are fine with other state variable names and definitions.

	LG
	For the “TX_UM_Next”, the definition should be “is updated after the UM RLC entity delivers a UMD PDU including the last segment of a RLC SDU”. This is consistent with the description in 5.1.2.1.1.
For the “RX_Next_Reassembly”, we prefer “RX_UM_Next” to be aligned with RLC AM.
For the “RX_Reassembly_Trigger”, we prefer “RX_Reassembly” and the definition should be “This state variable holds the value of the SN following the SN of the RLC SDU which triggered t-Reassembly.”.
For the “RX_UM_Next_Highest_Rcvd”, we prefer “RX_UM_Highest”. This is the most contentious variable. We want to have a similar definition as in LTE, i.e., the definition should be “The state variable holds the value of the SN following the SN of the RLC SDU with the highest SN among received RLC SDUs which are segmented.”.

	MediaTek
	TX_UM_Next can be replaced by TX_Next and RX_UM_Next_Highest_Rcvd can be replaced by RX_Next_Highest_Rcvd. We think the UM part is not needed because state variables for UM and AM are defined in separate sections, and there is no possibility of confusion since an RLC entity can be either UM or AM. We disagree with that “Next” needs to be removed. It conveys the useful information that it refers to the N+1th SDU (as done with RLC AM).

	Samsung
	In the table, the definition of VR(UH) should be updated to “the value of the SN following the SN of the UMD PDU with the highest SN among received UMD PDUs”.
We prefer to follow the LTE definition of VR(UH) for RX_UM_Next_Highest_Rcvd, which makes the TP simpler and readable. The proposed definition from QC would require unnecessary changes. Moreover, the proposed definition seems not aligned with RX_UM_Next_Highest_Rcvd in the receive operation. For example, the first segments with SN = 1, 2, and 3 arrive and those UMD PDUs are not completely received. In this case, RX_UM_Next_Highest_Rcvd is updated to 3 according to the current TP. We don’t think that the next expected SN to be received would be 3, i.e. 1 or 2 may be received next time. In addition to this, in the current TP, quite many clauses are generated for handling the proposed definition. In our opinion, we don’t need to too much care about the higher edge. The LTE definition is enough to work fine.
if we follow the LTE definition,
· In 5.1.2.2.3, we can remove “if x = RX_UM_Next_Highest_Rcvd, update RX_UM_Next_Highest_Rcvd to x + 1” and “if RX_UM_Next_Highest_Rcvd is updated due to actions above”.
· In 5.1.2.2.4, we can remove “if RX_Next_Reassembly = RX_UM_Next_Highest_Rcvd,	update RX_UM_Next_Highest_Rcvd to RX_UM_Next_Highest_Rcvd + 1, update RX_Next_Reassembly to RX_UM_Next_Highest_Rcvd, else”
· In 5.1.2.2.3, as in LTE, we can change from “if the received UMD PDU contains the last byte of SN = x: update RX_UM_Next_Highest_Rcvd to x + 1; else: update RX_UM_Next_Highest_Rcvd to x;” to “update RX_UM_Next_Highest_Rcvd to x+1”
· In 5.1.2.2.3, the timer triggering condition can be modified from “if t-Reassembly is not running (includes the case when t-Reassembly is stopped due to actions above): if RX_UM_Next_Highest_Rcvd > RX_Next_Reassembly; or if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly and there is at least one missing byte segment of the SDU associated with SN = x before the last byte of all received segments of this SDU” to “if t-Reassembly is not running (includes the case when t-Reassembly is stopped due to actions above): if RX_UM_Next_Highest_Rcvd > RX_Next_Reassembly+1; or if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly +1 and there is at least one missing byte segment of the SDU associated with SN = x before the last byte of all received segments of this SDU”

	Huawei, HiSilicon
	For the lengthy terminology, we think “_Rcvd” in “RX_UM_Next_Highest_Rcvd” may be unnecessary. Although for AM, rapporteur clarified “RX” and “Rcvd” are used for different purposes, but I do not see other variables are using the same principle, e.g. TX_UM_Next is not TX_UM_Next_transmitted. Without this information, we should know it is the “received” but not the “transmitted”, so I think it is safe to remove it here as well as for AM.
 “Next” should be kept here to align with other variable names.

	Ericsson
	We also think that the some names (RX_Next_Reassembly, RX_UM_Next_Highest_Rcvd) can be shorter while still be readable as proposed by many companies.
We support Samsung view on definition of RX_UM_Next_Highest_Rcvd, that is, we think the definition should follow that of VR(UH) in LTE.
We don’t think we should any additional variables.

	Intel
	We also prefer shorter names therefore are fine to simply use RX_Reassembly. We’re also OK to remove “Rcvd” from variable names (for both UM and AM).

We agree with Samsung’s definition for RX_UM_Next_Highest_Rcvd (to align with UR(VH) in LTE) to simplify the specification.

	NTT DOCOMO
	[Comment for v4]
We are fine with the definition except for TX_UM_Next where the current text does not cover the pre-processing case as pointed out by Nokia in the next section. For example, we may use the similar way to that for RLC-AM, e.g., RLC entity associates RLC SDU and TX_UM_Next when RLC SDU is segmented and increment it.
For name, we don’t’ have strong view as long as it describes its role correctly.

Question 1a: Do companies think it is useful to indicate “UM” in the state variables to distinguish with AM state variables for the state variables with the same name? e.g. TX_Next vs TX_UM_Next, RX_UM_Next_Highest_Rcvd vs RX_Next_Highest_Rcvd.
	Company
	Yes/No
	Comment

	LG
	YES
	If we use TX_Next for UM same as in AM, those two variable name is same, which makes confusion. Thus we prefer to keep UM state variables.

	Samsung
	Yes
	No strong opinion but as in LTE the distinct names would be better.

	CATT
	No
	In the aim of keeping short variable names, it is preferable to remove “UM” which would be commonly added to all variables in this section and rather have “self-explanatory” varable names.

	Nokia
	Yes
	

	Intel
	No
	No strong opinion but we don’t see confusion of using same variable name since the variable name only works within the corresponding scope (i.e. AM and UM).

	Qualcomm
	No
	There seems no confusion for using same variable names and it seems better to keep the state variable names short.

Question 1b: If the answer to question 1a is yes, should all UM state variables contain “UM” for consistency?
	Company
	Yes/No
	Comment

	LG
	YES
	We prefer to include UM for all UM state variables.

	Samsung
	Yes
	

	Nokia
	Yes
	

Question 1c: For the longer variable names, rapporteur listed several shorter alternatives in the table. Please indicate your preference, if any. (Note: the variable names may be adjusted based on the discussion in 1a and 1b above)
	Company
	Preferences
	Comment

	LG
	VT(US) -> TX_UM_Next
VR(UR)-> RX_UM_Next
VR(UX)-> RX_UM_Reassembly
VR(UH)-> RX_UM_Highest
Option 2 for VR(UH) definition.
	We want to include UM for all UM state variable.
We also want to have short name.
Rcvd is not needed because RX implies that something is received.
Next is not needed because variables indicate following SN.

	CATT
	VT(US) ->TX_Next
VR(UR)->RX_Next_Reassembly
VR(UX)->RX_Timer_Trigger
VR(UH)->RX_Next_Highest
Option 2 for VR(UH) definition.
	In our view, these variable names reflect best their meaning and usage in the procedure. Note “RX_Next_Highest” is consistent with option 2.

	Nokia
	VT(US) -> TX_UM_Next
VR(UR)-> RX_UM_Reassembly
VR(UX)-> RX_UM_Timer_trigger
VR(UH)-> RX_UM_Highest
Option 2 for VR(UH) definition.
	

	Intel
	VT(US) ->TX_Next
VR(UR)->RX_ Reassembly
VR(UX)->RX_Timer_Trigger
VR(UH)->RX_Highest
Option 2 for VR(UH) definition.
	

Regarding the naming of state variables, 3 companies (Huawei, Ericsson, Intel) indicated shorter names are preferred in question 1. 6 companies provided their views regarding whether “UM” should be included in question 1, 1a, and 1c. 4 companies (MediaTek, CATT, Intel, Qualcomm) prefer not to include “UM”. 3 companies prefer to include “UM” (LG, Samsung, Nokia). The definitions of state variables are updated based on company inputs from question 1 in the table from in v3. Also based on the state variable name suggestions from question 1c, a text proposal is made accordingly.
3.	Text proposal to 38.322 v1.0.0
An initial text proposal to 38.322 v1.0.0 is provided below. Companies are asked to review the initial text proposal, and provide addition/deletion/modification of the initial text proposal.

Option 1: RX_UM_Next_Highest_Rcvd is defined as “The value of the next expected SN”
	[bookmark: _Toc454281521]5.1.2.1	Transmit operations
5.1.2.1.1	General
When delivering a new UMD PDU to lower layer, the transmitting UM RLC entity shall:
-	if the PDU contains a segment that maps to the last byte of a SDU, then increment TX_UM_Next by one.
-	if the PDU contains a segment of a SDU, set the SN of the UMD PDU to TX_UM_Next
-	if the PDU contains a segment that maps to the last byte of a SDU, then increment TX_UM_Next by one.

5.1.2.2	Receive operations
[bookmark: _Toc454281522]5.1.2.2.1	General
The receiving UM RLC entity shall maintain a reassembly window according to state variable RX_UM_Next_Highest_Rcvd as follows:
-	a SN falls within the reassembly window if (RX_UM_Next_Highest_Rcvd – UM_Window_Size) <= SN <RX_UM_Next_Highest_Rcvd;
-	a SN falls outside of the reassembly window otherwise.
When receiving an UMD PDU from lower layer, the receiving UM RLC entity shall:
· -update state variables, reassemble and deliver RLC SDUs to upper layer as needed (see sub clause 5.1.2.2.3);
When t-Reassembly expires, the receiving UM RLC entity shall:
-	update state variables, discard RLC SDU segments and start t-Reassembly as needed (see sub clause 5.1.2.2.4).
[bookmark: _Toc454281523]5.1.2.2.2	Actions when an UMD PDU is received from lower layer
When an UMD PDU is received from lower layer, the receiving UM RLC entity shall:
· deliver the RLC SDU to upper layer
-	if the UMD PDU does not contain an SN:
-	remove the RLC header and deliver the RLC SDU to upper layer.
-	else if (RX_UM_Next_Highest_Rcvd – UM_Window_Size) <= SN < RX_Next_Reassembly:
-	discard the received UMD PDU.
-	else:
-	place the received UMD PDU in the reception buffer.
5.1.2.2.3	Actions when an UMD PDU is placed in the reception buffer
When an UMD PDU with SN = x is placed in the reception buffer received from lower layer, the receiving UM RLC entity shall:
-	if all byte segments with SN = x are received:
-	reassemble the RLC SDU from all in-sequence byte segments with SN = x, remove RLC headers and deliver the reassembled RLC SDU to upper layer.
-	if x = RX_UM_Next_Highest_Rcvd:
	-	update RX_UM_Next_Highest_Rcvd to x + 1;
 - if x = RX_Next_Reassembly:
 -	update RX_Next_Reassembly to the SN of the first SN > current RX_Next_Reassembly that has not been reassembled and delivered to upper layer;
-	else if x falls outside of the reassembly window:
-	if the received UMD PDU contains the last byte of SN = x:
-	update RX_UM_Next_Highest_Rcvd to x + 1;
- else:
-	update RX_UM_Next_Highest_Rcvd to x;

-	update RX_UM_Next_Highest_Rcvd to x;
 - if RX_UM_Next_Highest_Rcvd is updated due to actions above:
-	discard any UMD PDUs with SN that falls outside of the reassembly window;
-	if RX_Next_Reassembly falls outside of the reassembly window:
-	set RX_Next_Reassembly to (RX_UM_Next_Highest_Rcvd – UM_Window_Size);-	set RX_Next_Reassembly to the SN of the first SN >= (RX_UM_Next_Highest_Rcvd – UM_Window_Size) that has not been reassembled and delivered to upper layer;

- if x = RX_Next_Reassembly:
-	update RX_Next_Reassembly to the SN of the first SN > current RX_Next_Reassembly that has not been reassembled and delivered to upper layer;
-	if t-Reassembly is running:
-	if RX_Reassembly_Trigger<RX_Next_Reassembly; or
-	if RX_Reassembly_Trigger falls outside of the reassembly window and RX_Reassembly_Triggeris not equal to RX_UM_Next_Highest_Rcvd:
-	stop and reset t-Reassembly;
-	if t-Reassembly is not running (includes the case when t-Reassembly is stopped due to actions above):
-	if RX_UM_Next_Highest_Rcvd > RX_Next_Reassembly; or
- if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly and there is at least one missing byte segment of the SDU associated with SN = x before the last byte of all received segments of this SDU

-	if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly and the first byte of SDU segment associated with SN x has not been received; or
-	if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly and there are missing byte segments between the already received segments of SDU associated with SN x:
-	start t-Reassembly;
-	set RX_Reassembly_Trigger to RX_UM_Next_Highest_Rcvd.
[bookmark: _Toc454281525]5.1.2.2.34	Actions when t-Reassembly expires
When t-Reassembly expires, the receiving UM RLC entity shall:
- if RX_Next_Reassembly = RX_UM_Next_Highest_Rcvd
 -	update RX_UM_Next_Highest_Rcvd to RX_UM_Next_Highest_Rcvd + 1
 -	update RX_Next_Reassembly to RX_UM_Next_Highest_Rcv
- 	else
 -	update RX_Next_Reassembly to the SN of the first SN >= RX_Reassembly_Trigger that has not been reassembled;
-	discard all segments with SN < updated RX_Next_Reassembly;
-	if RX_UM_Next_Highest_Rcvd>RX_Next_Reassembly; or

- if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly and there is at least one missing byte segment of the SDU associated with SN = RX_Next_Reassembly before the last byte of all received segments of this SDU
 -	if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly and the first byte of SDU segment associated with SN x has not been received; or
-	if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly and there are missing byte segments between the already received segments of SDU associated with SN x:
-	start t-Reassembly;
-	set RX_Reassembly_Trigger to RX_UM_Next_Highest_Rcvd.

Option 2: RX_UM_Next_Highest_Rcvd is defined as “The value of the SN following the SN of the UMD PDU with the highest SN among received UMD PDUs.”
	5.1.2.1	Transmit operations
5.1.2.1.1	General
When delivering a UMD PDU to lower layer, the transmitting UM RLC entity shall:
-	if the PDU contains a segment of a SDU, set the SN of the UMD PDU to TX_UM_Next
-	if the PDU contains a segment that maps to the last byte of a SDU, then increment TX_UM_Next by one.

5.1.2.2	Receive operations
5.1.2.2.1	General
The receiving UM RLC entity shall maintain a reassembly window according to state variable RX_UM_Next_Highest_Rcvd as follows:
-	a SN falls within the reassembly window if (RX_UM_Next_Highest_Rcvd – UM_Window_Size) <= SN <RX_UM_Next_Highest_Rcvd;
-	a SN falls outside of the reassembly window otherwise.
When receiving an UMD PDU from lower layer, the receiving UM RLC entity shall:
· update state variables, reassemble and deliver RLC SDUs to upper layer as needed (see sub clause 5.1.2.2.3);
When t-Reassembly expires, the receiving UM RLC entity shall:
-	update state variables, discard RLC SDU segments and start t-Reassembly as needed (see sub clause 5.1.2.2.4).
5.1.2.2.2	Actions when an UMD PDU is received from lower layer
When an UMD PDU is received from lower layer, the receiving UM RLC entity shall:
-	if the UMD PDU does not contain an SN:
-	remove the RLC header and deliver the RLC SDU to upper layer.
-	else if (RX_UM_Next_Highest_Rcvd – UM_Window_Size) <= SN < RX_Next_Reassembly:
-	discard the received UMD PDU.
-	else:
-	place the received UMD PDU in the reception buffer.
5.1.2.2.3	Actions when an UMD PDU is placed in the reception buffer
When an UMD PDU with SN = x is placed in the reception buffer, the receiving UM RLC entity shall:
-	if all byte segments with SN = x are received:
-	reassemble the RLC SDU from all byte segments with SN = x, remove RLC headers and deliver the reassembled RLC SDU to upper layer.
 - if x = RX_Next_Reassembly:
 -	update RX_Next_Reassembly to the SN of the first SN > current RX_Next_Reassembly that has not been reassembled and delivered to upper layer;
-	else if x falls outside of the reassembly window:
-	update RX_UM_Next_Highest_Rcvd to x + 1;
-	discard any UMD PDUs with SN that falls outside of the reassembly window;
-	if RX_Next_Reassembly falls outside of the reassembly window:
-	set RX_Next_Reassembly to the SN of the first SN >= (RX_UM_Next_Highest_Rcvd – UM_Window_Size) that has not been reassembled and delivered to upper layer;
-	if t-Reassembly is running:
-	if RX_Reassembly_Trigger<RX_Next_Reassembly; or
-	if RX_Reassembly_Trigger falls outside of the reassembly window and RX_Reassembly_Triggeris not equal to RX_UM_Next_Highest_Rcvd:
-	stop and reset t-Reassembly;
-	if t-Reassembly is not running (includes the case when t-Reassembly is stopped due to actions above):
-	if RX_UM_Next_Highest_Rcvd > RX_Next_Reassembly + 1; or
- if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly + 1 and there is at least one missing byte segment of the SDU associated with SN = x before the last byte of all received segments of this SDU
-	start t-Reassembly;
-	set RX_Reassembly_Trigger to RX_UM_Next_Highest_Rcvd.
5.1.2.2.4	Actions when t-Reassembly expires
When t-Reassembly expires, the receiving UM RLC entity shall:
-	update RX_Next_Reassembly to the SN of the first SN >= RX_Reassembly_Trigger that has not been reassembled;
-	discard all segments with SN < updated RX_Next_Reassembly;
-	if RX_UM_Next_Highest_Rcvd > RX_Next_Reassembly + 1; or
- if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly + 1 and there is at least one missing byte segment of the SDU associated with SN = RX_Next_Reassembly before the last byte of all received segments of this SDU
 -	start t-Reassembly;
-	set RX_Reassembly_Trigger to RX_UM_Next_Highest_Rcvd.

Question 2: Please indicate suggestions for the intiail TP (Option 1).
	Company
	Suggestions on the initial TP

	CATT
	Section 5.1.2.1.1: the two action sentences should be swapped.
Section 5.1.2.2.2:
The below text should be moved under the condition “ if all byte segments with SN = x are received”:
- if x = RX_Next_Reassembly:
-	update RX_Next_Reassembly to the SN of the first SN > current RX_Next_Reassembly that has not been reassembled and delivered to upper layer;

Also, under the condition “if t-Reassembly is not running”, the two conditions:
-	if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly and the first byte of SDU segment associated with SN x has not been received; or
-	if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly and there are missing byte segments between the already received segments of SDU associated with SN x:
Could be simplified to:
- if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly and there is at least one missing byte segment of the SDU associated with SN = x before the last byte of all received segments of this SDU
And similar comment for Section 5.1.2.2.3

	Nokia
	Our suggestions how to revise the TP (also reflected above):
1. on transmission operation, the SN incrementing should be done when the TM_UM_Next SN is taken in use while in current it is only done when all segments are transmitted which might be problematic if we were to allow parallel processing that creates segments of multiple SDUs in parallel.
2. from our point of view, it would be clearer to put a separate sub-clause to determine whether the UMD PDU is to be discarded based on RX_Next_Reassembly, directly delivered to upper layers if no SN or placed in the reception buffer.
	- removal of RLC header seems needed also in case of reception of UMD PDU 	without SN.
	- currently, nothing is put in the reception buffer so it is unclear if the UMD 	PDUs without SN also remain there.
	- the discard the UMD PDUs with (RX_UM_Next_Highest_Rcvd – 	UM_Window_Size) <= SN < RX_Next_Reassembly part is currently missing; 	without this equation the timer would serve a less purpose as those UMD PDUs 	would only be discarded based on the window or further timer expiration 	(which may not happen).
3. The following update should only be made if all byte segments of SN = x is received and hence, it should be moved under the “if all byte segments with SN = x are received”.
- if x = RX_Next_Reassembly:
- update RX_Next_Reassembly to the SN of the first SN > current RX_Next_Reassembly that has not been reassembled and delivered to upper layer;
4. RX_Next_Reassembly should be updated to next not reassembled SN when window is pulled by the high end SN.
5. since the gap detection is based on also segments, the timer should be stopped when such gap is filled, hence the SO of the segment that starts the timer should be tracked as well. Otherwise according to current procedure, the timer is not stopped when the gap is filled and when the timer expires, the RX_Next_Reassembly is not updated if there is still segments not received, then the timer does not serve the purpose of timely discarding out of date segments.
6. Even though the window moved when all byte segments of SN = x was received and x = RX_UM_Next_Highest_Rcvd, no discarding of segments falling out of the window was performed.
	- Now captured as common step for any update for 	RX_UM_Next_Highest_Rcvd variable.
7. Even though x falls outside of the reassembly window, the RX_UM_Next_Highest_Rcvd should be updated to x+1 if the UMD PDU was the last segment of SN = x.

	Qualcomm
	1. We think the current TP’s behavior is the closest to LTE procedure. In LTE, the cases mentioned in Nokia’s comment 4 and 5 are not optimized. At this stage of the WI, we think the optimization is not needed. Specifically, the additional SO specific state variables are not necessary, since the procedure will stop the timer as long as all segments of the SN is received. It should be fine if we discard the segments of the same SN at the same time.
2. When the window is pulled by the high end SN (Nokia’s comment 7), we think the window is pulled by the first segment of the SN, since otherwise the SN would have fallen into reassembly window. Therefore, SN = x is the next expected SN, even if the UMD PDU received is the last segment of SN = x. The timer is properly triggered since RX_Next_Reassembly is not updated in this scenario.

	OPPO
	Some suggestions to the TP:
1. For transmission operation, considering pre-processing, all the buffered RLC SDUs have been pre-processed meaning the RLC SDUs are already formed into RLC PDUs. When delivering a UMD PDU to lower layer, if segmentation is not performed, deliver UMD PDU to lower layer directly. If segmentation is performed, the already generated UMD PDU should be updated for the header. . So we think the procedure for the transmission operation only applies to the UDM PDU needs to be segmented. Suggestions are:
When segmentation is performed to a UMD PDU, the transmitting UM RLC entity shall:
-	if the PDU contains a segment of a SDU, set the SN of the UMD PDU to TX_UM_Next
-	if the PDU contains a segment that maps to the last byte of a SDU, then increment TX_UM_Next by one.

2. When x falls outside the reassembly window, the RX_UM_Next_Highest_Rcvd should updated to x+1, due to the reason 1) based on the definition of RX_UM_Next_Highest_Rcvd, it is the “next” expected SN to be received. 2) even though x is just a segment of SDU, an receiver expects the other byte segments of the x, RX_UM_Next_Highest_Rcvd serves as the SN not byte segment, so the Suggestions are (5.1.2.2.3):
-	else if x falls outside of the reassembly window:
-	update RX_UM_Next_Highest_Rcvd to x+1;
3. For the missing gap detection, if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly, and if the x is the last SDU, how does the receiver detect the missing segment if the segments is the last several segments? For example, SDU x is segmented into 4 segments, 1,2,3 and 4, if segment 1 and 2 is received, at this moment, the t-reassembly is not running, how does the receiver know 3 is missing before 4 received? So, we have concern on the triggering condition of t-reassembly, which is:
- if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly and there is at least one missing byte segment of the SDU associated with SN = x before the last byte of all received segments of this SDU
We think the “before the last byte of all received segments of this SDU” should be removed, which means if there is any missing byte segment of the SDU associated with SN=x, the timer should be triggerd.
4. Some editorial suggestions in the TP itself using track change with “OPPO-SC”

	ZTE
	1,
5.1.2.2.1	General
The receiving UM RLC entity shall maintain a reassembly window according to state variable VR(UH) as follows:
[ZTE]The VR(UH) should be RX_UM_Next_Highest_Rcvd

2,
5.1.2.2.3	Actions when t-Reassembly expires
When t-Reassembly expires, the receiving UM RLC entity shall:
-	update RX_Next_Reassembly to the SN of the SN >= RX_Reassembly_Trigger that has not been reassembled;
[ZTE] Based on the description in 5.1.2.2.3 above, if the timer t-Reassembly is stated in case the “RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly and there is at least one missing byte segment of the SDU associated with SN = x before the last byte of all received segments of this SDU”, the RX_Next_Reassembly updated after the timer expiration will still equal to “RX_Reassembly_Trigger”, thus the t-Reassembly will be started again and again for the same SDU (the SDU with SN = RX_UM_Next_Highest_Rcvd).

To avoid this, the description in 5.1.2.2.3 can be revised as:
5.1.2.2.3	Actions when t-Reassembly expires
When t-Reassembly expires, the receiving UM RLC entity shall:
-	if RX_Next_Reassembly = RX_UM_Next_Highest_Rcvd
-	update RX_UM_Next_Highest_Rcvd to RX_UM_Next_Highest_Rcvd + 1
-	update RX_Next_Reassembly to RX_UM_Next_Highest_Rcv
- 	else
-	update RX_Next_Reassembly to the SN of the SN >= RX_Reassembly_Trigger that has not been reassembled;
-	discard all segments with SN < updated RX_Next_Reassembly;

	LG
	1. In 5.1.2.2.2, we think that same UMD PDU which has same RLC SDU segments can be received because of HARQ ACK-NACK problem. For this, only UMD PDU which has not been received before should be placed in the reception buffer.
2. In 5.1.2.2.3, we share with OPPO’view for “if x falls outside of the reassembly window”. This should be updated to x + 1 to follow the definition as described in the above. And this statement should be separated from “if all byte segments with SN = x are received”, i.e., elseif changes to if, as in LTE. The related lines to update RX_UM_Highest are removed because RX_UM_Highest would be updated only here.
3. We think that “all byte segments” is sufficient instead of “all in-sequence byte segments”.
4. For the t-Reassembly triggering condition, we think that two if statements can be merged as described below because anyway the statement of “if RX_UM_Highest > RX_UM_Next” would have missing segments and the updated condition can accommodate all missing cases.
For example, when RX_UM_Next and RX_UM_Highest are 0 at the first, the first segment is received then RX_UM_Highest is 1 and RX_UM_Next is 0. In this condition, if the remaining segments are received by in-order sequence, there is no missing segment and it does not need to start t-Reassembly by “and there is at least one missing byte segment of the SDU associated with SN = x”. However, if the one segment is not received in RX_UM_Next, there is a missing segment and then start the t-Reassembly. On the other hand, if RX_UM_Next is 0 and RX_UM_Highest is 2, there must be a missing segment in the reassembly window and start t-Reassembly.
Therefore, the following one triggering condition “if RX_UM_Highest > RX_UM_Next and there is at least one missing byte segment of the SDU associated with SN = x:” is enough.
5. We also think that “before the last byte of all received segments of this SDU” in the triggering condition is redundant because “and there is at least one missing byte segment of the SDU associated with SN = x” has already sufficient meaning for the detecting missing segments.
6. In 5.1.2.2.3, we added “first” into the updated condition, i.e., update RX_UM_Next to the SN of the first SN >= RX_Reassembly that has not been reassembled.
7. Some editorial errors about section number are corrected.
We updates TP as explained above based on the last updated TP, the suggested variable names are used.

5.1.2.1	Transmit operations
5.1.2.1.1	General
When delivering a new UMD PDU to lower layer, the transmitting UM RLC entity shall:
-	if the PDU contains a segment of a SDU, set the SN of the UMD PDU to TX_UM_Next
-	if the PDU contains a segment that maps to the last byte of a SDU, then increment TX_UM_Next by one.

5.1.2.2	Receive operations
5.1.2.2.1	General
The receiving UM RLC entity shall maintain a reassembly window according to state variable RX_UM_ Next_Highest_Rcvd as follows:
-	a SN falls within the reassembly window if (RX_UM_ Next_Highest_Rcvd – UM_Window_Size) <= SN <RX_UM_ Next_Highest_Rcvd;
-	a SN falls outside of the reassembly window otherwise.
When receiving an UMD PDU from lower layer, the receiving UM RLC entity shall:
· update state variables, reassemble and deliver RLC SDUs to upper layer as needed (see sub clause 5.1.2.2.2);
When t-Reassembly expires, the receiving UM RLC entity shall:
-	update state variables, discard RLC SDU segments and start t-Reassembly as needed (see sub clause 5.1.2.2.34).
5.1.2.2.2	Actions when an UMD PDU is received from lower layer
When an UMD PDU is received from lower layer, the receiving UM RLC entity shall:
-	if the UMD PDU does not contain an SN:
-	remove the RLC header and deliver the reassembled RLC SDU to upper layer.
-	else if (RX_UM_ Next_Highest_Rcvd – UM_Window_Size) <= SN < RX_UM_Next_Reassembly:
-	discard the received UMD PDU;.
-	else:
-	if the UMD PDU has not been received before:
-	place the received UMD PDU in the reception buffer.:
-	else:
-	discard the received UMD PDU.
5.1.2.2.3	Actions when an UMD PDU is placed in the reception buffer
When an UMD PDU with SN = x is placed in the reception buffer, the receiving UM RLC entity shall:
-	if x falls outside of the reassembly window:
-	update RX_UM_Highest to x + 1;
-	if all byte segments with SN = x are received:
-	reassemble the RLC SDU from all in-sequence byte segments with SN = x, remove RLC headers and deliver the reassembled RLC SDU to upper layer.
-	if x = RX_UM_Next_Highest_Rcvd:
	-	update RX_UM_Next_Highest_Rcvd to x + 1;
 - if x = RX_UM_Next_Reassembly:
 -	update RX_UM_Next_Reassembly to the SN of the first SN > current RX_UM_Next_Reassembly that has not been reassembled and delivered to upper layer;
-	else if x falls outside of the reassembly window:
-	update RX_UM_Next_Highest_Rcvd to x;
 - if RX_UM_Next_Highest_Rcvd is updated due to actions above:
-	discard any UMD PDUs with SN that falls outside of the reassembly window;
-	if RX_UM_Next_Reassembly falls outside of the reassembly window:
-	set RX_UM_Next_Reassembly to (RX_UM_Next_Highest_Rcvd – UM_Window_Size);
-	if t-Reassembly is running:
-	if RX_Reassembly_Trigger < RX_UM_Next_Reassembly; or
-	if RX_Reassembly_Trigger falls outside of the reassembly window and RX_Reassembly_Triggeris not equal to RX_UM_Next_Highest_Rcvd:
-	stop and reset t-Reassembly;
-	if t-Reassembly is not running (includes the case when t-Reassembly is stopped due to actions above):
-	if RX_UM_Next_Highest_Rcvd > RX_Next_Reassembly; or
- if RX_UM_Next_Highest_Rcvd => RX_UM_Next_Reassembly and there is at least one missing byte segment of the SDU associated with SN = x: before the last byte of all received segments of this SDU
-	start t-Reassembly;
-	set RX_Reassembly_Trigger to RX_UM_Next_Highest_Rcvd.
5.1.2.2.34	Actions when t-Reassembly expires
When t-Reassembly expires, the receiving UM RLC entity shall:
-	update RX_UM_Next_Reassembly to the SN of the first SN >= RX_Reassembly_Trigger that has not been reassembled;
-	discard all segments with SN < updated RX_UM_Next_Reassembly;
-	if RX_UM_Next_Highest_Rcvd>RX_Next_Reassembly; or
- if RX_UM_Next_Highest_Rcvd >= RX_UM_Next_Reassembly and there is at least one missing byte segment of the SDU associated with SN = x before the last byte of all received segments of this SDU:
-	start t-Reassembly;
-	set RX_Reassembly_Trigger to RX_UM_Next_Highest_Rcvd.

	MediaTek
	Agree with OPPO and LG on point 2:
In section 5.1.2.2.3,
· else if x falls outside of the reassembly window:
- update RX_UM_Next_Highest_Rcvd to “x+1” not x;
If RX_UM_Next_Highest_Rcvd is set to x, some unexpected behavior can happen. For example: when 1st segment of SN = 0 is received, RX_UM_Next_Highest_Rcvd is set to 0. Then any UMD PDU with SN that falls outside of the reassembly window is discarded; at this time, SN = 0 falls outside of the reassembly window, and will be discarded. This is not the expected behavior.
Also in the same section:
 - if RX_Next_Reassembly falls outside of the reassembly window:
 - set RX_Next_Reassembly to (RX_UM_Next_Highest_Rcvd – UM_Window_Size);
 - update RX_Next_Reassembly to the SN of the first SN >= current RX_Next_Reassembly that has not been reassembled and delivered to upper layer;
The original text is correct only when SN = (RX_UM_Next_Highest_Rcvd – UM_Window_Size) has not been reassembled and delivered to upper layers. Once SN = (RX_UM_Next_Highest_Rcvd – UM_Window_Size) had been reassembled and delivered to upper layer, RX_Next_Reassembly should be updated to the next SN that has not been correctly reassembled.
In the last subsection (similar to LG’s comment):
When t-Reassembly expires, the receiving UM RLC entity shall:
update RX_Next_Reassembly to the SN of the “first UMD PDU with” SN >= RX_Reassembly_Trigger that has not been reassembled;

	Samsung
	We also prefer to follow the LTE definition of VR(UH) for RX_UM_Next_Highest_Rcvd, which makes the TP simpler and readable
As mentioned in Q1, if we follow the LTE definition, the TP would be simpler according to the following suggestions:
· In 5.1.2.2.3, we can remove “if x = RX_UM_Next_Highest_Rcvd, update RX_UM_Next_Highest_Rcvd to x + 1” and “if RX_UM_Next_Highest_Rcvd is updated due to actions above”.
· In 5.1.2.2.4, we can remove “if RX_Next_Reassembly = RX_UM_Next_Highest_Rcvd,	update RX_UM_Next_Highest_Rcvd to RX_UM_Next_Highest_Rcvd + 1, update RX_Next_Reassembly to RX_UM_Next_Highest_Rcvd, else”
· In 5.1.2.2.3, as in LTE, we can change from “if the received UMD PDU contains the last byte of SN = x: update RX_UM_Next_Highest_Rcvd to x + 1; else: update RX_UM_Next_Highest_Rcvd to x;” to “update RX_UM_Next_Highest_Rcvd to x+1”
· In 5.1.2.2.3, the timer triggering condition can be modified from “if t-Reassembly is not running (includes the case when t-Reassembly is stopped due to actions above): if RX_UM_Next_Highest_Rcvd > RX_Next_Reassembly; or if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly and there is at least one missing byte segment of the SDU associated with SN = x before the last byte of all received segments of this SDU” to “if t-Reassembly is not running (includes the case when t-Reassembly is stopped due to actions above): if RX_UM_Next_Highest_Rcvd > RX_Next_Reassembly+1; or if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly +1 and there is at least one missing byte segment of the SDU associated with SN = x before the last byte of all received segments of this SDU”

	Huawei, Hisilicon
	1/ in section 5.1.2.2.2 “SN” is used to compare with other variables, e.g. (RX_UM_Next_Highest_Rcvd – UM_Window_Size) <= SN < RX_Next_Reassembly, while in section 5.1.2.2.3, “x” is used, e.g x = RX_UM_Next_Highest_Rcvd. We think it is better to be consistent.
2/ I do not think the following change in v3 is necessary, and the operation in the previous version is concise and correct to me.
- if the received UMD PDU contains the last byte of SN = x:
- update RX_UM_Next_Highest_Rcvd to x + 1;
- else:
- update RX_UM_Next_Highest_Rcvd to x;
- update RX_UM_Next_Highest_Rcvd to x;
I think the following procedure should be able to handle the case:
- if t-Reassembly is not running (includes the case when t-Reassembly is stopped due to actions above):
- if RX_UM_Next_Highest_Rcvd > RX_Next_Reassembly; or
- if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly and there is at least one missing byte segment of the SDU associated with SN = x before the last byte of all received segments of this SDU
- start t-Reassembly;
- set RX_Reassembly_Trigger to RX_UM_Next_Highest_Rcvd.

However, quite a few companies (including OPPO, LG, MTK and Samsung) support to update this variable to x+1. That also works with some changes proposed by Samsung. This operation is more aligned with LTE behaviours. Therefore, we are fine with this way.
3/ in 5.1.2.2.3, for the following operation,
- if RX_Reassembly_Trigger<RX_Next_Reassembly; or
- if RX_Reassembly_Trigger falls outside of the reassembly window and RX_Reassembly_Triggeris not equal to RX_UM_Next_Highest_Rcvd:
- stop and reset t-Reassembly;
In LTE, the highlighted condition corresponds to “VR(UX) <= VR(UR)”, not sure the reason for this change from “<=” to “<”.
I guess this change may not be necessary if we update RX_UM_Next_Highest_Rcvd to x+1 as suggested above.

	Ericsson
	We think the LTE baseline should be kept to as much as possible and not adopt extra optimizations or functionality.
Regarding the change of RX_UM_Next_Highest_Rcvd discussed by Huawei, Samsung and others to “x+1” depending on if the PDU contains the last byte, we are fine with the change if implemented as proposed by Samsung, as that would be more aligned to LTE behaviour. In this case we should update the definition of RX_UM_Next_Highest_Rcvd as proposed by Samsung.
Otherwise we agree with the proposals of Samsung and Huawei.

	Intel
	We agree with Samsung and other companies to align the RX_UM_Next_Highest_Rcvd with LTE state variable VR(UH). Several changes are needed, e.g. regarding RX_UM_Next_Highest_Rcvd update to x+1 and the triggering condition of t-Reassembly.

	CATT (2)
	1) Similar to Section 5.1.2.2.4, in Section 5.1.2.2.3 in the condition for timer start it should be appropriate to replace “SN=x” with “SN=RX_NEXT_Reassembly” for consistency and also because x may not be relevant e.g. in case it falls in the condition “if all byte segments with SN = x are received”.
2) We share Nokia’s view that we should stop the timer when a segment gap is filled consistently as we start the timer when a segment gap is detected. For example if the last SDU (with SN = RX_NEXT_Reassembly = RX_UM_Next_Highest_Rcvd) is segmented into 3 segments, say SN-1, SN-2, SN-3, and the timer was triggered by reception of SN-2 segment, then we think it should be stopped upon reception of SN-1, even though SN-3 is still missing. This allows dimensioning the timer based on HARQ delay only (as in LTE) instead of HARQ + scheduler delay. This can be captured with an additional stopping criterion for t-Reassembly as follows:
-	if t-Reassembly is running:
-	if RX_Reassembly_Trigger<RX_Next_Reassembly; or
-	if RX_Reassembly_Trigger falls outside of the reassembly window and RX_Reassembly_Triggeris not equal to RX_UM_Next_Highest_Rcvd; or
- if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly and there is no missing byte segment of the SDU associated with SN = RX_Next_Reassembly before the last byte of all received segments of this SDU:
-	stop and reset t-Reassembly;

	Nokia (2)
	We support the addition from CATT on stopping the timer when the gap is filled. Otherwise, the timer expiry would cause the received segments being discarded if the whole SDU is not received even if no gap.

	NTT DOCOMO
	[Comment for v4]
1．As commented in the previous section, we think that TX_UM_Next could be updated if the SN is associated with RLC SDU. The possible text proposal is below:
	5.1.2.1.1	General
For each RLC SDU received from the upper layer, the UM RLC entity shall:
-	if the RLC SDU is to be segmented:
-	associate a SN with the RLC SDU equal to TX_UM_Next and construct an UMD PDU by setting the SN of the UMD PDU to TX_UM_Next;
-	increment TX_UM_Next by one.

2. In current TP (v4), the general section (5.1.2.2.1) is not actually “general” since it does not cover the case where the whole RLC PDU is received. So, it should cover such case also. The text proposal could be below:
	5.1.2.2.1	General
The receiving UM RLC entity shall maintain a reassembly window according to state variable RX_UM_Next_Highest_Rcvd as follows:
-	a SN falls within the reassembly window if (RX_UM_Next_Highest_Rcvd – UM_Window_Size) <= SN <RX_UM_Next_Highest_Rcvd;
-	a SN falls outside of the reassembly window otherwise.
The reassembly window shall be applied to UM RLC PDU with segment and otherwise not applied.

3. The reference in 5.1.2.2.1 should be updated due to additional section (Actions when an UMD PDU is placed in the reception buffer).
4. In section 5.1.2.2.2, it states “the UMD PDU does not contain”, but it would be better to align with other section (6.2.1.3) to state “the UMD PDU header does not”.
5. In section 5.1.2.2.2, as pointed out by LGE, there could be duplication reception case depending on MAC handling (i.e., duplication detection in MAC).
6. Regarding the timer stoping proposed in CATT (2), we think that it is needed to avoid the SDU segment discarding due to T-reassembly expiry as pointed out by Nokia.

Question 3: Please indicate suggestions for Option 2 TP.
	Company
	Comment

	LG
	1. Duplicate detection for the segments.
- We do not find duplicate detection part for the currently reassembling RLC SDU segment before placing a segment in the reception buffer in the current TP. Duplicate detection should be performed before placing the UMD PDU in the reception buffer as in LTE (See below 5.1.2.2.2 of 36.322).
[bookmark: _Toc477961565]5.1.2.2.2	Actions when an UMD PDU is received from lower layer
When an UMD PDU with SN = x is received from lower layer, the receiving UM RLC entity shall:
-	if VR(UR) < x < VR(UH) and the UMD PDU with SN = x has been received before; or
-	if (VR(UH) – UM_Window_Size) <= x < VR(UR):
-	discard the received UMD PDU;
-	else:
-	place the received UMD PDU in the reception buffer.

2. The t-Reassembly start condition
- We think that two starting conditions for t-Reassembly can be merged to one starting condition we suggested below.
-	if RX_UM_ Highest > RX_UM_Next + 1; or
- if RX_UM_Highest = RX_UM_Next + 1 and there is at least one missing byte segment of the SDU associated with SN = x before the last byte of all received segments of this SDU
 Above two conditions can be changed to the below one condition.
-	if RX_UM_Highest > RX_UM_Next and there is at least one missing byte segment of the SDU associated with SN = x:

5.1.2.1	Transmit operations
5.1.2.1.1	General
When delivering a UMD PDU to lower layer, the transmitting UM RLC entity shall:
-	if the PDU contains a segment of a SDU, set the SN of the UMD PDU to TX_UM_Next
-	if the PDU contains a segment that maps to the last byte of a SDU, then increment TX_UM_Next by one.

5.1.2.2	Receive operations
5.1.2.2.1	General
The receiving UM RLC entity shall maintain a reassembly window according to state variable RX_UM_ Next_Highest_Rcvd as follows:
-	a SN falls within the reassembly window if (RX_UM_ Next_Highest_Rcvd – UM_Window_Size) <= SN <RX_UM_ Next_Highest_Rcvd;
-	a SN falls outside of the reassembly window otherwise.
When receiving an UMD PDU from lower layer, the receiving UM RLC entity shall:
· update state variables, reassemble and deliver RLC SDUs to upper layer as needed (see sub clause 5.1.2.2.3);
When t-Reassembly expires, the receiving UM RLC entity shall:
-	update state variables, discard RLC SDU segments and start t-Reassembly as needed (see sub clause 5.1.2.2.4).
5.1.2.2.2	Actions when an UMD PDU is received from lower layer
When an UMD PDU is received from lower layer, the receiving UM RLC entity shall:
-	if the UMD PDU does not contain an SN:
-	remove the RLC header and deliver the RLC SDU to upper layer.
-	else if (RX_UM_ Next_Highest_Rcvd – UM_Window_Size) <= SN < RX_UM_Next_Reassembly:
-	discard the received UMD PDU.
-	else:
-	if the UMD PDU has not been received before:
-	place the received UMD PDU in the reception buffer.;
-	else:
-	discard the received UMD PDU.
5.1.2.2.3	Actions when an UMD PDU is placed in the reception buffer
When an UMD PDU with SN = x is placed in the reception buffer, the receiving UM RLC entity shall:
-	if all byte segments with SN = x are received:
-	reassemble the RLC SDU from all byte segments with SN = x, remove RLC headers and deliver the reassembled RLC SDU to upper layer.
 - if x = RX_UM_Next_Reassembly:
 -	update RX_UM_Next_Reassembly to the SN of the first SN > current RX_UM_Next_Reassembly that has not been reassembled and delivered to upper layer;
-	else if x falls outside of the reassembly window:
-	update RX_UM_ Next_Highest_Rcvd to x + 1;
-	discard any UMD PDUs with SN that falls outside of the reassembly window;
-	if RX_UM_Next_Reassembly falls outside of the reassembly window:
-	set RX_UM_Next_Reassembly to the SN of the first SN >= (RX_UM_ Next_Highest_Rcvd – UM_Window_Size) that has not been reassembled and delivered to upper layer;
-	if t-Reassembly is running:
-	if RX_UM_Reassembly _Trigger < RX_UM_Next_Reassembly; or
-	if RX_UM_Reassembly_Trigger falls outside of the reassembly window and RX_UM_Reassembly_Triggeris not equal to RX_UM_ Next_Highest_Rcvd:
-	stop and reset t-Reassembly;
-	if t-Reassembly is not running (includes the case when t-Reassembly is stopped due to actions above):
-	if RX_UM_Next_Highest_Rcvd > RX_Next_Reassembly + 1; or
- if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly + 1 and there is at least one missing byte segment of the SDU associated with SN = x before the last byte of all received segments of this SDU
-	if RX_UM_Highest > RX_UM_Next and there is at least one missing byte segment of the SDU associated with SN = x:
-	start t-Reassembly;
-	set RX_UM_Reassembly_Trigger to RX_UM_ Next_Highest_Rcvd.
5.1.2.2.4	Actions when t-Reassembly expires
When t-Reassembly expires, the receiving UM RLC entity shall:
-	update RX_UM_Next_Reassembly to the SN of the first SN >= RX_UM_Reassembly_Trigger that has not been reassembled;
-	discard all segments with SN < updated RX_UM_Next_Reassembly;
-	if RX_UM_Next_Highest_Rcvd > RX_Next_Reassembly + 1; or
- if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly + 1 and there is at least one missing byte segment of the SDU associated with SN = RX_Next_Reassembly before the last byte of all received segments of this SDU
-	if RX_UM_Highest > RX_UM_Next and there is at least one missing byte segment of the SDU associated with SN = x:
 -	start t-Reassembly;
-	set RX_UM_Reassembly_Trigger to RX_UM_ Next_Highest_Rcvd.

	Samsung
	We provide the answers for LG’s comments
For duplicate detection, we already agreed that duplicate detection in RLC UM is not necessary. You can find the related agreement in RAN2#98 report and thus we don’t have to specify the duplicate detection in RLC UM.
For the timer triggering condition, the original TP for option 2 from the rapporteur is much clearer, two conditions are needed for clarification.
If we follow the LG’s proposal:“if RX_UM_Highest > RX_UM_Next and there is at least one missing byte segment of the SDU associated with SN = x:” , ambiguous points can happen.
For example.
· The first segment with SN=2 arrives
x = 2, RX_Next_Reassembly = 2, RX_UM_Next_Highest_Rcvd = 3
In this case, the common understanding is not to trigger the timer because we are not sure about whether the subsequent segment with SN=2 has been transmitted or not.
In LG’s proposal, it is not clear whether “at least one missing byte segment” includes the last segment. This ambiguous point becomes even worse in the next example.
· Subsequently, the first segment with SN=3 arrives
x = 3, RX_Next_Reassembly = 2, RX_UM_Next_Highest_Rcvd = 4
In this case, we are not sure about whether the subsequent segment with SN=3 has been transmitted or not. However, we can detect the missing segment with SN=2 and thus the timer should start.
Note that the proposed timer triggering condition from LG will not trigger the timer in this case because we are not sure that the SDU associated with SN=x=3 has missing segment.
As described in the above example,
Two conditions for the timer triggering are much clearer to specify the operation. Therefore, we don’t see any motivation from LG’s suggestions.
About the TP for option 2, no further comments. The TP for option 2 looks simple and readable, which seems well-aligned with LTE.

	Samsung2
	As LG described in the email, the duplicate detection for the segment was not specified in the current TP for option 1 and 2. If needed, in 5.1.2.2.2, we can specify it as in LTE:
When an UMD PDU is received from lower layer, the receiving UM RLC entity shall:
-	if the UMD PDU does not contain an SN:
-	remove the RLC header and deliver the RLC SDU to upper layer.
-	else if RX_Next_Reassembly <= SN < RX_UM_Next_Highest_Rcvd and the UMD PDU with SN = x has been received before; or
- else if (RX_UM_Next_Highest_Rcvd – UM_Window_Size) <= SN < RX_Next_Reassembly:
-	discard the received UMD PDU.
-	else:
-	place the received UMD PDU in the reception buffer.

	Huawei, HiSilicon
	1/ The highlighted “<” in the following procedure below should be “<=” as in LTE.
-	if t-Reassembly is running:
-	if RX_Reassembly_Trigger<RX_Next_Reassembly; or
-	if RX_Reassembly_Trigger falls outside of the reassembly window and RX_Reassembly_Triggeris not equal to RX_UM_Next_Highest_Rcvd:
-	stop and reset t-Reassembly;

2/ For the duplication detection of UMD PDUs for segments, I think we can follow the similar procedure as specified for LTE/NR AM.
When an AMD PDU is received from lower layer, where the AMD PDU contains byte segment numbers y to z of a RLC SDU with SN = x, the receiving side of an AM RLC entity shall:
-	if x falls outside of the receiving window; or
-	if byte segment numbers y to z of the RLC SDU with SN = x have been received before:
-	discard the received AMD PDU;

	CATT
	We have similar comments as for option 1 TP:
1) Similar to Section 5.1.2.2.4, in Section 5.1.2.2.3 in the condition for timer start it should be appropriate to replace “SN=x” with “SN=RX_NEXT_Reassembly” for consistency and also because x may not be relevant e.g. in case it falls in the condition “if all byte segments with SN = x are received”.
2) We share Nokia’s view that we should stop the timer when a segment gap is filled consistently as we start the timer when a segment gap is detected. For example if the last SDU (with SN = RX_NEXT_Reassembly = RX_UM_Next_Highest_Rcvd) is segmented into 3 segments, say SN-1, SN-2, SN-3, and the timer was triggered by reception of SN-2 segment, then we think it should be stopped upon reception of SN-1, even though SN-3 is still missing. This allows dimensioning the timer based on HARQ delay only (as in LTE) instead of HARQ + scheduler delay. This can be captured with an additional stopping criterion for t-Reassembly as follows:
-	if t-Reassembly is running:
-	if RX_Reassembly_Trigger<RX_Next_Reassembly; or
-	if RX_Reassembly_Trigger falls outside of the reassembly window and RX_Reassembly_Triggeris not equal to RX_UM_Next_Highest_Rcvd; or
- if RX_UM_Next_Highest_Rcvd = RX_Next_Reassembly + 1 and there is no missing byte segment of the SDU associated with SN = RX_Next_Reassembly before the last byte of all received segments of this SDU:
-	stop and reset t-Reassembly;

	Nokia
	We support the addition from CATT on stopping the timer when the gap is filled.

	NTT DOCOMO
	Same comments as those for Option1.

	Intel
	We also have similar question as Huawei’s first point regarding condition “if RX_Reassembly_Trigger<RX_Next_Reassembly”.

Question 4: Please indicate preference for the options above
	Company
	Preference
	Comment

	LG
	Option 2
	Please see our answer of Question 3 above.

	Samsung
	Option 2
	As we already mentioned, we prefer to follow the LTE definition of VR(UH) for RX_UM_Next_Highest_Rcvd, which makes the TP simpler and more readable as shown in TP for option 2.
About option 1, as we already mentioned in Q1, the proposed definition seems not aligned with RX_UM_Next_Highest_Rcvd in the receive operation. For example, the first segments with SN = 1, 2, and 3 arrive and those UMD PDUs are not completely received. In this case, RX_UM_Next_Highest_Rcvd is updated to 3 according to the current TP for option 1. We don’t think that the next expected SN to be received would be 3, i.e. 1 or 2 may be received next time. Moreover, the proposed definition makes quite many clauses as shown in TP for option 1. In this respect, we don’t support option 1.

	Huawei, HiSilicon
	Option 2
	

	CATT
	Option 2
	It is indeed simpler and captures the same functionality as option 1.

	Nokia
	Option 2
	With the addition from CATT on stopping the timer.

	Intel
	Option 2
	

4.	Proposal
Based on the initial TP and companies suggestions, a TP to 38.322 v1.0.0 is provided below. RAN2 is asked to agree on the TP.
	……

5.1.2.1	Transmit operations
5.1.2.1.1	General
When delivering a UMD PDU to lower layer, the transmitting UM RLC entity shall:
-	if the PDU contains a segment of a SDU, set the SN of the UMD PDU to TX_Next
-	if the PDU contains a segment that maps to the last byte of a SDU, then increment TX_Next by one.

5.1.2.2	Receive operations
5.1.2.2.1	General
The receiving UM RLC entity shall maintain a reassembly window according to state variable RX_UM_Next_Highest_Rcvd as follows:
-	a SN falls within the reassembly window if (RX_Next_Highest – UM_Window_Size) <= SN <RX_Next_Highest;
-	a SN falls outside of the reassembly window otherwise.
When receiving an UMD PDU from lower layer, the receiving UM RLC entity shall:
-	either deliver the UMD PDU after removing the RLC header, discard the received UMD PDU, or place it in the reception buffer (see sub clause 5.1.2.2.2);
-	if the received UMD PDU was placed in the reception buffer:
 - update state variables, reassemble and deliver RLC SDUs to upper layer as needed (see sub clause 5.1.2.2.3);
When t-Reassembly expires, the receiving UM RLC entity shall:
-	update state variables, discard RLC SDU segments and start t-Reassembly as needed (see sub clause 5.1.2.2.4).
5.1.2.2.2	Actions when an UMD PDU is received from lower layer
When an UMD PDU is received from lower layer, the receiving UM RLC entity shall:
-	if the UMD PDU header does not contain an SN:
-	remove the RLC header and deliver the RLC SDU to upper layer.
-	else if (RX_Next_Highest – UM_Window_Size) <= SN < RX_Next_Reassembly:
-	discard the received UMD PDU.
-	else:
-	place the received UMD PDU in the reception buffer.
5.1.2.2.3	Actions when an UMD PDU is placed in the reception buffer
When an UMD PDU with SN = x is placed in the reception buffer, the receiving UM RLC entity shall:
-	if all byte segments with SN = x are received:
-	reassemble the RLC SDU from all byte segments with SN = x, remove RLC headers and deliver the reassembled RLC SDU to upper layer.
 - if x = RX_Next_Reassembly:
 -	update RX_Next_Reassembly to the SN of the first SN > current RX_Next_Reassembly that has not been reassembled and delivered to upper layer;
-	else if x falls outside of the reassembly window:
-	update RX_Next_Highest to x + 1;
-	discard any UMD PDUs with SN that falls outside of the reassembly window;
-	if RX_Next_Reassembly falls outside of the reassembly window:
-	set RX_Next_Reassembly to the SN of the first SN >= (RX_Next_Highest_Rcvd – UM_Window_Size) that has not been reassembled and delivered to upper layer;
-	if t-Reassembly is running:
-	if RX_Timer_Trigger <= RX_Next_Reassembly; or
-	if RX_Timer_Trigger falls outside of the reassembly window and RX_Timer_Trigger is not equal to RX_Next_Highest; or
- if RX_Next_Highest = RX_Next_Reassembly + 1 and there is no missing byte segment of the SDU associated with SN = RX_Next_Reassembly before the last byte of all received segments of this SDU:
-	stop and reset t-Reassembly;
-	if t-Reassembly is not running (includes the case when t-Reassembly is stopped due to actions above):
-	if RX_Next_Highest > RX_Next_Reassembly + 1; or
- if RX_Next_Highest = RX_Next_Reassembly + 1 and there is at least one missing byte segment of the SDU associated with SN = x before the last byte of all received segments of this SDU
-	start t-Reassembly;
-	set RX_Reassembly_Trigger to RX_Next_Highest.
5.1.2.2.4	Actions when t-Reassembly expires
When t-Reassembly expires, the receiving UM RLC entity shall:
-	update RX_Next_Reassembly to the SN of the first SN >= RX_Timer_Trigger that has not been reassembled;
-	discard all segments with SN < updated RX_Next_Reassembly;
-	if RX_Next_Highest > RX_Next_Reassembly + 1; or
- if RX_Next_Highest = RX_Next_Reassembly + 1 and there is at least one missing byte segment of the SDU associated with SN = RX_Next_Reassembly before the last byte of all received segments of this SDU
 -	start t-Reassembly;
 - set RX_Timer_Trigger to RX_Next_Highest.

7.1	State variables
<Skipping existing text>
Each transmitting UM RLC entity shall maintain the following state variables:
a) TX_ Next
This state variable holds the value of the SN to be assigned for the next newly generated UMD PDU with segment. It is initially set to 0, and is updated after the UM RLC entity delivers a UMD PDU including the last segment of a RLC SDU.
Each receiving UM RLC entity shall maintain the following state variables and constant:
d) RX_ Next_Reassembly – UM receive state variable
This state variable holds the value of the earliest SN that is still considered for reassembly. It is initially set to 0.
e) RX_Timer_Trigger – UM t-Reassembly state variable
This state variable holds the value of the SN which triggered t-Reassembly.
f) RX_ Next_Highest– UM receive state variable
The state variable holds the value of the SN following the SN of the UMD PDU with the highest SN among received UMD PDUs. It serves as the higher edge of the reassembly window. It is initially set to 0.
7.2	Constants
<Skipping existing text>
b) UM_Window_Size
This constant is used by the receiving UM RLC entity to define SNs of those UMD SDUs that can be received without causing an advancement of the receiving window. UM_Window_Size = 32 when a 6 bit SN is configured, UM_Window_Size = 2048 when a 12 bit SN is configured.

[bookmark: _GoBack]5.	References
[1] 3GPP TS 36.322 v13.2.0 “Radio Link Control (RLC) protocol specification”
[2] 3GPP TS 38.322 v1.0.0 “Radio Link Control (RLC) protocol specification”
[3] R2-1708773	“RLC UM window based vs. timer based operation”	Nokia, Nokia Shanghai Bell
[4] R2-1707731	“RLC UM operation in NR”	Huawei, HiSilicon		
[5] R2-1707934	“NR RLC UM receive operation”	CATT	
[6] R2-1708338	“Further details on RLC UM operation”	Ericsson	
[7] R2-1708952	“RLC UM operation”	Qualcomm Incorporated

1

27

