3GPP TSG-RAN WG2 Meeting #99

R2-1709669
Berlin, Germany, 21–25 August 2017
Agenda Item:
9.3
Source:
Qualcomm Inc.
Title:
Response to R2-1708296 and R2-1709582 for comments on APDC
Document for:
Discussion

1 Introduction
There are some interesting comments on APDC in R2-1708296 [1] and R2-1709582 [7]. There are comments from other UDC contributions with similar observations, so R2-1708296 [1] and R2-1709582 [7] are taken as the reference document for APDC evaluation comments. We appreciate companies’ interest and evaluation effort on APDC. We noticed that there may be some misunderstanding, so we address the main points from R2-1708296 [1] and R2-1709582 [7] individually in this document.

2 Response to Main points from R2-1708296
2.1 Point:

R2-1708296 [1] Observation 1: The compressor flow of the APDC compressor source code provided to RAN2 is different from the one in TR36.754.

Response:

1. Just like that Deflate has many implementations available, APDC can also be implemented in many ways.
a. RFC 1951 on Deflate does not include details on static and dynamic Huffman selection and so can have different implementations. In Deflate open source code, there are different configurations (e.g., “Default”, “best compression strategy”) which effectively are different implementations because the compression efficiency is different for the same PCAP file.
2. This was why Qualcomm stressed in the email when Qualcomm shared the APDC source code that the APDC source code is only an example implementation, there are many possible implementations. The APDC flow chart in UDC TR 36.754 [3] is also an example implementation, the title of the flow chart explicitly says "example" and should only be used as a reference to design the compressor code.
3. These APDC different example implementations do not have inter-operability issue, because the output compressed data format is consistent with the APDC data format in the UDC TR 36.754 [3]. The decompressor should successfully decompress the data from any compressor implementations if the compressed data format is consistent with the APDC data format in the UDC TR 36.754 [3].
2.2 Point:

R2-1708296 [1] Observation 2: Up to 3.51% compression efficiency difference is found between the disclosed source code and TR36.754. Results in TR36.754 are not reproducible.

Response:

1. For other UDC candidate solutions (Deflate and ROHC), we also observed that different results from different companies.
a. For Deflate, different configurations yield different compression efficiency as can be seen in R2-1708358 [2]. Variation in Compression efficiency is observed to be between 1-2% with static and dynamic Huffman compression.

b. For ROHC, MediaTek and CATT evaluation results have a difference of 10%, however, we did not say ROHC result is not reproducible due to 10% cross-check difference.

2. APDC’s 3.5% cross-check difference (between MediaTek and Qualcomm) is much smaller than ROHC’s 10% cross-check difference (between MediaTek and CATT).

3. The above observation from R2-1708296 [1] may not capture the full picture, here is the full picture
a. In 7 out of 11 cases, the difference between APDC open source code and earlier disclosure in the TR is less than 1%
b. In 3 out of 11 cases, the difference between APDC open source code and earlier disclosure in the TR is 1-2%
c. In 1 out of 11 cases, the difference between APDC open source code and earlier disclosure in the TR is 3.5%
2.3 Point:
R2-1708296 [1] Proposal 1: Update in TR36.754 the APDC 8K buffer size compression efficiency using the numbers produced by co-sourcing companies in Table 3-1.
Response:

For 8KB buffer size:
1. we are OK to update the TR with the compression efficiency numbers from the example source code, even though higher efficiency can be achieved.
For 32KB buffer size:
1. See the response in the next point on 32KB.
2.4 Point:
R2-1708296 [1] Observation 4: Current APDC design cannot support 32Kbyte compression buffer size for UDC evaluation.

R2-1708296 [1] Proposal 2: Capture Observation 4 in TR 36.754.

R2-1708296 [1] Observation 6: To support 32K buffer operation, a new CPCR header of APDC algorithm is required.
R2-1708296 [1] Proposal 4: R2 discuss whether to capture and how to capture the results of APDC 32K compression efficiency.

Response:

Explanation of current 32KB buffer support in APDC:
1. In the UDC TR 36.754 [3], the APDC description explicitly says that “it can reference a APDC compression memory capacity up to 16 kB” in Section 7.2.4.1.2 (copy-pasted below in yellow colour). If 32Kbyte is configured, the compressor will only refer up to 16KB memory. The decompressor will only use the compressor’s information to decompress, so there is no inter-operability issue if decompressor uses 32Kbyte buffer.
· UDC TR text: Lookback length (14 bits) – Distance in bytes to look back in APDC compression memory from the current end of APDC compression memory to find the replacement for the compressed block; it can reference a APDC compression memory capacity up to 16 kB. Valid values for this field range from 4 to 16383, for example, a value of 4 means that the match occurred with the last 5 bytes in APDC compression memory.
2. During SI phase, RAN2 decided to study 2 buffer sizes just to see if increasing memory size also increases the compression efficiency. However, it does not increase much, compression efficiency of 32KB memory buffer increases gain roughly within 1-2% compared with 8KB.

3. Therefore, there is not enough motivation in implementing 32KB compression memory, because it increases the eNB’s UDC memory cost per UE, with little compression efficiency gain.

4. In the example compressor source code, when 32KB is configured, some small code change for the compressor to fall back to 16KB can be made, while the decompressor can use 16KB or 32KB, as there is no inter-operability issue. We understand this is how Ericsson and Softbank obtained the 32KB results.
2.5 Point:

R2-1708296 [1] Observation 5: The compression buffer size does impact APDC compression efficiency contrary to the claim in TR36.754.

R2-1708296 [1] Proposal 3: Remove in TR 36.754 the statement “The same results are obtained for setups with 8Kbyte and 32Kbyte compression buffer size” in Section 7.2.4.2 and the statement “No compression efficiency variation due to buffer size was observed in UDC solution 4” in Section 7.3, and indicate instead that “APDC compression efficiency varies as a function of the compression buffer size”.
Response:

We are OK with the proposal’s intention. We prefer wording like below.

· “APDC compression efficiency in general slightly increases as compression buffer size increases.”
We are OK to with the proposal below.

· Remove in TR 36.754 the statement “The same results are obtained for setups with 8Kbyte and 32Kbyte compression buffer size” in Section 7.2.4.2 and the statement “No compression efficiency variation due to buffer size was observed in UDC solution 4” in Section 7.3
2.6 Point:

R2-1708296 [1] Observation 7: Irrespective of memory setting, APDC is the least efficient algorithm in most cases.

R2-1708296 [1] Observation 8: With 8K memory setting, Deflate outperforms APDC in 5 cases against 2.

Response:

1. The above observations were made by comparing 3 solutions: Deflate, APDC and ROHC, and it is not a one-to-one comparison which is unfair. We do not see a reason to include ROHC in the comparison, given the UDC TR 36.754 [3] conclusion and RAN#76 decisions below.

a. Current UDC TR 36.754 [3] already concluded below

· “Both solutions based on DEFLATE and APDC are candidates for a UL data compression solution.”

b. In last RAN 76 meeting, it is concluded that

· “additional information on APDC solution should be provided to RAN2, and RAN2 will do corresponding analysis on APDC solution and RAN #77 in Sep.17 will decide between DEFLATE-based solution and APDC solution.”

2. Table 1 below contains the comparison results by comparing Deflate with APDC (without ROHC). Table 1 below is a copy-paste from Table 3-3 of R2-1708296 [1] by removing ROHC results, replacing APDC results with R2-1708572 results [4] and adding the last “Difference” column. Here is the observation from Table 1 below for 8KB compression efficiency results.

a. APDC outperforms Deflate in 6 out of 11 cases, by a margin of more than 10% (2 cases: PCAP files #9 and #10)
b. Deflate outperforms APDC in 5 out of 11 cases, by a margin of up to 4.6%

c. The Deflate results below do not consider the 1 byte checksum which has been proposed in R2-1708358 [2]
	Table 1: Comparison of APDC with Deflate compression efficiency in 8KB buffer setting (all data from R2-1708296 [1]’s Table 3-3, except the last column).

	PCAP File #
	PCAP File
	APDC
	Deflate
	Difference:

APDC - Deflate

	1
	FTP- Client (CMCC)
	54.34%
	51.69%
	2.65%

	2
	FTP- Server (CMCC)
	50.34%
	46.02%
	4.32%

	3
	Online video (CMCC)
	61.00%
	65.56%
	-4.56%

	4
	Long period video (CMCC)
	76.67%
	73.37%
	3.3%

	5
	SIP UE1(CMCC)
	83.91%
	86.99%
	-3.08%

	6
	SIP UE2 (CMCC)
	80.62%
	84.94%
	-4.32

	7
	SIP UE3 (CMCC)
	84.20%
	87.31%
	-3.11%

	8
	Web surfing (CMCC)
	64.24%
	66.99%
	-2.75%

	9
	Video data (MediaTek)
	73.47%
	61.26%
	12%

	10
	Long duration FTP (MediaTek)
	75.34%
	63.91%
	11%

	11
	Multiple IP flows (Qualcomm)
	73.35%
	73.03%
	0.32%

2.7 Point:

R2-1708296 [1] Observation 9: With 32K memory setting, Deflate outperforms APDC in 6 cases against 1.

Response:

1. For APDC with 32KB compression buffer, the APDC compressor open source code R2-1709024[6] can be slightly modified to fall back to 16KB compression memory. The 32KB compression efficiency results from R2-1708572 [4] is based on modified source code to fall back to 16KB memory, so it can be used to show APDC 32KB results.
2. Please refer to the previous response that we should compare Deflate with APDC (without ROHC), due to TR 36.754 [3] conclusion and RAN#76 decisions.
3. Table 2 below contains the comparison results by comparing Deflate with APDC (without ROHC). Table 2 below is a copy-paste from Table 3-4 of R2-1708296 [1] by removing ROHC results, replacing APDC results with R2-1708572 results [4] and adding the last “Difference” column. Here is the observation from Table 2 below for 32KB compression efficiency results.

· APDC outperforms Deflate in 5 out of 11 cases, by a margin of more than 10% (2 cases: PCAP files #9 and #10)
· Deflate outperforms APDC in 6 out of 11 cases, by a margin of up to 4.5%

· The Deflate results below in Table 2 do not consider the 1 byte checksum which has been proposed in R2-1708358 [2].
· If Deflate does not add one byte UDC header, Deflate outperforms APDC in PCAP file #11.
· If Deflate adds one byte UDC header, APDC outperforms Deflate in PCAP file #11, according to the Deflate 32KB results “73.92%” from Table 2 of R2-1708358 [2].
	Table 2: Comparison of APDC with Deflate compression efficiency in 32KB buffer setting (Deflate data from R2-1708296 [1]’s Table 3-4).

	PCAP File #
	PCAP File
	APDC
	Deflate
	Difference:

APDC - Deflate

	1
	FTP- Client (CMCC)
	54.34%
	51.69%
	2.65%

	2
	FTP- Server (CMCC)
	50.34%
	46.02%
	4.32%

	3
	Online video (CMCC)
	61.04%
	65.55%
	-4.51%

	4
	Long period video (CMCC)
	78.13%
	75.41%
	2.72%

	5
	SIP UE1(CMCC)
	85.19%
	88.25%
	-3.06%

	6
	SIP UE2 (CMCC)
	81.78%
	85.34%
	-3.56%

	7
	SIP UE3 (CMCC)
	85.68%
	88.62%
	-2.94%

	8
	Web surfing (CMCC)
	66.90%
	71.04%
	-4.14%

	9
	Video data (MediaTek)
	73.91%
	59.92%
	13.99%

	10
	Long duration FTP (MediaTek)
	75.33%
	60.46%
	14.87%

	11
	Multiple IP flows (Qualcomm)
	74.71%
	74.87%
	-0.16%

2.8 Point:

R2-1708296 [1] Observation 10: APDC document and example code are not sufficient for standardization.

R2-1708296 [1] Proposal 7: Capture in TR 36.754 the identified issues listed in Section 4.

R2-1708296 [1] Proposal 8: Capture Observation 10 in TR 36.754.

Response:

1. Comments raised on inconsistency in checksum computation raised in R2-1708296 [1] is not valid.

TR 36.754 mentions “Checksum contains the sum of (5 bytes starting from the location pointed to by the lookback length) minus 8”

whereas in the code Checksum contains the sum of 5 bytes starting from the location pointed to by (the lookback length plus 8).
Same result is achieved by either of the computational method
2. One of the reported issues is to clarify, that PMCR is used to refer to match/mismatch pairs in contiguous bytes in compression memory. This is only a clarification and not error, because TR 36.754 [3] implicitly indicates it in the PMCR header format definition. We do not see a need to clarify, but we have no strong opinion.
3. The original Deflate in RFC 1951 misses functional information on checksum and UDC reset flag. CATT proposed one byte UDC header in R2-1708358 [2] to fix these functional issues in Deflate. Functional issues are more important than editorial issues or clarifications.
2.9 Point:
R2-1708296 [1] Observation 3: APDC simulation results captured in TR36.754 use pre-filled compression memory.

Response:

1. APDC does not use pre-fill compression memory.
2. We do not see discrepancy in compressed packet output to be an issue, since the APDC compression efficiency numbers in the TR 36.754 [3] have very small discrepancy (<1% in 7 cases, 1-2% in 3 cases, 3.5% in only one case) with the APDC results from multiple companies.
3. We are fine with updating the TR 36.754 [3] with results in R2-1708296 [1] from MediaTek for 8KB buffer case.
2.10 Point:
R2-1709582 [7] studies the processing complexity of different UDC solutions (Copy-pasted the analysis below).
… Considering above, table of Comparison of Compressor Side Computation Complexity in TR36.754 should be updated to:
Table 7.3-1 Comparison of Compressor Side Computation Complexity

	
	Step 1
	Step 2
	Step 3

	Deflate (RFC 1951)
	Search for repeated strings from compression memory (e.g., LZ77).

	Huffman encoding.
Note: static Huffman encoding can be always used to reduce complexity in compressor.
	Add 1 byte UDC header.

	Zlib (RFC 1950)
	
	Huffman encoding.
	Add Zlib header; compute checksum for decompressor to verify decompression result.

	APDC
	
	Write the matching and mismatching information (like pointers) into APDC headers and copy mismatched bytes to the compressed packet.
	Compute checksum for decompressor to verify decompression result.

In step 2, by using the static Huffman tree, the complexity of encoding is reduced which would be similar to the behavior of step 2 for APDC. In step 3, no checksum calculation is needed. Considering step 1-3 together, it is observed that
Observation 4: the complexity of DEFLATE with static Huffman is on par with APDC.
Proposal 2: update the table of Comparison of Compressor Side Computation Complexity in TR 36.754 and indicate the complexity of DEFLATE with static Huffman is similar to the complexity of APDC.
Response:

1. For step 3: the statement above “In step 3, no checksum calculation is needed” conflicts with R2-1708358 [2] (from the same source companies) which says the “1 byte UDC header” contains checksum. So checksum calculation is required in Step 3 for Deflate. Then Step 3 is the same for Deflate and APDC.
2. For step 2: the statement above “In step 2, by using the static Huffman tree, the complexity of encoding is reduced which would be similar to the behavior of step 2 for APDC” has no proof.

a. Static Huffman may reduce complexity compared to Dynamic Huffman but it is still a compression algorithm and requires extra complexity due to generating the Huffman tree.

3. Qualcomm’s quantitative study on processing complexity in R2-1709555 [8]
show that Deflate compression time is 1.2 times to 4.7 times of APDC compression time. Qualcomm results was based on the Deflate cross-checking configuration from CATT and MediaTek paper in R2-1705419 [9] and have been shared in table 3.
Table 3: Quantitative evaluation results for processing complexity
	Input PCAP File (as agreed by RAN2)
	Total processing time for compressing the PCAP file

	
	APDC
(msec)
	Deflate (msec)
	Deflate to APDC Ratio

	Input traffic 1: FTP data-client-CMCC (no actual file transfer)
	0.339

	0.256

	0.76

	Input traffic 2: FTP data-server-CMCC (no actual file transfer)
	0.431

	0.340

	0.79

	Input traffic 3: SIP signalling-CMCC UE 1
	1.586
	 1.984

	1.3

	Input traffic 4: SIP signalling-CMCC
	 1.626

	 1.268

	0.78

	Input traffic 5: SIP signalling-CMCC
	1.902

	1.427

	0.75

	Input traffic 6: Video data-CMCC (duration: ~6s)
	 0.846

	 1.030

	1.2

	Input traffic 7: Web surfing-CMCC
	121.334

	216.307

	1.8

	Input traffic 8: Long period Video data-CMCC (duration: ~6min)
	64.664

	155.346

	2.4

	Input traffic 9: Video data-MTK (duration: ~1hr)
	123.627

	395.100

	3.1

	Input traffic 10: Long period ftp-MTK
	 41.654

	197.310

	4.7

	Input traffic 11: Multiple IP flows-QC
	232.762

	545.619

	2.3

3 Proposal

We would like to propose the proposals in Section 2.
Proposal 1: Capture in TR 36.754, UE implementation of APDC and Deflate will have variations than the existing open source code and the open source code is just for reference.
Proposal 2: Capture in TR 36.754, “APDC compressor falls back to 16KB when configured with 32KB buffer” and “No UDC header change is required for 32KB compression buffer”.

Proposal 3: Capture in TR 36.754, “APDC compression efficiency in general slightly increases as compression buffer size increases.”

Proposal 4: 32KB results submitted by Ericsson R2-1708383 [5] or Softbank R2-1708572 [4] can replace the APDC 32K results in the UDC TR 36.754 [3].
Proposal 5: To capture in TR 36.754 [3]: APDC is implementable and multiple companies cross-checked APDC evaluation results.
Proposal 6: RAN2 to either confirm earlier conclusion “APDC has a similar compression efficiency with Deflate” again, or capture below

· To capture bullet 3 and Table 1 in section 2.6 in TR 36.754 [3].

· To capture bullet 3 and Table 2 in section 2.7 in TR 36.754 [3].

4 Reference

[1]
R2-1708296, “Evaluation and crosscheck on APDC algorithm,” MediaTek Inc., Broadcom, August 2017
[2]
R2-1708358, “More Details and Simulation Results of Deflate with 1 Byte UDC Header”, CATT, August 2017

[3]
3GPP TR 36.754 V15.0.0 (2017-06), Study on UL data compression for E-UTRA
[4]
R2-1708572, “Further analysis on APDC solution”, Softbank, August 2017

[5]
R2-1708383, “Compression Gain evaluation of APDC solution”, Ericsson, August 2017

[6]
R2-1709024, “Implementation of APDC compressor source code”, Qualcomm, August 2017

[7] R2-1709582, “Complexity Evaluation between APDC and DEFLATE”, CATT, MediaTek, Intel, August 2017

[8] R2-1709555, “A Quantitative Evaluation on APDC Processing Complexity based on open source code”, Qualcomm, August 2017

[9] R2-1705419, “Performance Cross-Checking on Public Domain Compression Methods for UDC”, MediaTek, CATT, May 2017

6

_1564399043.unknown

