
3GPP TSG-RAN WG2 #99 R2-1709582
Berlin, Germany, 21 - 25 Aug 2017		

Source:	CATT, MediaTek, Intel
[bookmark: Title]Title:	Complexity Evaluation between APDC and DEFLATE
[bookmark: Source]Agenda Item:	9.3
[bookmark: DocumentFor]Document for:	Discussion and Decision

Introduction
In past RAN2 meetings, solutions based on DEFLATE and APDC were proposed to be the candidates for UDC. In June, the compression code of APDC was provided and it enables companies to perform cross-check of APDC solution offline. In this paper, additional comparison between APDC and DEFLATE-based solutions are provided mainly focusing on complexity aspect.
Discussion
2.1 some assumptions
For DEFLATE-based solution, one byte UDC header is used and 4 bits in this byte are checksum. Other 4 bits can be used for other purposes, e.g. to indicate whether the packet is UDCed or not, to indicate whether to reset the compression buffer etc. It can be discussed and decided in WI if needed how to use the remaining 4 bits. Currently, in our comparison, 1 byte UDC header is used.
Simulation results for DEFLATE was updated considering 1 byte UDC header. Simulation of APDC has already carried out with APDC header. Thus the simulation results shown in this paper provide a fair comparison between DEFLATE and APDC.
Traffics provided during the SI are reused.
Both 8k and 32k bytes buffers are used and the initial bits in buffer are set to 0.
2.2 complexity reduction of DEFLATE-based solution
As DEFLATE-based solution has some flexibility on multiple dimensions. Static Huffman tree can be always used while other features can be enabled as necessary. Based on RFC1951, valid options are as follows:
	00 - no compression
	01 - compressed with fixed Huffman codes
	10 - compressed with dynamic Huffman codes
	11 - reserved (error)
[bookmark: OLE_LINK11][bookmark: OLE_LINK12]If static (fixed) Huffman coding is used, both sides would use the same Huffman tree defined in RFC 1951[3] which is no need to exchange in the packet (see the below highlighted in yellow which copied from RFC 1951).
	3.2.6. Compression with fixed Huffman codes (BTYPE=01)
The Huffman codes for the two alphabets are fixed, and are not represented explicitly in the data.
The Huffman code lengths for the literal/length alphabet are:

Lit Value Bits Codes
--------- ---- -----
0 - 143 8 00110000 through 10111111
144 - 255 9 110010000 through 111111111
256 - 279 7 0000000 through 0010111
280 - 287 8 11000000 through 11000111

And during the compression procedure, the compressor needn’t to create the static Huffman tree and fill the tree into compressed block, which would reduce the process delay much. So static Huffman encoding would reduce the complexity much compared to adaptive Huffman encoding.
Furthermore, it could be seen from the following simulation results table on compression efficiency by using adaptive Huffman and static Huffman encoding that the compression efficiency of static is less 1% than that of adaptive Huffman.
Table 1: comparison of deflate with adaptive Huffman and static Huffman:
	Input file
	8Kbyte buffer
	32Kbyte buffer

	
	Compression efficiency
	loss
	Compression efficiency
	loss

	
	adaptive
	static
	
	Adaptive
	static
	

	Input traffic 1: FTP data-client-CMCC
	49.96%
	49.96%
	0%
	49.96%
	49.96%
	0%

	Input traffic 2: FTP data-server-CMCC
	44.61%
	44.61%
	0%
	44.61%
	44.61%
	0%

	Input traffic 3: SIP signalling-CMCC UE 1
	86.87%
	86.50%
	0.37%
	88.13%
	87.95%
	0.18%

	Input traffic 4: SIP signalling-CMCC
	84.83%
	83.79%
	1.04%
	85.23%
	84.87%
	0.36%

	Input traffic 5: SIP signalling-CMCC
	87.20%
	86.85%
	0.35%
	88.52%
	88.25%
	0.27%

	Input traffic 6: Video data-CMCC (duration: ~6s)
	64.93%
	62.98%
	1.95%
	64.92%
	62.99%
	1.93%

	Input traffic 7: Web surfing-CMCC
	66.22%
	65.20%
	1.02%
	70.28%
	70.03%
	0.25%

	Input traffic 8: Long period Video data-CMCC (duration: ~6min)
	71.93%
	71.26%
	0.67%
	73.97%
	73.75%
	0.22%

	Input traffic 9: Video data-MTK (duration: ~1hr)
	59.41%
	59.08%
	0.33%
	58.07%
	57.92%
	0.15%

	Input traffic 10: Long period ftp-MTK
	62.01%
	62.01%
	0%
	58.56%
	58.56%
	0%

	Input traffic 11: Multiple IP flows-QC
	72.08%
	71.63%
	0.45%
	73.92%
	73.79%
	0.13%

	Input traffic 7+8:average mixed
	66.47%
	65.31%
	1.16%
	70.43%
	70.11%
	0.32%

	Input traffic 7+8:one inserted in another one
	68.32%
	67.42%
	0.9%
	71.64%
	71.40%
	0.24%

	Input traffic 7+8:random mixed
	66.48%
	65.30%
	1.18%
	70.55%
	70.24%
	0.31%

As shown in table, compression efficiency of static Huffman is around 1% less compared to adaptive Huffman encoding. But for the case of Traffic input 6, it is around 2%. After checking the data further we found that the video data-CMCC is too short, i.e. the number of packets and the amount of data is too small, few packets with dynamic Huffman would affect the compression efficiency much. So for the traffic input 6, the compression efficiency of dynamic Huffman is a bit higher than that of static Huffman. Even though, it is only 2% higher than static Huffman.
Observation 1: the compression efficiency of static Huffman is around 1% less than that with adaptive Huffman in most cases.
Observation 2: for 32k buffer, the compression efficiency of static Huffman is around 0.3% less than that of adaptive Huffman except one case.
2.3 Compression efficiency of APDC vs. DEFLATE with static Huffman and UDC header
In this section, compression efficiency of APDC (simulated by CATT with APDC source code provided by Qualcomm) and DEFLATE with static Huffman encoding and 1 byte UDC header are provided. The compression efficiency of RoHC in TR 36.754 is also shown in the table to have a full picture. Please note that APDC could not support 32K buffer (14-bit CPCR lookback length), so only compression efficiency for 8K is used in the following comparison for APDC.
Table 3: comparison of APDC and DEFLATE with static Huffman and UDC header:
	Input file
	8Kbyte buffer
	32Kbyte buffer

	
	Compression efficiency
	Compression efficiency

	
	APDC(simulated by CATT)
	DEFLATE
	RoHC
	APDC1(simulated by CATT)
	DEFLATE
	RoHC

	Input traffic 1: FTP data-client-CMCC
	54.34%
	49.96%
	73.3%
	54.34%
	49.96%
	73.3%

	Input traffic 2: FTP data-server-CMCC
	50.34%
	44.61%
	59.7%
	50.34%
	44.61%
	59.7%

	Input traffic 3: SIP signalling-CMCC UE 1
	83.91%
	86.50%
	5.4%
	83.91%
	87.95%
	5.4%

	Input traffic 4: SIP signalling-CMCC
	80.62%
	83.79%
	5.1%
	80.62%
	84.87%
	5.1%

	Input traffic 5: SIP signalling-CMCC
	84.20%
	86.85%
	4.4%
	84.20%
	88.25%
	4.4%

	Input traffic 6: Video data-CMCC (duration: ~6s)
	61.00%
	62.98%
	21.7%
	61.00%
	62.99%
	21.7%

	Input traffic 7: Web surfing-CMCC
	64.24%
	65.20%
	23.1%
	64.24%
	70.03%
	23.1%

	Input traffic 8: Long period Video data-CMCC (duration: ~6min)
	76.67%
	71.26%
	45.1%
	76.67%
	73.75%
	45.1%

	Input traffic 9: Video data-MTK (duration: ~1hr)
	73.47%
	59.08%
	80.7%
	73.47%
	57.92%
	80.7%

	Input traffic 10: Long period ftp-MTK
	75.34%
	62.01%
	83.4%
	75.34%
	58.56%
	83.4%

	Input traffic 11: Multiple IP flows-QC
	73.35%
	71.63%
	
	73.35%
	73.79%
	

	Input traffic 7+8:average mixed
	63.00%
	65.31%
	
	63.00%
	70.11%
	

	Input traffic 7+8:one inserted in another one
	68.77%
	67.42%
	
	68.77%
	71.40%
	

	Input traffic 7+8:random mixed
	64.80%
	65.30%
	
	64.80%
	70.24%
	

	NOTE 1: APDC could not support 32K buffer, only compression efficiency for 8K is used.

Note: there is no pre-defined dictionary. All initial bits in the buffer are set to 0.
Observation 3: DEFLATE with static dictionary and 1 byte UDC header can achieve good compression efficiency for these cases that RoHC could not achieve high compression efficiency.
According to the results shown in Table 2 and observations 1-3, static Huffman and 1 byte UDC header can be used in DEFLATE solution.
Proposal 1: for DEFLATE solution, the static Huffman encoding could always be used in compressor side.
2.4 complexity analysis
As discussed in 2.2, with static Huffman encoding, the complexity of DEFLATE is reduced.
For checksum calculation for DEFLATE, the compressor would calculate after each compressed packet is sent out successfully and add it to the next compressed packet’s header. It would not affect the compression on the current packet, so the effect of checksum calculation can be ignored in the complexity evaluation.
Considering above, table of Comparison of Compressor Side Computation Complexity in TR36.754 should be updated to:
Table 7.3-1 Comparison of Compressor Side Computation Complexity
	
	Step 1
	Step 2
	Step 3

	Deflate (RFC 1951)
	Search for repeated strings from compression memory (e.g., LZ77).

	Huffman encoding.
Note: static Huffman encoding can be always used to reduce complexity in compressor.
	Add 1 byte UDC header.

	Zlib (RFC 1950)
	
	Huffman encoding.
	Add Zlib header; compute checksum for decompressor to verify decompression result.

	APDC
	
	Write the matching and mismatching information (like pointers) into APDC headers and copy mismatched bytes to the compressed packet.
	Compute checksum for decompressor to verify decompression result.

In step 2, by using the static Huffman tree, the complexity of encoding is reduced which would be similar to the behavior of step 2 for APDC. In step 3, no checksum calculation is needed. Considering step 1-3 together, it is observed that
Observation 4: the complexity of DEFLATE with static Huffman is on par with APDC.
Proposal 2: update the table of Comparison of Compressor Side Computation Complexity in TR 36.754 and indicate the complexity of DEFLATE with static Huffman is similar to the complexity of APDC.
Proposals
In this contribution, the simulation results of DEFLATE with static Huffman encoding and 1 byte UDC header are provided and the comparison with APDC (simulated by CATT) are given, it could observe that
Observation 1: the compression efficiency of static Huffman is around 1% less than that with adaptive Huffman in most cases.
Observation 2: for 32k buffer, the compression efficiency of static Huffman is around 0.3% less than that of adaptive Huffman except one case.
Observation 3: DEFLATE with static dictionary and 1 byte UDC header can achieve good compression efficiency for these cases that RoHC could not achieve high compression efficiency.
Observation 4: the complexity of DEFLATE with static Huffman is on par with APDC.
And it is proposed that:
Proposal 1: for DEFLATE solution, the static Huffman encoding could always be used in compressor side.
Proposal 2: update the table of Comparison of Compressor Side Computation Complexity in TR 36.754 and indicate the complexity of DEFLATE with static Huffman is similar to the complexity of APDC.
If proposal 2 is agreed, corresponding CR can be found in [2].
Reference
[1]	TR 36.754	Study on UL data compression for E-UTRA.
[2]	R2-1708363	Correction on Computation Complexity Table for Deflate 	CATT.
[3]	RFC 1951	DEFLATE Compressed Data Format Specification.

5
R2-1709582
