Page 1

3GPP TSG-RAN2 Meeting #99
R2-1708359
Berlin, Germany, 21 - 25 Aug 2017
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	TR 36.754
	CR
	0002
	rev
	-
	Current version:
	15.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Update of Description and Evaluation Results for Deflate

	
	

	Source to WG:
	CATT

	Source to TSG:
	RAN2

	
	

	Work item code:
	FS_LTE_UDC
	
	Date:
	2017-08-08

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	According to the discussion, observations and proposals described in R2-1708358, the following agreements are reached:
1) Capture the detailed 1 byte UDC header format as the typical example in TR.

2) Capture the checksum failure handling procedure into TR.

3) Capture the new simulation results of Deflate with 1 byte header and static Huffman encoding into TR.
These agreements should be reflected in the TR 36.754.

	
	

	Summary of change:
	1) add the 1 byte UDC header as a typical example in 7.2.3.1
2) add the checksum failure handling procedure in 7.2.3.1
3) add the new simulation resluts in 7.2.3.2

	
	

	Consequences if not approved:
	It could not reflect the latest study results.

	
	

	Clauses affected:
	7.2.3.1, 7.2.3.2

	
	

	
	Y
	N
	
	

	Other specs
	
	x
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	x
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	x
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

------------------------------------start of change-----------------------------------
7.2.3.1
Solution description

RFC 1951 (DEFLATE Compressed Data Format Specification) [5] is broadly used with fewest overhead (e.g. compare to RFC 1950, reduced with header and tail bytes.Deflate is a lossless data compression algorithm and associated file format (specified in [5]) that uses a combination of the LZ77 algorithm and Huffman coding.

LZ77 compression works by finding sequences of data that are repeated. A sliding window is used to find the match characters in previous data. An 8K/32K sliding window means that the compressor (and de-compressor) has a record of what the last 8192 or 32768 characters were. When the next sequence of characters to be compressed is identical to one that can be found within the sliding window, the sequence of characters is replaced by two numbers: a “distance”, representing how far back into the window the sequence starts, and a “length”, representing the number of characters for which the sequence is identical. And then, the string pair (length, distance) is used to replace the current matched characters. Lazy-match is considered in the simulation to finding the longest matching part in the buffer. The un-matched characters are noted as “literal”.

[image: image1.emf]a b c d e f g h

Data in buffer

b c d

Compression Entity

Packet to be compressed

Position 7 6 5 4 3 2 1 0

(a)
Before compression

[image: image2.emf]B110011

d e f g h

Data in buffer

b c d

Compression Entity

Compressed Packet

Position 7 6 5 4 3 2 1 0

(b)
After compression

Figure 7.2.3.1-1: Illustration of data format before and after compression using RFC 1951 (LZ77 compression)

In Figure 7.2.3.1-1, the buffer size is 8 bytes. When a new packet which has content of“bcd” coming, a cross-packet match can be identify in the buffer, with the previous position 6, length 3. The new packet which original length is 3 byte can be compressed to 6 bits (i.e. 3 bits to identify 8 positions in the buffer, and 3 bits for length). After compression, the new packet is inserted in the buffer.

After compressed by LZ77, Huffman coding is used to encode the “literal”, “length” and “distance” by replacing frequently used codes with shorter representations and infrequently used codes with longer representations. Adaptive selection of static Huffman coding and dynamic Huffman coding is enabled to achieve maximum compression efficiency in the simulation.

The Huffman codes used for each alphabet (e.g. literal/length alphabet and distance alphabet) in the “deflate” format have two additional rules: 1) All codes of a given bit-length have lexicographically consecutive values, in the same order as the symbols they represent; 2) Shorter codes lexicographically precede longer codes (details can be seen in RFC1951 [5]).

The Huffman codes for the two alphabets appear in the block immediately after the header bits and before the actual compressed data, first the literal/length code and then the distance code. Each code is defined by a sequence of Huffman code lengths. For even higher compression ratio, the code length sequences themselves are compressed using a Huffman code.
In our UDC solution, the following compression block format is used respectively for static Huffman coding and dynamic Huffman coding.

[image: image3.emf]Compressed data bits

Dynmic

/Static

LA

ST

7 6 5 4 3 2 1 0

Byte

Compressed data bits

…… END

0

Figure 7.2.3.1-2: Compression block by using static Huffman tree
[image: image4.emf]HLIT (5bits)

Dynmic

/Static

LA

ST

HDIST (5bits) HCLEN(0-2)

HCL

EN

(3)

Code Length Tree

Code Length Tree

……

Literal tree

……

Distance tree

……

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte Byte

7 6 5 4 3 2 1 0

Byte

Compressed data bits

…… END

0

Figure 7.2.3.1-3: Compression block by using dynamic Huffman tree
Where, dynamic/Static flag: indicating whether static Huffman or dynamic Huffman is used

00- no compression

01 - compressed with fixed Huffman codes

10 - compressed with dynamic Huffman codes

11 - reserved (error)

HLIT - Number of Literal/Length (257 - 286) codes minus 257

HDIST - Number of Distance codes (1 - 32) minus 1

HCLEN - Number of Code Length codes (4 - 19) minus 4

END - The literal/length symbol 256 (end of data)

LAST - reserved, can be used to indicating whether this is the last block for a file

Proposed UDC format for Solution 3

Checksum mechanism could be used to resolve synchronisation miss-match (if any) between compression buffer and de-compression buffer. This means, compressor calculate a checksum value by using the data in buffer, and the de-compressor can validate the buffer content by the checksum value.

Additionally, multiple IP flow in one ratio bearer using various profile should be considered when design UDC solution, where some data packet in the bearer need to be compressed by UDC entity, while others need not. Thus whether the current received packet is processed by UDC entity or not could be included in the UDC header. Considering these two aspects, one byte UDC header is introduced. Whether the current PDCP SDU is compressed/processed by UDC entity is indicated by 1 bit in the UDC header, and 4~6 bits allocated for the checksum (note that the checksum is calculated by the data in buffer, excluding the current packet).

Example UDC header format is shown in Figure 7.2.3.1-4. The detail of the UDC header format can be further discussed in WI phase.

[image: image5.emf]...

Reserved

Oct 1

F

Checksum

Figure 7.2.3.1-4: An example of UDC header format
An example of 1 byte UDC header format is illustrated in Figure 7.2.3.1-5.
[image: image6.emf]...

UDC Block

F3 F0 Checksum F1 F2

Figure 7.2.3.1-5: An example of 1 byte UDC header
Where these fields can be potentially defined as:
· F0 bit is used to indicate whether this packet is processed by UDC entity or not, i.e. “1” means this packet is processed by UDC and the content following this 1byte header is a UDC block.
· F1 bit indicates whether the current uncompressed packet is put into compression buffer, i.e. “1” means the payload of the current packet is put into compression buffer, which can inform eNB to put this packet into buffer located in eNB side as well after packet de-compression.
· F2 bit indicates the reset of the compression buffer. When out of synchronization or error occurs between compression buffer and de-compression buffer, UE needs to reset the compression buffer and inform eNB to reset the de-compression buffer, i.e. clearing the content in the compression buffer (all bits are 0) and set the F2 bit to “1”.
· F3 bit indicates whether the pre-defined dictionary is used or not. If pre-defined dictionary is used, UE needs to put the pre-defined dictionary into compression buffer before compressing the first packet, and set F3 bit to “1”.
· Checksum, which is used to validate the compression buffer, is calculated by the content of current compression buffer. The calculation algorithm could be similar as the popular method, such as CRC, and calculation result is truncated the into 4 bits checksum value. Note that checksum calculation can be done after the current packet transmission or before the next packet processing, so this part could be considered no effect on the compression complexity since it would not increase the processing delay.
Checksum failure

Figure 7.2.3.1-6 shows the basic behavior when checksum failure occurs.
For network side, eNB could inform the UE checksum failure by RRC Reconfiguration message, which includes the checksum failure indication and the packet PDCP SN (or COUNT), and discard the following packets until the eNB receives a packet from the UE, in which the F2 bit is set to “1”. After receiving this packet, eNB should reset the de-compression buffer, and accept the following packets.
For UE, it should reset the compression buffer as soon as receiving the checksum failure indication included in the RRC Reconfiguration message. According to the PDCP SN (or COUNT) indicated in RRC message, UE should re-transmit the compressed packets from this PDCP SN (or COUNT), and set the F2 bit in this packet to “1”.

[image: image7.emf]UE eNB

RRCConnectionReconfiguration

Including the checksum failure indication and PDCP SN

RRCConnectionReconfigurationComplete

Reset buffer

Checksum failure

reset buffer

UDC continues

Compressed packet

Set the F2 bit to 1

Discard Packets if F2

bit is NOT 1

Figure 7.2.3.1-6: Checksum failure behavior flow
------------------------------------the next change-----------------------------------

7.2.3.2
Simulation results

The simulation results of RFC 1951 for 8Kbyte and 32Kbytebuffer are shown in this section. To carefully evaluate the performances of solution 3, cross-checking was conducted using the same configuration. Similar compression efficiency is achieved by different companies.
Table 7.2.3.2-1 shows the simulation results of RFC 1951 without UDC header.
Table 7.2.3.2-1: Simulation results with RFC 1951 (without UDC header)
	Input file
	8Kbyte buffer
	32Kbyte buffer

	
	Original Size（Byte）
	Compressed Size（Byte）
	Compression Efficiency
	Original Size（Byte）
	Compressed Size（Byte）
	Compression Efficiency

	Input traffic 1: FTP data-client-CMCC
	1211
	585
	51.69%
	1211
	585
	51.69%

	Input traffic 2: FTP data-server-CMCC
	1782
	962
	46.02%
	1782
	962
	46.02%

	Input traffic 3: SIP signalling-CMCC UE 1
	51020
	6639
	86.99%
	51020
	5997
	88.25%

	Input traffic 4: SIP signalling-CMCC
	32680
	4921
	84.94%
	32680
	4791
	85.34%

	Input traffic 5: SIP signalling-CMCC
	46688
	5927
	87.31%
	46688
	5313
	88.62%

	Input traffic 6: Video data-CMCC (duration: ~6s)
	13450
	4632
	65.56%
	13450
	4633
	65.55%

	Input traffic 7: Web surfing-CMCC
	2381720
	786295
	66.99%
	2381720
	689638
	71.04%

	Input traffic 8: Long period Video data-CMCC (duration: ~6min)
	1371861
	365346
	73.37%
	1371861
	337360
	75.41%

	Input traffic 9: Video data-MTK (duration: ~1hr)
	2453749
	950644
	61.26%
	2453749
	983524
	59.92%

	Input traffic 10: Long period ftp-MTK
	879630
	317485
	63.91%
	879630
	347815
	60.46%

	Input traffic 11: Multiple IP flows-QC
	5319100
	1434672
	73.03%
	5319100
	1336519
	74.87%

	Input traffic 7+8:average mixed
	3753581
	1220693
	67.48%
	3753581
	1071819
	71.45%

	Input traffic 7+8:one inserted in another one
	3753581
	1151601
	69.32%
	3753581
	1026762
	72.65%

	Input traffic 7+8:random mixed
	3753581
	1220407
	67.49%
	3753581
	1067292
	71.57%

Table 7.2.3.2-2 shows the simulation results of RFC 1951 with 1 byte UDC header.
Table 7.2.3.2-2: Simulation results with RFC 1951 (with 1 byte UDC header)
	Input file
	8Kbyte buffer
	32Kbyte buffer

	
	Original Size（Byte）
	Compressed Size（Byte）
	Compression Efficiency
	Original Size（Byte）
	Compressed Size（Byte）
	Compression Efficiency

	Input traffic 1: FTP data-client-CMCC
	1211
	606
	49.96%
	1211
	606
	49.96%

	Input traffic 2: FTP data-server-CMCC
	1782
	987
	44.61%
	1782
	987
	44.61%

	Input traffic 3: SIP signalling-CMCC UE 1
	51020
	6700
	86.87%
	51020
	6058
	88.13%

	Input traffic 4: SIP signalling-CMCC
	32680
	4958
	84.83%
	32680
	4828
	85.23%

	Input traffic 5: SIP signalling-CMCC
	46688
	5976
	87.20%
	46688
	5362
	88.52%

	Input traffic 6: Video data-CMCC (duration: ~6s)
	13450
	4717
	64.93%
	13450
	4718
	64.92%

	Input traffic 7: Web surfing-CMCC
	2381720
	804504
	66.22%
	2381720
	707847
	70.28%

	Input traffic 8: Long period Video data-CMCC (duration: ~6min)
	1371861
	385106
	71.93%
	1371861
	357120
	73.97%

	Input traffic 9: Video data-MTK (duration: ~1hr)
	2453749
	996099
	59.41%
	2453749
	1028979
	58.07%

	Input traffic 10: Long period ftp-MTK
	879630
	334174
	62.01%
	879630
	364504
	58.56%

	Input traffic 11: Multiple IP flows-QC
	5319100
	1485336
	72.08%
	5319100
	1387183
	73.92%

	Input traffic 7+8:average mixed
	3753581
	1258662
	66.47%
	3753581
	1109788
	70.43%

	Input traffic 7+8:one inserted in another one
	3753581
	1189297
	68.32%
	3753581
	1064458
	71.64%

	Input traffic 7+8:random mixed
	3753581
	1258376
	66.48%
	3753581
	1105261
	70.55%

Simulation results with static Huffman encoding
To reduce the complexity, the compressor can always use static (fixed) Huffman encoding during the compression. Static Huffman tree is defined in RFC 1951, and both compressor and decompressor use the same Huffman tree. Table 7.2.3.2-3 shows the simulation results of RFC 1951 with static Huffman encoding and UDC header.
Table 7.2.3.2-3: Simulation results with RFC 1951 (with static Huffman encoding)
	Input file
	8Kbyte buffer
	32Kbyte buffer

	
	Original Size（Byte）
	Compressed Size（Byte）
	Compression Efficiency
	Original Size（Byte）
	Compressed Size（Byte）
	Compression Efficiency

	Input traffic 1: FTP data-client-CMCC
	1211
	606
	49.96%
	1211
	606
	49.96%

	Input traffic 2: FTP data-server-CMCC
	1782
	987
	44.61%
	1782
	987
	44.61%

	Input traffic 3: SIP signalling-CMCC UE 1
	51020
	6888
	86.50%
	51020
	6149
	87.95%

	Input traffic 4: SIP signalling-CMCC
	32680
	5298
	83.79%
	32680
	4943
	84.87%

	Input traffic 5: SIP signalling-CMCC
	46688
	6139
	86.85%
	46688
	5487
	88.25%

	Input traffic 6: Video data-CMCC (duration: ~6s)
	13450
	4979
	62.98%
	13450
	4978
	62.99%

	Input traffic 7: Web surfing-CMCC
	2381720
	828805
	65.20%
	2381720
	713901
	70.03%

	Input traffic 8: Long period Video data-CMCC (duration: ~6min)
	1371861
	394337
	71.26%
	1371861
	360064
	73.75%

	Input traffic 9: Video data-MTK (duration: ~1hr)
	2453749
	1004068
	59.08%
	2453749
	1032588
	57.92%

	Input traffic 10: Long period ftp-MTK
	879630
	334169
	62.01%
	879630
	364504
	58.56%

	Input traffic 11: Multiple IP flows-QC
	5319100
	1508809
	71.63%
	5319100
	1393884
	73.79%

	Input traffic 7+8:average mixed
	3753581
	1302194
	65.31%
	3753581
	1121805
	70.11%

	Input traffic 7+8:one inserted in another one
	3753581
	1223095
	67.42%
	3753581
	1073699
	71.40%

	Input traffic 7+8:random mixed
	3753581
	1302491
	65.30%
	3753581
	1117187
	70.24%

------------------------------------the end of change-----------------------------------

_1558796977.vsd
Compression Entity

Compressed Packet

b

B110011

d

e

f

g

h

Data in buffer

c

d

Position 7 6 5 4 3 2 1 0

_1558796979.vsd
...

Reserved

Oct 1

F

Checksum

_1563805709.vsd
UE

eNB

Reset buffer

Checksum failure

RRCConnectionReconfiguration
Including the checksum failure indication and PDCP SN

_1558796978.vsd
�

�

Compressed data bits

Dynmic
/Static

LAST

7

6

5

4

3

2

1

0

Byte

Compressed data bits ……

END

0

_1558796976.vsd
Compression Entity

Packet to be compressed

b

a

b

c

d

e

f

g

h

Data in buffer

c

d

Position 7 6 5 4 3 2 1 0

