
3GPP TSG-RAN WG2 #99 R2-1707934
Berlin, Germany, 21 - 25 Aug 2017	 Revision of R2-1706375

Source:	CATT
[bookmark: Title]Title:	NR RLC UM receive operation
[bookmark: Source]Agenda Item:	10.3.2.3
[bookmark: DocumentFor]Document for:	Discussion and Decision

1. Introduction
In the last RAN2#98 meeting, the following options regarding RLC UM receive operation were captured [1]:
Questions:
Whether the receive window mechanism is enough

1. SN is included only in SDU segments
a. Option 2-1 with window mechanism
b. Option 2-2 with one T-reassembly timer
c. Option 2-3 with multiple T-reassembly timer
In last RAN2 meeting, it was agreed that RLC UM without SN for the complete SDU was selected. Hence in this contribution, we will mainly discuss and compare the above three options. And our proposals will be given.
2. Discussion
Option 2-1: window mechanism
For window based method, most companies think that a PULL window can be used. VR(UH) can be maintained as the boundary of receiving window and updated by the arrival of a newest segment. The biggest merit of window based method is to distinguish well between newest segments and oldest segments, as in legacy. Hence SN confusion cannot happen as long as the transmitter ensures that not more than ½ the SN space is in flight at any time.
For a pull window mechanism, the window size equals half of SN space, e.g. 32 for 6 bits SN and 2048 for 12 bits SN [2]. When incomplete segments are inside the window, they can be kept. Once some incomplete segments are out of the window, they will be discarded immediately. Hence, in the absence of any timer, whenever data or segmentation is rare, the window may not be updated for a long time. However the retransmission attempts of missing segments will have already finished for quite some time. In which case, the buffering of unsuccessful segments is useless.
Option 2-3: multiple T-reassembly timers
This solution allows for pure timer based (window-less) method. The only way to determine whether segments can be reassembled is based on whether SN is equal. For SDU reassembly, the simplest rule is just to merge different segments with same SN together. From the perspective of reassembly, there is no need to consider other segments with different SN. When overlapping between segments with same SN occurs, e.g. SO + LI of first segment indicates [0-300] bytes of SDU and that of second segment indicates [200-500] bytes of SDU, it means that SN wrap around happened. And the old segments of that SN should either be discarded or kept until receiving the matching segments. If the old segmentation is completely the same as the new segmentation of a same wrap around SN, the receiver will erroneously merge segments from different SDUs. Although this event will be rare, it may happen.

But the main drawback of this option is its complexity, especially considering 12-bit SN [2], for which the implementation dimensioning will need to cope with a quite large number of timers.
Option 2-2: one T-reassembly timer
A single reassembly timer mechanism is similar to LTE re-ordering mechanism, which is based on gap detection and maintains one timer for multiple gaps. If a first gap is detected, a reassembly timer with length of maximum HARQ retransmission delay can be started to precisely monitor whether retransmission is successful or not. For gaps detected in the period of this reassembly timer, only one timer covers multiple gaps. Moreover gap detection needs at least two status variables to record the boundaries of the range that the timer takes effect, which is also a window to some extent. And, as discussed above this window mechanism also provides the benefit to distinguish old and new segments in a clean manner. Hence, from the perspective of precision and complexity, the “one-timer + window” solution is a compromise solution amongst pure window and pure timer solutions.
Comparing these three methods, PULL window based method complemented with one reassembly timer like LTE re-ordering timer to flush incomplete segments in time provides the best efficiency/complexity tradeoff. This also is the closest solution to the legacy LTE mechanism. Specification efforts are small and performance verification is easy. Hence we prefer option 2-2 with a single reassembly timer along with a PULL window mechanism. We provide a TP accordingly.
Proposal: NR RLC UM receiver should support a single reassembly timer along with a PULL window mechanism like LTE for RLC segments.
3. Conclusion
Based on the analysis in section 2, the following is proposed:
Proposal 2: NR RLC UM receiver should support a single reassembly timer along with a PULL window mechanism like LTE for RLC segments.
4. Reference
[1]. RAN2#98, Chairman reports;
[2]. [bookmark: _Ref490207803]R2-1707933, NR RLC UM SN Length, CATT;

5. Text proposal
[bookmark: _Toc454281518][bookmark: _Toc481745692]5.1.2	UM data transfer
[bookmark: _Toc477961563]5.1.2.2	Receive operations
[bookmark: _Toc477961564]5.1.2.2.1	General
When receiving an UMD PDU without SN from lower layer, the receiving UM RLC entity shall:
-	remove RLC headers and deliver the RLC SDUs to upper layer;
The receiving UM RLC entity shall maintain a receiving window for UMD PDU with SN according to state variable RX_Next_Highest_Rcvd _UM as follows:
-	a SN falls within the receiving window if (RX_Next_Highest_Rcvd _UM – UM_Window_Size) <= SN < RX_Next_Highest_Rcvd _UM;
-	a SN falls outside of the receiving window otherwise.
When receiving an UMD PDU with SN from lower layer, the receiving UM RLC entity shall:
-	either discard the received UMD PDU or place it in the reception buffer (see sub clause 5.1.2.2.2);
-	if the received UMD PDU was placed in the reception buffer:
-	update state variables, reassemble and deliver RLC SDUs to upper layer and start/stop t-Reordering as needed (see sub clause 5.1.2.2.3);
When t-Reordering expires, the receiving UM RLC entity shall:
-	update state variables, discard segments in the reception buffer and start t-Reordering as needed (see sub clause 5.1.2.2.4).
[bookmark: _Toc477961565]5.1.2.2.2	Actions when an UMD PDU is received from lower layer
When receiving an UMD PDU without SN from lower layer, the receiving UM RLC entity shall:
-	remove RLC headers and deliver the RLC SDUs to upper layer;
When an UMD PDU with SN = x is received from lower layer, the receiving UM RLC entity shall:
-	if RX_Next_UM < x < RX_Next_Highest_Rcvd_UM and byte segment numbers y to z of the RLC SDU with SN = x has been received before; or
-	if (RX_Next_Highest_Rcvd_UM – UM_Window_Size) <= x < RX_Next_UM:
-	discard the received UMD PDU;
-	else:
-	place the received UMD PDU in the reception buffer.
[bookmark: _Toc477961566]5.1.2.2.3	Actions when an UMD PDU is placed in the reception buffer
When an UMD PDU with SN = x is placed in the reception buffer, the receiving UM RLC entity shall:
-	if x falls outside of the receiving window:
-	update RX_Next_Highest_Rcvd_UM to x + 1;
-	if RX_Next_UM falls outside of the receiving window:
-	set RX_Next_UM to (RX_NEXT_HIGHEST_RCVD_UM – UM_Window_Size);
-	if all bytes of the RLC SDU with SN = x are received:
-	reassemble the RLC SDU from UMD PDU(s) with SN = x, remove RLC headers when doing so and deliver the reassembled RLC SDU to upper layer;
-	if x = RX_Next_UM:
-	update RX_Next_UM to the SN of the first RLC SDU with SN > current RX_Next for which not all bytes have been received;
-	if t-Reordering is running:
-	if RX_NEXT_REORDER_TRIGGER_UM <= RX_NEXT_UM; or
-	if RX_NEXT_REORDER_TRIGGER_UM falls outside of the receiving window and RX_NEXT_REORDER_TRIGGER_UM is not equal to RX_NEXT_HIGHEST_RCVD_UM:
-	stop and reset t-Reordering;
-	if t-Reordering is not running (includes the case when t-Reordering is stopped due to actions above):
-	if RX_NEXT_HIGHEST_RCVD_UM > RX_NEXT_UM:
-	start t-Reordering;
-	set RX_NEXT_REORDER_TRIGGER_UM to RX_NEXT_HIGHEST_RCVD_UM.
[bookmark: _Toc477961567]5.1.2.2.4	Actions when t-Reordering expires
When t-Reordering expires, the receiving UM RLC entity shall:
-	update RX_Next_UM to the SN of the first UMD PDU with SN >= RX_Next_Reorder_Trigger_UM for which not all bytes have been received;
-	discard all UMD PDUs with SN < updated RX_Next_UM;
-	if RX_Next_Highest_Rcvd_UM > RX_Next_UM:
-	start t-Reordering;
-	set RX_Next_Reorder_Trigger_UM to RX_Next_Highest_Rcvd_UM.

[bookmark: _Toc454281577][bookmark: _Toc481745710]7	Variables, constants and timers
[bookmark: _Toc454281578][bookmark: _Toc481745711]7.1	State variables

The receiving side of each UM RLC entity shall maintain the following state variables:
a) RX_Next _UM– Receive state variable
This state variable holds the value of the SN of the earliest RLC SDU that is still considered for reordering. It is initially set to 0.
b) RX_Next_Reorder_Trigger – t-Reordering state variable
This state variable holds the value of the SN following the SN of the RLC SDU which triggered t-Reordering.
c) RX_Next_Highest_Rcvd_UM – Highest received state variable
This state variable holds the value of the SN following the SN of the RLC SDU segment with the highest SN among received RLC SDU segments. It is initially set to 0.

[bookmark: _Toc454281579][bookmark: _Toc481745712]7.2	Constants
a) UM_Window_Size
This constant is used by the receiving side of each UM RLC entity. UM_Window_Size = 32 when a 6 bit SN is used, UM_Window_Size = 2048 when a 12 bit SN is used.

1
R2-1707934
image1.emf
500B

300

B

500B

300

B

500B

300

B

500B

400B

600B

SDU with SN = n

SN Wrap around can

be detected.

Different SDU with SN = n

SDU with SN = n

SN confusion with low

probability.

Different SDU with SN = n

oleObject1.bin
600B

500B

400B

300B

500B

SDU with SN = n

SN Wrap around can be detected.

Different SDU with SN = n

300B

500B

300B

500B

SDU with SN = n

SN confusion with low probability.

Different SDU with SN = n

