3GPP TSG-RAN WG2 Meeting #98

R2-1705941
Hangzhou, China, 15–19 May 2017
Agenda Item:
9.3.3
Source:
MediaTek Inc.
Title:
Review comments on R2-1705614
Document for:
Discussion and decision

1 Introduction
In RAN#74, uplink data compression (UDC) SI [1] was approved. Possible UDC methods were proposed and discussed in RAN2#97bis, including:
· Zlib (RFC 1950)
· Deflate (RFC 1951)
· RoHC (RFC 3905)
· Adaptive Packet Data Compression (APDC)
Companies have provided their comparisons from a variety of perspectives [2-6]. However, there were misunderstanding and wrong conclusion for Zlib and Deflate, e.g. [5,6]. In this document, we provide our comments.
2 Review comments on R2-1705614
In [5], the comparison is conducted on following aspects:
1. Compression efficiency
2. Computational complexity of compression and decompression
3. Memory requirements
4. Byte alignment
5. Reliability
On the comparison, we have the following comments:
Comment #1: The evaluations of Zlib compressed data format in Observation 5-9 are based on misinterpretation of Zlib. The overhead of Zlib is per UDC bearer rather than per packet.
As described in Sec. 7.2.2.1 in [7] (see Figure 1 below), only the first UDC compressed packet contains the Zlib header (2 bytes for non-preset dictionary, or 6 bytes for preset dictionary). And the successive UDC compressed packets contain one or several compressed data blocks in Deflate format [8]. That is, this method never produces the 4-byte Alder32 checksum. Therefore, the overhead in this solution is 2 or 6 bytes headers one time instead of 39 bits per packet mentioned in Observation 9.
Also, to adopt Zlib as a UDC solution, it is possible to deliver the Zlib header through other means, e.g. RRC. Then, this method and Deflate are the same, as mentioned in Observation 4.
[image: image1.png]
Figure 1: Zlib compression format
Comment #2: Zlib/Deflate compressed data format can be byte-aligned. (Correction to Observation 1 and 11)
Although not mandate in Deflate compressed data format [8], byte alignment actually can be implemented by Zlib/Deflate. Examples of byte-aligned Deflate can be found in Sec. 2.1 in RFC 1979 [9] and the partial flush stated in Sec. 6.2 in RFC 4253 [10]. The discussion about byte-alignment mechanism in RFC 1979 is quoted below:
“Each transmitted packet must be terminated with a zero-length ‘deflate’ non-compressed block (BTYPE=00). This means that the last four bytes of the compressed format must be 0x00 0x00 0xFF 0xFF. These bytes MUST be removed before transmission; the receiver can reinsert them if required by the implementation.”

Note that in Zlib UDC compression efficiency evaluation [12], the byte alignment technique in RFC 1979 is adopted.
Comment #3: The checksum in the compressed data format is not needed. (Observation 2 is not a valid statement.)
UDC is agreed to operate onto RLC AM mode in which the eNB-UE link is very reliable due to HARQ and ARQ protections. Additionally, IP/TCP/UDP headers provide checksums for UDC decompressed data. Then, the checksum is not necessary needed for UDC compressed data format. If checksum is needed anyway, it can be added in LTE protocol, e.g. a PDCP format with checksum is proposed in [13].
Comment #4: Zlib/Deflate supports UDC recovery/reset. (Correction to Observation 3 and 12)
The recovery/reset mechanism described in Sec. 2 in RFC 1979 is quoted below:
“The transmitter must clear its compression history”

“The receiver need not do anything to its history, because the transmitter will simply not refer to any prior history (‘deflate’ is a sliding-window compressor).”
Once the eNB tells UE via RRC to reset UDC, it just cleans up its compression memory. No explicit reset action is needed in eNB side. After inserting the newly received packets into the compression memory in the eNB side, the old data is flushed out and memory resets eventually. That is, to support UDC recovery/reset, it is no need for compressor to tell decompressor whether a packet is compressed after UDC recovery/reset. The RRC signaling from eNB to inform UE of UDC reset is sufficient.
Comment #5: The computational complexity comparison is NOT quantitative.
Compressor side: The example compressor illustration in Figure 7.2.X.1.4-1 in APDC document [11] shows that the algorithm to search for repeated strings from compression memory in APDC is more complicated than the algorithm in Zlib/Deflate because APDC should consider CPCR, PMCR, and PPCR. That is, additional computation on header format selection is needed. Moreover, the Huffman encoding does not take a significant time compared with LZ77 algorithm, based on the evaluation on our mobile platform. Hence, the qualitative analysis of computational complexity is simply not meaningful.
Decompressor side: For Zlib and Deflate, the computational complexity of decompressor are lower than the complexity of compressor, so it is not an issue for eNB.
Comment #6: The compression efficiency comparison is unrealistic.
Since 4 possible UDC methods were proposed and captured in TR, the comparison should consider all these methods. Besides, UDC methods with 8K and 32K buffer sizes should be considered. For the case-by-case comparison, the following result can be found in 32K buffer size setting:
1. Deflate has the best compression efficiency in 5 out of 11 test PCAP files.
2. APDC has the best compression efficiency in 2 out of 11 test PCAP files.
3. ROHC has the best compression efficiency in 4 out of 11 test PCAP files.
On the other hand, the average compression efficiency should be calculated by using the weighted average corresponding to the volume of each kind of traffic in real network. The simple average may not work for the compression efficiency comparison.
Comment #7: The compressed data format of Zlib and Deflate are the same as defined in RFC 1951.
Zlib is a compression container format to contain Deflate compressed data format. So, we agree to consolidate Zlib/Deflate method to reduce the standardization efforts in the Work Item phase.
3 Conclusion and Text proposal
In this document, we express our review comments and correct some misunderstanding on public-domain methods (Zlib/Deflate). Byte-alignment and memory reset are not issues for Zlib/Deflate. We also discuss fair comparisons among the 4 methods proposed in TR. We think the public domain method is well-examined solution for data compression. The merits of the public domain method are as stated in [9], including
· “The ‘deflate’ compression format as embodied in the freely and widely distributed zlib library source code, has the following features:
· An apparently unencumbered encoding and compression algorithm, with an open and publicly-available specification.
· Low-overhead escape mechanism for incompressible data.
· Heavily used for many years in networks, on modem and other point-to-point links to transfer files for personal computers and workstations.”

Proposal 1: to capture the following Table 3-1 and Table 3-2 into the “Conclusion” section of the TR.
	Table 3-1 Comparison of the compression efficiency of four possible UDC methods
32K Byte buffer; Green=Biggest; Yellow=Smallest.

	PCAP File #
	PCAP File
	Compression Efficiency –
Zlib
	Compression Efficiency –
Deflate
	Compression Efficiency –
ROHC
	Compression Efficiency –
APDC

	1
	FTP- Client (CMCC)
	50.45%
	51.69%
	73.30%
	54.74%

	2
	FTP- Server (CMCC)
	45.06%
	46.02%
	59.70%
	50.39%

	3
	Online video (CMCC)
	65.13%
	65.55%
	21.70%
	62.04%

	4
	Long period video (CMCC)
	73.91%
	75.41%
	45.10%
	78.44%

	5
	SIP UE1(CMCC)
	88.12%
	88.25%
	5.40%
	85.61%

	6
	SIP UE2 (CMCC)
	85.26%
	85.34%
	5.10%
	82.16%

	7
	SIP UE3 (CMCC)
	88.50%
	88.62%
	4.40%
	85.94%

	8
	Web surfing (CMCC)
	70.13%
	71.04%
	23.10%
	67.75%

	9
	Video data (MediaTek)
	59.10%
	59.92%
	80.70%
	73.98%

	10
	Long duration FTP (MediaTek)
	60.02%
	60.46%
	83.40%
	75.34%

	11
	Multiple IP flows (Qualcomm)
	74.27%
	74.87%
	40.00%
	75.32%

	Table 3-2 Evaluation and comparisons of four possible UDC methods

	Evaluation criteria as agreed by RAN2
	Zlib
RFC 1950
	Deflate
RFC 1951
	ROHC
RFC 3095/6846
	APDC
(Solution 4 in the TR)

	1) Compressed data is byte-aligned
	Yes (As defined in RFC 1979)
	Yes (As defined in RFC 1979)
	Yes
	Yes

	2) Reliability: error detection at decompressor
	Yes (IP/TCP/UDP header includes checksum, or add additional checksum in PDCP header if needed)
	Yes (IP/TCP/UDP header includes checksum, or add additional checksum in PDCP header if needed)
	Yes
	Yes (4 bits checksum for compression memory)

	3) Reliability: UDC recovery/reset upon error indication by decompressor
	Yes (As defined in RFC 1979)
	Yes (As defined in RFC 1979)
	Yes
	Yes (by setting UDC header field “packet action” to ‘101’)

	4) Memory size
	Configurable compression memory (e.g., 8Kbytes or 32Kbytes)
	Configurable compression memory (e.g., 8Kbytes or 32Kbytes)
	Related to the number of end-to-end links, and only the header part consumes memory (e.g. 52 bytes for each TCP link)
	Configurable compression memory (e.g., 8Kbytes or 32Kbytes), and 32 Bytes UDC header memory)

	5) Compression efficiency

(Details in Table 3-1)
	Best results in 0 out of 11 test PCAP files due to the Zlib header overhead.
	Best results in 5 out of 11 test PCAP files.
	Best results in 2 out of 11 test PCAP files.
	Best results in 4 out of 11 test PCAP files.

Proposal 2: Standardize Zlib/Deflate as the UDC compression method in Work Item phase.
4 Reference

[1] RP-162541, New SI proposal: Study on UL data compression in LTE
[2] R2-1704690, Comparison of UDC Solutions
[3] R2-1704966, Considerations on impacts to specifications due to UDC solutions
[4] R2-1705314, Comparison of different UDC algorithms
[5] R2-1705614, Comparison of UDC candidate solutions under agreed metrics
[6] R2-1705629, Consideration on controllability of UDC
[7] R2-1704697, Running TR 36.754 of UDC
[8] RFC 1951, DEFLATE Compressed Data Format Specification version 1.3, https://tools.ietf.org/html/rfc1951
[9] RFC 1979, PPP Deflate Protocol, https://tools.ietf.org/html/rfc1979
[10] RFC 4253, The Secure Shell (SSH) Transport Layer Protocol, https://tools.ietf.org/html/rfc4253
[11] R2-1705613, Updated details on APDC compression and decompression solution
[12] R2-1705419, Performance Cross-Checking on Public Domain Compression Methods for UDC, MediaTek, CATT
[13] R2-1704688, Details of UDC Solution 3, CATT
1

