
3GPP TSG RAN WG2 Meeting #98
R2-1705834
Hangzhou, China, May 15-19, 2017
Source:
CATT

Title:
Details of UDC solution 3
Agenda Item:
9.3.3
Document for:
Discussion and Decision
1. Introduction
Deflate based UDC solution was agreed to be a candidate in last RAN2 meeting. In [1], general information of deflate based compression and preliminary simulation results were provided. In this contribution, we’ll provide further description of the solution.
2. Discussion
2.1. Deflate based compression algorithm
RFC 1951 (DEFLATE Compressed Data Format Specification) [2] is broadly used with fewest overhead (e.g. compare to RFC 1950, reduced with header and tail bytes). Deflate is a lossless data compression algorithm and associated file format (specified in [2]) that uses a combination of the LZ77 algorithm and Huffman coding.
LZ77 compression works by finding sequences of data that are repeated. A sliding window, which is called buffer in UDC solution, is used to find the match characters in previous data. An 8K/32K sliding window means that the compressor (and de-compressor) has a record of what the last 8192 or 32768 characters were. When the next sequence of characters to be compressed is identical to one that can be found within the sliding window, the sequence of characters is replaced by two numbers: a “distance”, representing how far back into the window the sequence starts, and a “length”, representing the number of characters for which the sequence is identical. And then, the string pair (length, distance) is used to replace the current matched characters. Lazy-match is considered in our simulation to finding the longest matching part in the buffer. The un-matched characters are noted as “literal”.

[image: image1.emf]a b c d e f g h

Data in buffer

b c d

Compression Entity

Packet to be compressed

Position 7 6 5 4 3 2 1 0

(a) Before compression

[image: image2.emf]B110011

d e f g h

Data in buffer

b c d

Compression Entity

Compressed Packet

Position 7 6 5 4 3 2 1 0

(b) after compression

Figure 1: example of LZ77 compression
In Figure 1, the buffer size is 8 bytes. When a new packet which has content of “bcd” coming, a cross-packet match can be identify in the buffer, with the previous position 6, length 3. The new packet which original length is 3 byte can be compressed to 6 bits (i.e. 3 bits to identify 8 positions in the buffer, and 3 bits for length). After compression, the new packet is inserted in the buffer.
After LZ77 processing, Huffman coding is used to encode the “literal”, “length” and “distance” by replacing frequently used codes with shorter representations and infrequently used codes with longer representations. Deflate based compression defines the static Huffman tree in RFC1951 [2], and also, dynamic Huffman tree would be generated according to the data in current packet. Adaptive selection of static Huffman coding and dynamic Huffman coding is enabled to achieve maximum compression gain in UDC solution 3. The Huffman codes used for each alphabet (e.g. literal/length alphabet and distance alphabet) in the “deflate” format have two additional rules: 1) All codes of a given bit-length have lexicographically consecutive values, in the same order as the symbols they represent; 2) Shorter codes lexicographically precede longer codes (details can be seen in RFC1951 [2]).
The Huffman codes for the two alphabets appear in the block immediately after the header bits and before the actual compressed data, first the literal/length code and then the distance code. Each code is defined by a sequence of Huffman code lengths. For even higher compression ratio, the code length sequences themselves are compressed using a Huffman code.
In our UDC solution, we use the following compression block format respectively for static Huffman coding and dynamic Huffman coding.

[image: image3.emf]Compressed data bits

Dynmic

/Static

LA

ST

7 6 5 4 3 2 1 0

Byte

Compressed data bits

…… END

0

Figure 1 compression block by using static Huffman tree

[image: image4.emf]HLIT (5bits)

Dynmic

/Static

LA

ST

HDIST (5bits) HCLEN(0-2)

HCL

EN

(3)

Code Length Tree

Code Length Tree

……

Literal tree

……

Distance tree

……

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Byte Byte

7 6 5 4 3 2 1 0

Byte

Compressed data bits

…… END

0

Figure 2 compression block by using dynamic Huffman tree

Where,
Dynamic/Static flag: indicating whether static Huffman or dynamic Huffman is used
00 - no compression
01 - compressed with fixed Huffman codes
10 - compressed with dynamic Huffman codes
11 - reserved (error)

HLIT - Number of Literal/Length (257 - 286) codes minus 257

HDIST - Number of Distance codes (1 - 32) minus 1

HCLEN - Number of Code Length codes (4 - 19) minus 4

END - The literal/length symbol 256 (end of data)

LAST - reserved, can be used to indicating whether this is the last block for a file
Proposal 1: Replace the above description on Deflate based solution into TR 36.754 (Section 7.2.3.1).

2.2. PDCP format

In last meeting, some companies expressed their concern on the synchronization between compression buffer and de-compression buffer, maybe we need checksum mechanism to solve this, which means, compressor calculate a checksum value by using the data in buffer, and the de-compressor can validate the buffer content by the checksum value. Additionally, multiple IP flow in one ratio bearer using various profile should be considered when design UDC solution, which means, maybe some data in this bearer need to be compressed by UDC entity, and others need not. We should have some information in PDCP header to inform de-compressor whether the current received packet is processed by UDC entity. Considering these two aspects, it would be better to introduce additional byte in PDCP header for UDC, where, 1 bit to indicate whether the current PDCP SDU is compressed/processed by UDC entity, and 4~6 bits for the checksum (note that the checksum is calculated by the data in buffer, excluding the current packet).
To make the unified format for all PDCP PDU user plane data format, 1 byte can be added to PDCP header as following example (F bit for indication). The detail of the PDCP PDU format can be further discussed in WI phase.

[image: image5.emf]...

PDCP SN(cont.)

UDC Block

D/C PDCP SN R R R Oct 1

Oct 2

Oct 4

Reserved

Oct 3

F

Checksum

Figure 3 example of new PDCP PDU format (12 bit PDCP SN, 4 bits checksum)

Proposal 2: Introducing 1 byte in PDCP user plane PDU for UDC, where, 1 bit to indicate whether the current PDCP SDU is compressed/processed by UDC entity, and 4~6 bits for the checksum of data in buffer.
Considering to support the error recovery and to increase compression/de-compression buffer utilizing efficiency, the reserved bits can be used to indicate whether to reset the buffer and whether to copy this packet data into the de-compression buffer. This issue can be addressed in WI phase.
3. Proposals
In this contribution, further details on deflate based solution are given.
It is proposed that:
Proposal 1: Replace the above description on Deflate based solution into TR 36.754 (Section 7.2.3.1).
Proposal 2: Introducing 1 byte in PDCP user plane PDU for UDC, where, 1 bit to indicate whether the current PDCP SDU is compressed/processed by UDC entity, and 4~6 bits for the checksum of data in buffer.
4. References
[1]
R2-1703005, Compression and Decompression Solution for UDC, CATT
[2]
RFC 1951, DEFLATE Compressed Data Format Specification[image: image6.png]

PAGE
2
R2-1705834

_1551797632.vsd
Compression Entity

Compressed Packet

b

B110011

d

e

f

g

h

Data in buffer

c

d

Position 7 6 5 4 3 2 1 0

_1555327100.vsd
�

�

Compressed data bits

Dynmic
/Static

LAST

7

6

5

4

3

2

1

0

Byte

Compressed data bits ……

END

0

_1555422080.vsd
PDCP SN (cont.)

R

R

UDC Block

D/C

PDCP SN

R

...

Oct 1

Oct 2

Oct 4

Reserved

Oct 3

F

Checksum

_1551797451.vsd
Compression Entity

Packet to be compressed

b

a

b

c

d

e

f

g

h

Data in buffer

c

d

Position 7 6 5 4 3 2 1 0

